Skip to main content
Log in

Convective characteristics of the nocturnal urban boundary layer as observed with Doppler sodar and Raman lidar

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Convective plume patterns, characteristic of clear sky and light wind daytime boundary layers over land, were observed for two nights with a tri-axial Doppler sodar operated in the central area of Rome during the summer of 1994. An urban heat island effect, combined with a continuation of a breeze from the sea late into night during both days, is believed to be responsible for the observed nocturnal convection. Estimates of the surface heat flux and the vertical velocity scaling parameter are obtained from profiles of vertical velocity variance, and the Raman lidar water vapor measurements are used to obtain the humidity scaling parameter. Convective scaling results for vertical wind and humidity fairly agree with the results of other experiments and models. On the basis of available measurements, it appears that mixed-layer similarity formulations used to characterize the daytime convective boundary layer over horizontally homogeneous surfaces can also be applied to the nocturnal urban boundary layer during periods of reasonable convective activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casadio, S.: 1993, ‘Atmospheric Water Vapor Concentration Measurements with Raman Lidar’, Unpublished Doctorate Thesis, University of Rome, 156 pp.

  • Ching, J. K. S., Clarke, J. F., and Godowitch, J. M.: 1983, ‘Modulation of Heat Flux by Different Scales of Advection in an Urban Environment’, Boundary-Layer Meteorol. 25, 171–191.

    Google Scholar 

  • Ching, J. K. S.: 1985, ‘Urban-Scale Variations of Turbulence Parameters and Fluxes’, Boundary-Layer Meteorol. 33, 335–361.

    Google Scholar 

  • Coulter, R. L.: 1990, ‘A Case Study of Turbulence in the Stable Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 52, 75–91.

    Google Scholar 

  • Elisei, G., Maini, M., Marzorati, A., Morselli, M. G., Fiocco, G., Cantarano, G., and Mastrantonio, G.: 1986, ‘Implementation of a Multiaxial Doppler Sodar System with Advanced Data Processing’, Atmos. Res. 20, 109–118.

    Google Scholar 

  • Gamo, M., Yamamoto, S., Yokoama, O., and Yoshikado, H.: 1983, ‘Structure of the Free Convective Internal Boundary Layer above the Coastal Area’, J. Meteorol. Soc. Japan 61, 110–124.

    Google Scholar 

  • Greenhut, G. K. and Mastrantonio, G.: 1989, ‘Turbulence Kinetic Energy Budget Profiles Derived from Doppler Sodar Measurements’, J. Appl. Meteorol. 28, 99–106.

    Google Scholar 

  • Hildebrand, P. H. and Ackerman, B.: 1984, ‘Urban Effects on the Connective Boundary Layer’, J. Atmos. Sci. 41, 76–91.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cotè, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kaimal, J. C., Abshire, N. L., Chadwick, R. B., Decker, M. T., Hooke, W. H., Kropfli, R. A., Neff, W. D., Pasqualucci, F., and Hildebrand, P. H.: 1982, ‘Estimating the Depth of the Daytime Convective Boundary Layer’, J. Appl. Meteorol. 21, 1123–1129.

    Google Scholar 

  • Lenschow, D. H., Wyngaard, J. C., and Pennell, W. T.: 1980, ‘Mean-Field and Second-Moment Budgets in a Bartoclinic, Convective Boundary Layer’, J. Atmos. Sci. 37, 1313–1326.

    Google Scholar 

  • Lenschow, D. H., Mann, J., and Kristensen, L.: 1993, ‘How Long is Long Enough when Measuring Fluxes and Other Turbulence Statistics?’, NCAR/TN-389+STR NCAR Technical Note.

  • Mahrt, L.: 1979, ‘Penetrative Convection at the Top of a Growing Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 469–485.

    Google Scholar 

  • Mastrantonio, G. and Fiocco, G.: 1982, ‘Accuracy of Wind Velocity Determinations with Doppler Sodar’, J. Appl. Meteorol. 21, 820–830.

    Google Scholar 

  • Mastrantonio, G., Argentini, S., and Viola, A.: 1994, ‘A New PC-Based Real Time System to Analyze Sodar-Echoes’, in M. Colacino, G. Giovanelli and L. Stefanutti (eds.), Italian Research on Antarctic Atmosphere, Italian Physical Society, Bologna, 45, 227–235.

    Google Scholar 

  • Melas, D. and Kambezidis, H. D.: 1982, ‘The Depth of the Internal Boundary Layer Over an Urban Area Under Sea-Breeze Conditions’, Boundary-Layer Meteorol. 61, 247–264.

    Google Scholar 

  • Melling, H. and List, R.: 1980, ‘Characteristics of Vertical Velocity Fluctuations in a Convective Urban Boundary Layer’, J. Appl. Meteorol. 19, 1184–1195.

    Google Scholar 

  • Oke, T. R.: 1987, Boundary-Layer Climates, Routledge, London.

  • Oke, T. R.: 1988, ‘The Urban Energy Balance’, Progress in Physical Geography 12, 471–508.

    Google Scholar 

  • Rao, M. P., Casadio, S., Fiocco, G., Lena, F., Cacciani, M., Calisse, P. G., di Sarra, A., and Fuà, D.: 1995, ‘Observation of Lump Structures in the Nocturnal Atmospheric Boundary Layer with Doppler Sodar and Raman Lidar’, Geophys. Res. Lett. 22, 2505–2508.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 666 pp.

    Google Scholar 

  • Weill, A., Klapisz, C., Strauss, B., Baudin, F., Jaupart, C., Van Grunderbeeck, P. and Gourtorbe, J. P.: 1980, ‘Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar’, J. Appl. Meteorol. 19, 199–205.

    Google Scholar 

  • Wyngaard, J. C.: 1983, ‘Lectures on the Planetary Boundary Layer’, in D. K. Lilly and T. Gal-Gen (eds.), Mesoscale Meteorology Theories, Observations and Models, D. Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Yoshikado, H.: 1978, ‘The Characteristics of the Sea Breeze in Relation to the Pressure Field’, Kogai (in Japanese) 13, 36–45.

    Google Scholar 

  • Zhou, M. Y., Lenschow, D. H., Stankov, B. B., Kaimal, J. C., and Gaynor, J. E. 1985, ‘Wave and Turbulence Structure in a Shallow Baroclic Convective Boundary Layer and Overlying Inversion’, J. Atmos. Sci. 42, 47–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadio, S., Di Sarra, A., Fiocco, G. et al. Convective characteristics of the nocturnal urban boundary layer as observed with Doppler sodar and Raman lidar. Boundary-Layer Meteorol 79, 375–391 (1996). https://doi.org/10.1007/BF00119405

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119405

Keywords

Navigation