Skip to main content
Log in

Physiological reactions to a change in light regime in cultured Skeletonema costatum (Bacillariophyta): implications for estimation of phytoplankton biomass

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The marine planktonic diatom Skeletonema costatum (Cleve) was grown in batch culture under a 12 h light: 12 h dark (LD) regime for several generations before the experiment. At Time 0, half of the culture was transferred to continuous light (CL). Particulate organic carbon (POC), nitrogen (PON), and photosynthetic pigments (measured by spectrophotometry and high performance liquid chromatography) were monitored for 7 to 9 days in the two cultures. Under CL, POC and PON production were always lower. In addition, we measured a much higher proportion of chlorophyll degradation products (as chlorophyllid a, phaeophytin a and phaeophorbid a (PrD)). These indicate different physiological conditions between the two cultures, as reflected also be the lower POC/PON and chlorophyll a/POC ratios. Under CL illumination cells appear stressed, probably due to the total quantity of light to which cells are exposed. In fact, a higher proportion of the two xanthophylls diadinoxanthin and diatoxanthin in the CL culture indicates a photoprotective reaction of the cells. In contrast with the LD culture, parameters measured were not significantly inter-correlated in the CL culture. The lack of correlation between chlorophyll a and POC in CL does not encourage the use of the chlorophyll a/POC ratio as a biomass estimator. On the opposite, the ratio of total pigment content to POC did not vary much as a function of the light condition of the culture, remaining near 0.040 in both light regimes. Although further observations are needed, this index seems to be a reliable indicator of phytoplankton carbon biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banse, K., 1977.Determining the Carbon-to-Chlorophyll ratio of natural phytoplankton. Mar. Biol. 41: 199–212.

    Google Scholar 

  • Booth, B. C., J. Lewin & C. J. Lorenzen, 1988. Spring and summer growth rates of subartic Pacific phytoplankton assemblages determined from carbon uptake and cell volumes estimated using epifluorescence microscopy. Mar. Biol. 98: 287–298.

    Google Scholar 

  • Brunet, C., 1994. Analyse des pigments photosynthétiques par hplc: communautés phytoplanctoniques et productivité primaire en Manche orientale. Thèse Univ. Paris VI -Lille 1, Station Marine de Wimereux: 364 pp.

  • Brunet, C., J. M. Brylinski, N. Degros & D. Hilde, 1992. Etude de la biomasse phytoplanctonique en Manche orientale: comparaison de trois techniques de mesure des concentrations en chlorophylle a. J. Rech. Oceanogr. 16: 95–99.

    Google Scholar 

  • Brunet, C., J. M. Brylinski & Y. Lemoine, 1993. In situ variations of the xanthophylls diatoxanthin and diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the eastern English Channel. Mar. Ecol. Prog. Ser. 102: 69–77.

    Google Scholar 

  • Carreto, J. I. & J. A. Catoggio, 1976. Variations in pigment contents of the diatom Phaeodactylum tricornutum during growth. Mar. Biol. 36: 105–112.

    Google Scholar 

  • Claustre, H. & J. Gostan, 1987. Adaptation of biochemical composition and cell size to irradiance in two micro-algae: possible ecological implications. Mar. ecol. Prog. Ser. 40: 167–174.

    Google Scholar 

  • Davoult, D., N. Degros, M. A. Janquin & B. Soyez, 1992. Biometrics, carbon and nitrogen content in the ophiuroid Ophiothrix fragilis. J. Mar. Biol. Ass. U.K. 72: 915–918.

    Google Scholar 

  • Falkowski, P. G. & T. G. Owens, 1980. Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiol. 66: 592–595.

    Google Scholar 

  • Gilstad, M., G. Johnsen & E. Sakshaug, 1993. Photosynthetic parameters, pigment composition and respiration rate of the marine diatom Skeletonema costatum grown in continuous light and a 12:12 light-dark cycle. J. Plankton Res. 15: 939–951.

    Google Scholar 

  • Goericke, R. & N. A. Welschmeyer, 1992a. Pigment turnover in the marine diatom Thalassiosira weissflogii. I. The 14CO2-labelling kinetics of chlorophyll a. J. Phycol. 28: 498–507.

    Article  Google Scholar 

  • Goericke, R. & N. A. Welschmeyer, 1992b. Pigment turnover in the marine diatom Thalassiosira weissfiogii. II. The 14CO2-labelling kinetics of carotenoids. J. Phycol. 28: 507–517.

    Article  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies on marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.

    PubMed  Google Scholar 

  • Hédin-Bougard, M., 1980. Hydrobiologie littorale: phytoplancton (région de Dunkerque-Mer du nord). Thèse Univ. Lille I — S.M.W.: 204 pp.

  • Jeffrey, S. W. & G. M. Hallegraeff, 1987. Chlorophyllase distribution in ten classes of phytoplankton: a problem for chlorophyll analysis. Mar. Ecol. Prog. Ser. 35: 293–304.

    Google Scholar 

  • Johnsen, G. & E. Sakshaug, 1993. Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum. J. Phycol. 29: 627–642.

    Article  Google Scholar 

  • Lancelot-Van Beveren, C., 1980. A statistical method to estimate the biochemical composition of phytoplankton in the Southern bight of the North Sea. Estuar. coast. mar. Sci. 10: 467–478.

    Google Scholar 

  • Latasa, M., E. Berdalet & M. Estrada, 1992. Variations in biochemical parameters of Heterocapsa sp. and Olisthodiscus luteus grown in 12:12 1ight:dark cycles. II. Changes in pigment composition. Hydrobiologia 238: 149–157.

    Google Scholar 

  • Latasa, M. & E. Berdalet, 1994. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. J. Plankton Res. 16: 83–94.

    Google Scholar 

  • Lehman, P. W., 1981. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar. Biol. 65: 237–244.

    Google Scholar 

  • Liaeen-Jensen, S., 1978. Marine carotenoids. In Marine natural products, Sheuer P.J. (Ed.). Academic Press, New York: 1–73.

    Google Scholar 

  • Madariaga, I. (de) & I. Joint, 1992. A comparative study of phytoplankton physiological indicators. J. exp. mar. Biol. Ecol. 158: 149–165.

    Article  Google Scholar 

  • Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse phase H.P.L.C. Analyt. chim. Acta 151: 297–314.

    Article  Google Scholar 

  • Mortain-Bertrand, A., C. Descolas-Gros & H. Jupin, 1987. Stimulating effect of light-to-dark transitions on carbon assimilation by a marine diatom. J. exp. mar. Biol. Ecol. 112: 11–26.

    Google Scholar 

  • Neveux, J., D. Dermas, J. C. Romano, P. Algarra, L. Ignatiades, A. Herbland, P. Morand, A. Neori, D. Bonin, J. Barbe, A. Sukenik & T. Berman, 1990. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and H.P.L.C. methods. Mar. Microb. Food Webs 4: 217–238.

    Google Scholar 

  • Nielsen, M. V., 1992. Irradiance and daylength effects on growth and chemical composition of Gyrodinium aureolum Hulburt in culture. J. Plankton Res. 14: 811–820.

    Google Scholar 

  • Nielsen, M. V. & E. Sakshaug, 1993. Photobiological studies of Skeletonema costatum adapted to spectrally different light regimes. Limnol. Oceanogr. 38: 1576–1581.

    Google Scholar 

  • Prézelin, B. B., 1992. Diel periodicity in phytoplankton productivity. Hydrobiologia 238: 1–35.

    Google Scholar 

  • Prézelin, B. B. & B. M. Sweeney, 1978. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol. 48: 27–35.

    Google Scholar 

  • Roy, S., 1988. Effects of changes in physiological conditions on hplc-defined chloropigment composition of Phaeodactylum tricornutum (Bohlin) in batch and turbidostat cultures. J. exp. mar. Biol. Ecol. 118: 137–149.

    Article  Google Scholar 

  • Sakshaug, E. & K. Andresen, 1986. Effect of light regime upon growth rate and chemical composition of a clone of Skeletonema costatum from the Trondheimsfjord, Norway. J. Plankton Res. 8: 619–637.

    Google Scholar 

  • Sakshaug, E., K. Andresen & D. A. Kiefer, 1989. A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol. Oceanogr. 34: 198–205.

    Google Scholar 

  • Scor-Unesco, 1966. Determination of photosynthetic pigments in sea-water. Monogr. Oceanogr. Methodol. (UNESCO) 1: 1–69.

    Google Scholar 

  • Sournia, A., 1974. Circadian periodicities in natural populations of marine phytoplankton. Adv. Mar. Biol. 12: 325–389.

    Google Scholar 

  • Suzuki, R. & Y. Fujita, 1986. Chlorophyll decomposition in Skeletonema costatum: a problem in chlorophyll determination of water samples. Mar. Ecol. Prog. Ser. 28: 81–85.

    Google Scholar 

  • Volk, T. & M. I. Hoffert, 1985. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean driven CO2 changes. In Sundquist E. T. & W. S. Broecker (eds). The carbon cycle and atmospheric CO2: natural variations archean to present, AGU Monograph 32, Washington DC: 99–110.

  • Wilhelm, G. & L. Manns, 1991. Changes in pigmentation of phytoplankton species during growth and stationary phase consequences for reliability of pigment based methods of biomass determination. J. appl. Phycol. 3: 305–310.

    Google Scholar 

  • Willemoës, M. & E. Monas, 1991. Relationship between growth irradiance and the xanthophyll cycle pool in the diatom Nitzschia palea. Physiologia Plantarum 83: 449–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, C., Davoult, D. & Casotti, R. Physiological reactions to a change in light regime in cultured Skeletonema costatum (Bacillariophyta): implications for estimation of phytoplankton biomass. Hydrobiologia 333, 87–94 (1996). https://doi.org/10.1007/BF00017571

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017571

Key words

Navigation