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Abstract

Remote imaging spectroscopy, also known as hyperspectral imaging, uses Radiative Transfer Models (RTMs) to predict the mea-
sured radiance spectrum for a specific surface and atmospheric state. Discrepancies between RTM assumptions and physical reality
can cause systematic errors in surface property estimates. We present a statistical method to quantify these model errors without
invoking ground reference data. Our approach exploits scene invariants — properties of the environment which are stable over
space or time — to estimate RTM discrepancies. We describe techniques for discovering these features opportunistically in flight
data. We then demonstrate data-driven methods that estimate the aggregate errors due to model discrepancies without having to
explicitly identify the underlying physical mechanisms. The resulting distributions can improve posterior uncertainty predictions
in operational retrievals.
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1. Introduction

Remote imaging spectroscopy, also known as hyperspectral
imagery, relies on Radiative Transfer Models (RTMs) to predict
the measured radiance for a given surface and atmospheric state
(Gao et al., 1993). This casts remote measurement as an in-
verse problem to find the most probable state for the measured
radiance. The pattern repeats across disciplines: atmospheric
correction inverts an atmospheric RTM (Clough et al., 2005);
aquatic studies invert water column RTMs (Mobley, 1994);
terrestrial ecologists invert tree canopy RTMs (Kobayashi &
Iwabuchi, 2008); geology, cryosphere, and urban studies have
unique radiative transfer formalisms (Lucey & Noble, 2008;
Dozier et al., 2009; Voogt & Oke, 2003).

RTMs are approximations and inevitably differ from reality.
These differences, known as model discrepancies, include ap-
proximations for computational convenience, well-defined but
unknown parameters which cannot be measured directly, and
any ”unknown unknowns” that manifest as undiagnosed errors
in validation experiments. Quantifying these model discrep-
ancy errors is important for unbiased remote measurements
(Brynjarsdóttir & O’Hagan, 2014), and enables accurate hy-
pothesis testing based on the results. Additionally, algorithms
that respect and propagate measurement uncertainty can im-
prove performance by ascribing the optimal weighting to un-
certain data (Carmon et al., 2020). Uncertainty predictions en-
able a principled synthesis of global data products acquired un-
der varied observing conditions (Hobbs et al., 2017). They can
reveal faults in our understanding to guide model refinement,
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bounding the observation system and revealing it for the first
time in its entirety.

While quantifying uncertainty is critical, it is also challeng-
ing. Simply assessing historical errors is not sufficient; one
must develop an uncertainty model that predicts future errors
under novel observing conditions. To this end, classical un-
certainty propagation projects the sensor’s measurement noise
distribution through downstream analysis. This can explain dis-
crepancies between remote estimates and field data under well-
controlled observing conditions (Thompson et al., 2020). How-
ever, in more challenging circumstances, errors due to model
discrepancies often surpass those of instrument noise. Here
we define RTM discrepancies broadly to include diverse dif-
ferences between the actual and modeled observation system:

• Radiometric calibration error (Chapman et al., 2019);
• Spectral calibration error, including errors in spectral re-

sponse functions (Thompson et al., 2018a) or nonunifor-
mity (Richter et al., 2010);
• Error in profiles and concentrations of atmospheric con-

stituents (Griffin & Burke, 2003);
• Error in optical behavior of atmospheric constituents, such

as gas absorption coefficients or aerosol scattering proper-
ties (Thompson et al., 2019);
• Error caused by discrete approximations for the radiative

transfer solution (Lu et al., 2009) or lookup table interpo-
lation (Bue et al., 2019);
• Errors or omissions in estimating geometric effects at the

surface, including topography (Richter et al., 2009) and
adjacency effects (Sanders et al., 2001);
• Retrieval error caused by biases or inaccuracies in the in-

version algorithm itself (Kulawik et al., 2019);
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• Errors from wholly unmodeled physical phenomena such
as cirrus clouds (Gao et al., 1998).

If the model discrepancies and their associated probability dis-
tributions were known, they could be counted appropriately in
the inversion for more accurate retrievals, and in the uncertainty
propagation for more accurate confidence bounds (Braverman
et al., 2020). However, in practice model discrepancies are of-
ten ignored because it is difficult to identify, let alone quantify,
their effects. They can involve physical processes in the atmo-
sphere or surface media that are challenging to measure. Field
data have their own uncertainties and cannot scale globally.

This work demonstrates that it is possible to estimate model
discrepancy errors from statistics of the instrument data without
invoking ground truth observations. Our solution uses scene in-
variants - properties of the environment which are constant over
space or time (Schott et al., 1988; Canty et al., 2004). One ex-
ample of such a property is the shape of the spectral surface
reflectance, which is stable over multi-year timescales in se-
lected areas of the globe (Cosnefroy et al., 1996; Bouvet, 2014;
Bouvet et al., 2019). On smaller scales, airborne campaigns
regularly recalibrate using smaller invariant surfaces such as
roofs (Meerdink et al., 2019), concrete patches (Rockwell et al.,
2000), gravel (Kokaly et al., 2003), and bare soil or rock (Clark
et al., 2002). Any remote image of sufficient size is likely
to contain many such surfaces, which can help to harmonize
data acquired under different conditions (Furby & Campbell,
2001; Canty et al., 2004). We will show that invariant surfaces
can also serve as reference standards to quantify time-variable
atmospheric distortions, allowing investigators to estimate the
uncertainty caused by model discrepancies without needing to
specify the physical mechanisms. We will also show that such
features can be detected automatically in flight data, so that it is
not necessary to rely upon the invariance of any particular pres-
elected location. Instead, investigators can exploit the statistical
likelihood of observing at least some invariant surfaces in any
sufficiently large scene. The resulting distributions can be used
to improve the accuracy of retrievals and predicted uncertain-
ties.

These methods are well-suited for the next generation of or-
bital imaging spectrometers. Missions such as NASA’s Earth
Mineral dust source InvestigaTion (EMIT) aim to build consis-
tent global maps across variable and challenging atmospheres
(Green et al., 2020). Better uncertainty estimates will enable an
optimal synthesis of data with variable quality. Scene invari-
ants are also appropriate for repeat observations by the Euro-
pean Space Agency’s Copernicus Hyperspectral Imaging Mis-
sion (CHIME) (Taramelli et al., 2020) and NASA’s Surface Bi-
ology and Geology (SBG) architecture (National Academies of
Sciences, Engineering, and Medicine, 2018). These investiga-
tions will return regularly to the same sites across diverse atmo-
spheric conditions. Such dense time series will be powerful for
quantifing uncertainties in atmospheric radiative transfer.

Section 2 introduces the mathematical foundations of our ap-
proach. We define invariant scene properties and demonstrate
robust estimation of model discrepancy errors. The technique
applies to many different RTMs, but we focus on uncertainties
associated with atmospheric correction, i.e. the estimation of

surface reflectance and atmospheric constituents from remote
radiance data. Section 3 applies the method to a large dataset of
repeat flightlines from NASA’s Next Generation Airborne Vis-
ible Infrared Imaging Spectrometer (AVIRIS-NG) (Chapman
et al., 2019) acquired during a campaign in India from 2015-
2018 (Bhattacharya et al., 2019). We show that scene invari-
ants exist in diverse terrestrial images, and that the estimated
model discrepancy distributions translate to other domains and
improve the accuracy of future uncertainty predictions.

2. Quantifying Model Discrepancies

This section introduces the fundamental concepts and nota-
tion. The formalism applies to any RTM or inversion method,
but we present a case study based on the atmospheric correc-
tion problem. Atmospheric correction uses the measured radi-
ance spectrum at the sensor to estimate the surface reflectance
spectrum, typically defined as a Directional Reflectance Fac-
tor (DRF), the fraction of downwelling irradiance at the surface
which is reflected in the direction of the sensor (Nicodemus,
1970). Hereafter we will refer to this quantity as the spec-
tral surface reflectance, or simply reflectance. To estimate re-
flectance remotely, one must simultaneously find the columnar
concentrations of atmospheric gases and suspended particles
which influence the measured radiance and vary rapidly across
space and time. Atmospheric correction is important for remote
imaging spectroscopy because it precedes any domain-specific
analysis of surface chemical or physical properties. Its math-
ematical structure - inversion of a nonlinear RTM with prior
constraints and model discrepancies - is generic and broadly
applicable.

We motivate our method by first presenting two straw per-
son alternatives. First, we describe a direct estimate of model
discrepancy using ground truth measurements, which are not
available for global observations. We then describe a plug in
estimate using the output of an inversion algorithm. The plug
in estimate is convenient to deploy over large datasets, but sys-
tematically underestimates model discrepancy errors. Finally,
we derive a method based on scene invariants which captures
the best of both alternatives, improving accuracy while remain-
ing practical for operational use.

2.1. The Direct Approach

Remote inversions estimate a state vector x of free param-
eters. Table 1 shows our notation, with boldface signifying
matrix or vector-valued quantities. In atmospheric correc-
tion, x specifies the surface and atmospheric properties. In
this discussion we parameterize the surface portion xsur f us-
ing the Hemispherical Directional Reflectance Factor, or HDRF
(Schaepman-Strub et al., 2006), in each channel, and the at-
mospheric portion xatm using the column water vapor concen-
tration and the optical depth for one or more aerosol types
(Thompson et al., 2018b). All other parameters of the atmo-
spheric model, such as the concentrations of other gases, are
held fixed during the retrieval. The complete state vector x is the
concatenation of the surface and atmosphere components. For
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Symbol Meaning
b Parameters of the forward function which are not retrieved
b̂ Estimated forward model parameters
f Forward function mapping state vector to measurement
F Forward model which attempts to reproduce f
i Indexes over spectra in a dataset
G Gain matrix, the linearized response of the retrieval to a change

in the measurement
K Jacobian of measurement with respect the state vector
Kb Jacobian of measurement with respect to b
L̂ Observed radiance at the sensor
` Number of distinct acquisitions (i.e. data cubes)
m Number of measurement channels
n Number of state vector elements
q Extraterrestrial solar irradiance
R Inversion function mapping a measurement to a state vector
s Spherical albedo of the atmosphere
Sa Prior state vector covariance
Sg In situ measurement covariance
Sε Observation uncertainty covariance including Γ and Λ
Ŝ Posterior predicted uncertainty covariance
t Transmittance of the atmosphere
w Total number of invariant locations in scene
x State vector of free parameters
x̂ Estimated state vector
x̄ Ensemble mean state vector
xa Prior state vector mean
xatm Atmospheric state vector elements
xsur f Surface state vector elements, reflectance in each channel
y Vector of measured radiance values
δ Model discrepancy error, a random variable
ε Instrument noise, a random variable
Γ Covariance of model discrepancy error
Λ Covariance of instrument noise
µ Mean of model discrepancy error
ρa Atmospheric path reflectance
ρs Surface reflectance
υ Number of invariant locations used
θs Solar zenith angle

Table 1: Notation. Boldface signifies vector or matrix-valued quantities.

this experiment, our sensor is AVIRIS-NG which has m = 425
spectral channels. Together with columnar precipitable water
vapor and a single aerosol type for the atmosphere, the com-
plete state vector has n = 427 elements. Following Rodgers
(2000), we explain the radiance measurement y using a forward
function f(x,b), which depends on the true state x and any an-
cillary parameters b that are not actively estimated. The for-
ward function represents the true underlying physical process
that produces the radiance at sensor.

The measurement process perturbs the forward function by
sensor noise ε, a zero-mean Gaussian random variable with
covariance Λ. This represents uncertainty due to the natu-
ral inaccuracy of the instrument, including signal-dependent
noise sources such as photon counting statistics and signal-
independent sources such as electronic and readout noise. Pho-
ton shot noise depends on the radiance magnitude so Λ is dif-
ferent for each spectrum. Fortunately, it is easy to calculate Λ
for any measured radiance using conventional instrument mod-
els (Thompson et al., 2020). The actual radiance which gov-
erns the noise distribution and the estimated radiance at sensor
are effectively identical, so the instrument noise distribution is

known for all observations. We write the measurement as:

y = f(x,b) + ε for ε ∼ N(0,Λ) (1)

We do not know the true forward function, so we instead ap-
proximate it with a forward model F(x, b̂), an RTM which pre-
dicts the radiance measured at the sensor. We are also ignorant
of the true vector b, so we use our best estimate written b̂. We
represent the model discrepancy as a random variable δ which
includes the aggregate uncertainty due to errors in the forward
function and the ancillary parameters:

δ = f(x,b) − F(x, b̂) (2)

In other words, δ represents the differences between the approx-
imate RTM and true physics. In restricted cases, it may be pos-
sible to characterize these errors from simulation or first princi-
ples. For example, laboratory-derived parameters like absorp-
tion coefficients have well-known uncertainties (Gordon et al.,
2017). More often, it is difficult to quantify all potential model
discrepancies since δ includes errors in atmospheric modeling
that cannot be diagnosed. Provisionally for this paper we will
treat the entire model discrepancy as a single random variable
δ, with a distribution that is independent of x and b and that
can be estimated from data. Specifically, we choose to model δ
as Gaussian with a mean vector µ and covariance Γ. The mea-
sured radiance y is the sum of the forward model and the two
independent noise sources:

y = F(x) + δ + ε for δ ∼ N(µ,Γ), ε ∼ N(0,Λ) (3)

The functional dependence of F on b̂ is implicit. In practice,
it is likely that the radiance errors from δ will depend on local
conditions. More sophisticated investigators might structure δ
to capture these dependencies. For example, δ might grow for
observations with more challenging atmospheric conditions or
large view zenith angles. Here we ignore these complexities
and fit one global distribution.

Characterizing model discrepancy under Gaussian assump-
tions thus reduces to estimating a bias µ and covariance Γ. For
several reasons, the rest of the manuscript will focus on Γ exclu-
sively. The mean µ relates to any systematic error which is the
same for all observations, like a consistent calibration bias or
approximation errors in the RTM code. The fact that such off-
sets are consistent makes them relatively straightforward to fix
with conventional vicarious approaches (Wunch et al., 2011),
zeroing µ. Moreover, most error processes show variability if
the dataset is large enough; an atmospheric error that is constant
across a flightline may be different across campaigns. Conse-
quently, we focus our manuscript on estimating the covariance,
Γ, which is the most challenging hurdle for practical imag-
ing spectroscopy scenarios and dominates our errors in large
datasets. We will bookkeep atmospheric and calibration errors
in Γ, assuming µ = 0. This approach is demonstrably sufficient
to close uncertainty budgets in our validation experiments.

The total observation error covariance is the sum of the sen-
sor noise and model discrepancy covariance matrices. For con-
tinuity with prior studies we use the notation Sε to include both
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ε and δ:

Sε = cov(y − F(x) | x) = Γ + Λ (4)

The vertical line indicates that the distribution is defined condi-
tionally on the true value of x. When this value is known, one
can estimate Γ with the following expression:

Γ̂ =
1
n

∑
i

(yi − F(xi))(yi − F(xi))T −
1
n

∑
i

Λi (5)

where i indexes over all spectra in the dataset, and the noise co-
variance Λi is specific to each measured radiance. This is the
direct method for evaluating model discrepancy. Note that in
principle Γ is based on the distribution of x and b. For a con-
servative uncertainty prediction one should fit Γ using a dataset
which is at least as challenging as the test set. The effective
number of samples from ε will be larger than the samples from
δ; the former is different in each spectrum, while the latter
varies over larger spatial scales based on surface, atmospheric,
and geometric conditions.

Equation 5 requires knowledge of the true x. This might
come from ancillary sources such as in situ surface measure-
ments. With many field measurements under enough different
atmospheric conditions, one might eventually obtain a diverse
enough dataset to estimate Γ and µ. This might be achiev-
able for recurring orbits over a calibration / validation sensor
network. However, such options are not available for all cam-
paigns, and ground networks are not available in many regions
of the globe. Moreover, in situ measurements carry their own
uncertainties and biases. Vicarious measurements of surfaces
have errors approaching 2% under perfect conditions (Thome,
2016), up to 5% in more typical environments (Jiménez et al.,
2018). These errors are similar to the magnitude we expect
for model discrepancies. Measuring atmospheric parameters is
even harder because it is difficult to replicate the bent optical
path through the spatially heterogeneous field of gases and par-
ticles. This drives us to consider other methods that are more
practical to implement operationally.

2.2. The Plug In Approach
Lacking in situ data, one can use an inversion algorithm to

estimate x. We write the inversion as a function R(y) producing
an estimate x̂:

x̂ = R(y) (6)

Note that x and y lie in different vector spaces. In our atmo-
spheric correction example the number of measurements m is
smaller than the number of free parameters n. In practice the
problem is numerically well-determined due to the statistics
of natural surfaces; some reflectance shapes are more plausi-
ble than others, making the effective number of free parameters
smaller than n.

In a Bayesian context we capture this information as a prior
over states, a multivariate Gaussian with mean xa and covari-
ance Sa. The prior covariance captures known spectral corre-
lations in surface reflectance, such as the shape and smooth-
ness of reflectance spectra in the neighborhood of water vapor

absorption features. This information enables the retrieval to
attribute the absorption signature of water to the atmosphere
instead of the surface. More complex and sophisticated prior
distributions are possible, such as locally-Gaussian manifolds
(Candela et al., 2020). Here we follow the approach of Thomp-
son et al. (2018b), estimating a collection of Gaussian distribu-
tions from a diverse set of curated spectra, and then broaden-
ing them with diagonal loading to enable retrieval of spectral
shapes outside the span of the library. Priors for atmospheric
terms are typically broad and independent of the surface. The
maximum a posteriori estimate of x is that which minimizes the
following cost function:

χ(x) = (F(x) − y)TS−1
ε (F(x) − y) + (x − xa)TS−1

a (x − xa) (7)

The first term penalizes departure of the modeled radiance from
the true measurement, weighted by the observation noise co-
variance. The second term penalizes departure from the prior.
Linear models have a closed form solution (Thompson et al.,
2020). Nonlinear models can be inverted with an iterative opti-
mization of the state vector (Thompson et al., 2018b) or Markov
Chain Monte Carlo methods (Thompson et al., 2019). In a Max-
imum A Posteriori Inversion with Gaussian random variables,
the posterior uncertainty at the solution state, Ŝ, is a function
of the noise covariances Γ and Λ, the prior covariance Sa, and
Jacobian matrices K representing the forward model linearized
at the solution (Rodgers, 2000):

Ŝ = (KTS−1
ε K + S−1

a )−1 = (KT(Γ + Λ)−1K + S−1
a )−1 (8)

The Jacobian matrices have size m × n; each element contains
∂F/∂x for the corresponding measurement channel and state
vector element. Parameters which are not continuously differ-
entiable, such as a categorical selection of aerosol types, lead
instead to a posterior which is a mixture of Gaussians. Here all
free parameters are differentiable, enabling use of Equation 8.
This expression captures the observation noise, but it is not in-
tended to characterize bias arising from a nonzero µ which can
be corrected directly (Wunch et al., 2011).

The inversion enables a plug in estimate of the model dis-
crepancy (Wasserman, 2006). Substituting the solution state x̂
into Equation 5 yields:

Γ̂ =
1
n

∑
i

(yi − F(x̂i))(yi − F(x̂i))T −
1
n

∑
i

Λi (9)

One first optimizes x̂ to fit the measurement, and then ascribes
to model discrepancy any residual mismatch between the mod-
eled radiance and true measurement that is not explained by
sensor noise. This is simple to implement and better than ig-
noring δ altogether. However, a poorly-designed retrieval can
“fit the sensor noise,” shrinking the residuals by shifting the
spectrum fitting error to x̂. This would lead to an optimistic es-
timate of Γ. The analysis of Appendix A demonstrates that, for
a retrieval which optimally balances prior information and mea-
surement error, the covariance of radiance residuals is given by
the following expression:

cov(y − F(x̂) | x̂) = Sε(KSaKT + Sε)−1Sε (10)
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This only approaches the desired value of Sε if the prior covari-
ance is strong, i.e. Sa is small relative to Sε . A strong prior
prevents the retrieval from fitting the noise so that all sensor
noise and model discrepancy error is preserved in the radiance
residuals. Such strong priors may be possible over terrain that
is very well understood, but ultimately this is simply the ground
truth requirement in a new disguise. It thwarts our need to sam-
ple a wide range of observation conditions and fully capture δ.
The following section presents an alternative estimation strat-
egy with fewer restrictions on the retrieval algorithm and scene
content.

2.3. Scene Invariants

Many materials in the environment have stable reflectances
which do not change spectral shape over timespans of days
to years. These include highly stable ‘pseudo-invariant” sites
chosen as orbital calibration targets (Cosnefroy et al., 1996;
Bouvet, 2014; Bouvet et al., 2019). Imaging spectrometer ob-
servations, which typically have high spatial resolution of less
than 100 m, can make use of much smaller areas; indeed, they
have a high probability of imaging multiple invariant surfaces
in any acquisition. That such surfaces exist in most flightlines
is a truism of airborne imaging spectroscopy, which uses them
for vicarious field calibration. Examples include artificial sur-
faces such as roofs (Meerdink et al., 2019), concrete (Rockwell
et al., 2000), gravel (Kokaly et al., 2003), and fallow agricul-
tural fields (Clark et al., 2002). Many natural surfaces such as
playas, beaches, rock outcrop, bare soil and rock talus slopes
have also been used successfully as spectrally-invariant refer-
ence targets (Clark et al., 2002).

In our estimation problem, invariant reflectance shapes typ-
ify a more general situation in which properties of the true state
vector are the same across multiple instantiations of δ and ε.
For example, multiple overflights of the same invariant targets
witness different realizations of noise, solar geometry and at-
mospheric conditions. Each overflight constitutes a different
draw from δ. This allows us improve the estimate x̂ by replac-
ing it with the ensemble mean of the spectral shape estimated
by the different overflights, written x̄. By the law of large num-
bers, averages of ε and δ, which are Gaussian random variables,
will trend to their mean values so that the retrieval cannot fit the
noise, and the radiance residuals preserve the random part of the
error. Appendix A demonstrates that, for an ensemble of states
drawn from the prior distribution, the covariance of residuals
becomes:

cov(y − F(x̄) | x̄) = K(In − A)Sa(In − A)TK + Sε (11)

where In is the n × n identity matrix and A is the n × n aver-
aging kernel matrix with elements Ai j = ∂x̂i/∂x j. The averag-
ing kernel matrix represents the sensitivity of the retrieval with
respect to some change in the underlying true state. For a per-
fect inversion A would be the identity matrix and the first term
on the right side would disappear; the covariance of residuals
would be Sε . In practice the diagonal elements of A are less
than unity and the off-diagonal elements are nonzero. The trace

of the averaging kernel matrix is known as the degrees of free-
dom in signal, and measures the retrieval’s information content
(Rodgers, 2000).

Equation 11 has two desirable properties relative to Equation
10. First, as the retrieval becomes more accurate and A ap-
proaches the identity, Equation 11 becomes closer to the ideal
Sε . Second, it is conservative, strictly overestimating the model
discrepancy since the resulting covariance cannot be smaller
than Sε . This, with Equation 5, enables our fundamental result:

Γ̂ =
1
n

∑
i

(yi − F(x̄i))(yi − F(x̄i))T −
1
n

∑
i

Λi (12)

This expression based on scene invariants is a superior estima-
tor of the model discrepancy covariance Γ.

In any real scenario we must account for the fact that only
some state vector properties are invariant. For example, in the
experiments that follow we estimate the Lambertian-equivalent
surface reflectance. Real surfaces can be non-Lambertian, and
even if the spectral shape is constant the observed magnitude
can change due to the photometric effects of incident illumina-
tion angles and self-shading. To account for this, before calcu-
lating the ensemble mean we first normalize the spectra so that
the areas under the reflectance curves match that of flightline
i. This acts as a first order correction for photometric variabil-
ity from differing solar incidence angles on sloped surfaces. It
also removes most of the variability due to Bidirectional Re-
flectance Distribution Function effects, which can be roughly
approximated by shifts in the magnitude of spectral reflectance.
An alternative would be to redefine the surface state vector to
be a different reflectance quantity that is independent of view-
ing geometry, and account for photometry and BRDF in the for-
ward model. In addition to photometry, the atmospheric terms
will also vary across flightlines. In other words, xsur f is in-
variant but xatm changes in each acquisition. We thus require
a scene-specific estimate for xatm. Here it is sufficient to sim-
ply keep the original estimated atmospheric state. Alternatively
one could perform a second inversion that holds the surface re-
flectance to the ensemble mean, and then optimizes the remain-
ing parameters to minimize Equation 7. We defer exploration
of these alternatives, along with more sophisticated photometric
and BRDF corrections, to future work.

2.4. Theoretical Performance

The performance of the estimators depends on how well the
radiance residuals’ covariance approximates the true Sε . Here
we assess performance in simulation with full control over Sε .
We demonstrate that for a practical inversion algorithm, in the
limiting case of many overflights, Γ̂ in Equation 9 is smaller
than Sε while in Equation 12 it is nearly identical to Sε .

Our experiment synthesizes remote observations of a wide
range of natural and artificial materials. We select 109 diverse
reflectance spectra from the USGS spectral library version 7.0
(Kokaly et al., 2017) representing different macro-scale sur-
faces. They include rangeland mixtures of vegetation, soil, and
nonphotosynthetic vegetation; soil and rock spectra; and artifi-
cial surfaces such as concrete. We use these reflectance signals
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to calculate the at-sensor radiance L̂ based on the following
expression (Thompson et al., 2018b), with ◦ and the fraction
representing element-wise multiplication and division, respec-
tively:

L̂ =
q cos(θs)

π
◦

[
ρa +

t ◦ ρs

1 − (s ◦ ρs)

]
(13)

Here q is the extraterrestrial solar irradiance, θs is the solar
zenith angle, ρs represents surface reflectance, ρa is the atmo-
spheric path reflectance due to scattering, t is the atmospheric
transmittance along the bent path from sun to ground to sen-
sor, and s is the spherical sky albedo. Alternative parameter-
izations, such as those incorporating adjacency effects, could
easily be used instead (Sanders et al., 2001). Here we calculate
atmospheric parameters with the MODTRAN 6.0 RTM using
observation geometry from the airborne experiment in Thomp-
son et al. (2018b). We posit a midlatitude summer atmospheric
profile (Anderson et al., 1986) with an aerosol optical depth
of 0.2 at 550 nm, and highly-scattering optical properties based
on the sulfate model of Thompson et al. (2019). This model has
proven versatile for operational use across a wide range of envi-
ronments. We assign a column water vapor of 1.7 g cm−2. Fig-
ure 1 shows examples of three representative USGS spectra, the
atmospheric optical coefficients, and the simulated radiances.
These consist of an oak bush, clean sand, and a burned area.
Other spectra include mixed surfaces with varying fractions of
green vegetation, substrate, and non-photosynthetic vegetation.

We define Sε to be a diagonal noise matrix with marginal
standard deviations ranging from 0.003 to 0.1 of the simulated
radiance. We then perform a Maximum A Posteriori inversion,
solving Equation 7 via gradient descent as in Thompson et al.
(2020). As in that earlier work, surface prior covariances are
diagonal and unconstrained outside key water absorption fea-
tures at 940 nm and 1140 nm. This covariance structure is
broadly representative of the uninformed priors used in opera-
tional “Level 2” reflectance products such as those of the EMIT
mission (Green et al., 2020). This defines all the necessary
quantities to calculate Equations 10 and 11 with linearizations
at the appropriate states. We compare the covariance of resid-
uals to the actual Sε by taking the root of the sum of diagonal
elements, reducing the covariance matrices to a scalar value for
assessing their magnitudes.

Figure 2 shows the result. Residuals calculated from Equa-
tion 10, shown as red dots, are smaller than Sε . This is caused
by the inversion absorbing some of the observation noise into
state vector inaccuracy. However, residuals from scene invari-
ants, shown as blue dots, match the true statistics of Sε . For
all scenarios, Equation 11 produces residuals that are strictly
larger than Sε , demonstrating that the estimator is conservative.
Moreover, the perturbations caused by the first term in Equa-
tion 11 are always an order of magnitude below Sε itself. This
demonstrates that an approach based on scene invariants has the
potential to be an accurate estimator for Sε , and therefore Γ.

2.5. Opportunistic Discovery of Invariant Surfaces
Our estimation strategy relies on the presence of invariant

surfaces in the environment. Sometimes these can be identi-
fied in advance, as in spectrally-stable playas used for vicarious
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Figure 1: Example spectra from the simulation. Top: USGS library re-
flectances. Middle: Atmospheric coefficients. Bottom: Associated radiances.

calibration (Bouvet et al., 2019). However, it is also possible
to discover such surfaces in science data (Canty et al., 2004).
Opportunistic surfaces enable a much larger statistical sample
and better alignment between the distribution of observing con-
ditions used in calculating versus deploying model discrepancy
estimates. An obvious strategy is to select locations with esti-
mated reflectances that are similar across acquisitions. If w of
the locations in an acquisition are invariant, one could use the w
most similar reflectance retrievals as an ensemble in Equation
12. We cannot know how many invariant locations are actually
present, so we err on the side of conservatism by using the υ
most similar pixels for υ safely smaller than w. A natural ob-
jection is that, by intentionally selecting locations with similar
reflectance estimates, this technique samples the ”lucky” tail
of the error distribution and thereby underestimates the RTM
error. This section demonstrates that for typical imaging spec-
troscopy scenarios this is not the case, and that in practice the
approach accurately estimates Γ.

Consider a dataset comprised of ` distinct acquisitions, each
spanning multiple square kilometers of terrain, and containing
w invariant locations. The effective number of samples from
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Figure 2: Comparison of plug in and scene invariants methods for estimating
Sε , based on 109 diverse library spectra.

the instrument noise distribution ε is `w. However, the effective
number of samples from δ is considerably fewer, because at-
mospheres are smooth over short spatial scales, and any errors
related to model discrepancy will be highly correlated within an
acquisition. The number of samples from δ is closer to `. If one
selects an equal number of invariant locations from each acqui-
sition, all instantiations of δ are represented and the draws from
δ are protected against selection bias. But the same cannot be
said for ε, which has a different realization for every spectrum.
Can the draws from ε induce underestimation of model discrep-
ancy, with instrument noise fixing the RTM error by chance?

In fact, the magnitude and direction of the two random vari-
ables are quite different, meaning that ε is highly unlikely to
negate δ. Instrument noise ε is mostly isotropic - in other words,
each channel manifests noise independently. In contrast, model
discrepancy errors have spectral structure with most of their
variance along a handful of principal component directions.
This is easiest to demonstrate in simulation. Here we consider
two potential sources of model discrepancies: the vertical pro-
files of gas concentrations, pressures and temperatures; and the
optical properties of atmospheric aerosols. Our profile simu-
lation compares the radiances produced by an Air Force Geo-
physics Laboratory (AFGL) midlatitude summer and tropical
models (Anderson et al., 1986), holding constant all other atmo-
spheric parameters such as the column water vapor. Our aerosol
simulation compares radiances produced by a highly scatter-
ing aerosol, the sulfate model described above, and an absorb-
ing aerosol based on the fine particle smoke model described
in Brodrick et al. (2020) and Omar et al. (2004). This smoke
model was originally derived from the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) mission.

All simulations use an aerosol optical depth of 0.2 at 550 nm.
Using Equation 13, we transform each USGS reflectance spec-
trum to radiance at sensor using both sets of atmospheric as-
sumptions. This creates artificial model discrepancy errors due
to vertical profiles and aerosol properties.

Figure 3 shows the three eigenvectors of the residual covari-
ance matrices associated with the highest eigenvalues. We di-
vide them by the radiance of a 20% reflectance surface for dis-
play. The top panel shows the residuals resulting from aerosol
optical property discrepancies, while the bottom panel shows
the residuals from profile discrepancies. The two are qualita-
tively different; the vertical profile residuals are largest around
water absorption features, reflecting differences in absorption
coefficients at different altitudes. The aerosol-related residu-
als form broadband shapes and slopes, peaking in the shorter
wavelengths. In both cases, however, the top three eigenvalues
contain approximately 99% of the variance for the dataset.
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Figure 3: Principal components of radiance residuals for two classes of model
discrepancy error. Lines illustrate the top three eigenvectors. Magnitudes are
ratioed against a reference radiance for clarity. Top: Errors due to misestima-
tion of aerosol optical properties. Bottom: Errors due to misestimation of the
vertical distributions and temperatures of atmospheric gases.

To demonstrate the effect on opportunistic discovery, we sim-
ulate repeat acquisitions of invariant targets. We use the USGS
spectra as spectrally-invariant reference locations, synthesizing
radiances at sensor for two overpasses. The aerosol optical
properties differ between the first and second overflights. In the
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first overflight they are the scattering optical type; in the second
the aerosol is the absorbing type. The retrieval always presumes
the scattering aerosol, so this induces a model discrepancy be-
tween the inversion’s RTM assumptions and the simulated re-
ality. The difference between the two acquisitions is a single
draw from δ. The true atmospheric state vector is held constant
with an aerosol optical depth of 0.4 and a columnar water va-
por content of 1.75. We add synthetic noise to each simulated
at-sensor radiance following a signal-dependent AVIRIS-NG
noise model (Thompson et al., 2018b), perform the inversion
on all spectra, and then select a subset of the most similar re-
sults as if we were attempting to estimate the model discrepancy
from flight data. We then compare the estimated discrepancy to
that which would have been obtained if the entire dataset had
been used.

Figure 4 shows the resulting estimated root mean square dis-
crepancy between the two ensembles as a fraction of its true
value. The single most similar spectrum from each ensemble,
i.e. the “luckiest” subpopulation of invariant locations, under-
estimates the true variance by only 25%. This is significantly
better than the status quo alternative which ignores model dis-
crepancy entirely. In addition, accuracy improves as a larger
fraction of the invariant subpopulation is used. This corrobo-
rates the principal component analysis suggesting that instru-
ment noise is mostly orthogonal to RTM errors. In other words,
we can safely use the most similar subpopulation of spectrum
pairs without significantly underestimating Γ̂. We conclude that
taking the most similar spectra from flightline pairs a useful
strategy for opportunistic discovery of invariant surfaces.
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Figure 4: Median errors in the estimated mean discrepancy for an ensemble
of invariant surfaces, using the subpopulation of locations which has the most
similar estimated reflectance across two consecutive flightlines. The grey area
represents the 90% enclosing envelope.

3. Experimental approach

This section describes an experiment to estimate Γ using re-
peat overflights of heterogeneous terrain. We then test the hy-
pothesis that including the model discrepancy estimate will im-
prove the accuracy of retrieval uncertainty predictions. We an-
alyze data from AVIRIS-NG, a Visible to Shortwave Infrared

(VSWIR) instrument spanning 380-2500 nm at approximately
5 nm spectral resolution (Chapman et al., 2019). A 2015-2018
AVIRIS-NG campaign spans numerous locations in the Indian
Subcontinent (Bhattacharya et al., 2019). Targets include a
wide range of natural and anthropogenic surfaces, addressing
diverse disciplines from geology to cryosphere studies to terres-
trial and aquatic ecology. Typical Ground Sampling Distances
(GSDs) are 5-8 m. Critically for our study, several flight lines
are repeated across multiple years under different observing ge-
ometries. This, combined with variable and challenging atmo-
spheres throughout the campaign, makes it an ideal test dataset
for quantifying RTM model errors. We select 33 locations listed
in Table B.3 for which repeat acquisitions are available. The
flightlines are typically 5-7 km in width and 10-20 km in length,
and each contain on the order of 106 spectra. Solar zeniths span
the range from 14 to 44 degrees. The nadir-pointed AVIRIS-
NG field of view spans approximately 30 degrees, leading to a
wide range of relative azimuth angles.

To perform the analysis, we first calibrate the data spectrally
and radiometrically using laboratory and field techniques in
Chapman et al. (2019). We then coregister each pair of over-
lapping radiance cubes by projecting them onto a common ge-
ometric grid with nearest-neighbor interpolation. This initial
coregistration is based on the instrument camera model and on-
board Global Positioning System / Inertial Measurement Unit
(GPS/IMU) readings of the aircraft position. We trace the view
path of each focal plane array element to a digital elevation
model to identify its ground footprint. Error in the model-based
registration is typically 10-20 m due to the intrinsic GPS accu-
racy. Consequently, we perform a second image-based adjust-
ment that uses scene content to find the ideal alignment. The
registration algorithm evaluates the similarity between a grid of
subwindows drawn from both flightlines, with different hori-
zontal and vertical shifts applied to each subwindow. We then
fit a composite affine transformation to the set of best transla-
tions, warping the earlier images onto the later. This procedure
generally fits the images to within subpixel accuracy over most
of the flightline area.

After coregistration, we use the atmospheric correction rou-
tine described in section 2.4 to estimate the surface reflectance
at each pixel. Atmospheric assumptions are similar to those
used for the India campaign dataset in Thompson et al. (2019),
but our aerosol model is simplified; here we use only the sulfate
aerosol type, a highly scattering profile that consistently out-
performs the other options across a wide range of atmospheres.
The retrieved magnitude of the Lambertian-equivalent surface
reflectance varies due to bidirectional reflectance effects from
changing observation geometries. Most of this change is sim-
ply a uniform photometric scaling of the reflectance. We re-
move it by scaling the spectra so that the areas under the curves
match those in the first flightline. We filter out all water pix-
els, recognized by near infrared reflectances less than 0.1, and
vegetation pixels, recognized by a Normalized Difference Veg-
etation Index greater than 0.5, since these are unlikely to be
true invariant surfaces. We select the top 1000 most similar lo-
cations from each pair to use as the invariant surfaces, calculate
their noise in each spectrum, and finally estimate Γ using Equa-
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tion 12. The 33 pairs of flightlines sample at least 66 unique
airmasses, so though each x̄ has some error due to small sample
sizes, we still benefit from large sample sizes for estimating Γ.

After finding the model discrepancy distribution, we apply
the estimated Γ using a held out dataset for which ground truth
is available. Here we turn to an AVIRIS-NG overflight of the
Jet Propulsion Laboratory (JPL) on June 2014. Several days af-
ter the overflight, under similar solar geometry, a ground team
measured four spectrally-stable surfaces in the scene: open
patches of concrete, exposed roofing material, and loose bare
soil. Figure 5 shows the target locations in the scene. At
each location the field team measured an area approximately
10x10 m in size, subtending approximately 3x3 remote pixels.
Radiance measurements from each surface were acquired using
Malvern Panalytical ASD field spectrometers, and then ratioed
against the upwelling radiance from a tripod-mounted reference
panel. A bubble leveling tool was used to ensure that the panels
were level.

To assess the discrepancy estimates we first extract remote
radiance measurements from each target location. We perform
a reflectance inversion once assuming Sε consists only of instru-
ment noise covariance Λ, and a second time where Sε includes
both Λ and the estimated model discrepancy covariance Γ̂. We
compare observed errors to posterior uncertainty predictions by
calculating the adjusted residual error:

r = (ρ̂s − ρg)T (Ŝ + Sg)−1(ρ̂s − ρg) (14)

where ρ̂s is the estimated surface reflectance, ρg is the in situ
measurement, and Sg is the covariance of the uncertainty in the
in situ data. As in Thompson et al. (2018b), Sg is a diagonal
matrix including 1% error in radiometric calibration and 1% er-
ror in the spectralon bidirectional reflectance function, added in
quadrature. If for a spectrum with n channels the errors actu-
ally follow the predicted uncertainty Ŝ, then the score r follows
a chi square distribution with n − 1 degrees of freedom. This
translates naturally to a hypothesis test to accept or reject the in-
version posterior uncertainty as an explanation for the observed
differences between remote and in situ measurements.

4. Results

The India dataset shows that invariant surfaces are present
in diverse scenes. Figures 6 and 7 show typical examples of
natural and built up areas. The top half of the scene in Fig-
ure 6 is dominated by a fire scar that appeared between the
two overflights. The remaining terrain shows subtle changes
in vegetation coverage. The frame at right shows the root mean
square differences between overflights, with green representing
the filtered vegetation pixels. The fire scar appears as an area
of highest change. The most stable area of the scene is the bare
soil around the lake at the upper right which changes very little
across the two years. Other isolated areas of stability appear
as smaller red areas throughout the image. The most volatile
location in the scene is the fire scar itself.

Figure 8 shows spectra from representative locations, labeled
A, B, and C in the image. Site A has the least spectral change. It

IV

I

II
III

100 m

Figure 5: A portion of the JPL flightline ang20140612t215342 used for the
validation experiment. Locations of measured sites appear as white Roman
numerals.

comes from a lakeside location and is a good qualitative match
to dry marsh sediment (DWV3-0511) from the United States
Geologic Survey (USGS) spectral library (Kokaly et al., 2017).
The largest discrepancy between the two reflectance spectra ap-
pears at the edges of deep water absorption features at 1400 and
1880 nm, and at the shortest wavelengths below 500 nm. These
errors suggest minor model discrepancies in H2O vapor and
atmospheric scattering, respectively. The middle panel shows
the spectrum at the 0.1 percentile of similarity, comparable to
the cutoff used to find invariant surfaces in the India flightlines.
This location, labeled B, is an isolated patch of bare soil con-
taining visible-wavelength absorptions consistent with iron ox-
ides. Together these provide evidence that top 0.1% most sim-
ilar pixels are indeed invariant, i.e. that they are effectively as
close as the two most similar spectra. The only differences,
small departures at the shortest wavelengths and near deep wa-
ter features, are identical for both the most similar and 0.1 per-
centiles, indicating that they are the kinds of systematic model-
and calibration-related errors we aim to estimate. The bottom
panel shows the most different location, labeled C, as a coun-
terpoint. It lies in an area in the fire scar transformed from a
partly-vegetated area to bare charred soil.

Figure 7 shows a contrasting site near an urban area. Here,
the terrain is highly altered with many artificial structures. The
right panel indicates that many of these structures are spectrally
stable across the two years. Other islands of stability include
bare patches of soil or fallow fields. Areas of high change in-
cludes fields under cultivation and new construction. Figure 9
shows representative spectra from the urban scene. The most
similar location, A, appears to be bare soil. The two spectra
show minor departures throughout the visible and shortwave
range. Slight inversion errors are visible at the water vapor ab-
sorption features at 940 and 1140 nm, respectively. As in the
wilderness case, RTM errors are sufficient to explain for the
qualitative differences between the spectra. Spectrum B shows
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the 0.1 percentile, which again appears invariant. The bottom
panel shows location C, the most changed location between the
overflights. It transitions from dark wet mud to bare soil.

After applying Equation 12 to the complete dataset, the re-
sulting model discrepancy covariance Γ is much larger than the
instrument noise. Figure 10 shows the square root of marginal
variances in each channel, as a fraction of a typical radiance
spectrum, for both Γ and Λ. The model discrepancy term is
larger by a factor of 5-10. Discrepancy error is slightly ele-
vated in the non-saturated water absorption features at 940 and
1140 nm, where differences in vertical profile or aerosol-related
distortions can modulate the shapes of these features in ways
that the retrieval may not capture. These issues are even more
acute at the edges of deep water absorption features at 1420
nm, 1880 nm, and 3000 nm. The highest RTM uncertainty is
found in the visible wavelengths, which are most strongly af-
fected by atmospheric scattering. Minor differences in aerosol
properties or estimated loading may shift the slope of spectra in
this range. The chlorophpyll “red edge” is visible as peak near
720 nm. This feature could represent a failure of the invariant
surface assumption, if sparse vegetation were introduced be-
tween flightlines, but it is also possible that this represents an
adjacency effect caused by photons scattered from nearby veg-
etation under high particulate loadings. Such adjacency effects
were not considered by the retrieval algorithm, so they consti-
tute a legitimate source of model discrepancy error.

We obtain additional insight by evaluating the singular value
decomposition of Γ. Unlike the instrument noise, which is spec-
trally uncorrelated, Γ is low rank with high cross channel corre-
lations. The top three eigenvectors contain 90% of the variance,
and the top ten enclose 99%. Figure 11 shows the top eigen-
vectors, each scaled by the square root of its eigenvalue and
expressed as a fraction of a typical radiance spectrum. The pri-
mary principal component, represented by the black line, shows
a constant offset of the near infrared portion of the spectrum
combined with a dramatic and opposing change in the shortest
wavelengths. There is almost no change at the longest wave-
lengths. This feature may be related to errors in spectral con-
trast caused by particulate optical properties or changes in the
radiometric calibration. The second principal component in red
combines a short wavelength scattering feature with a modula-
tion of the shortwave water bands. The shortwave features are
very similar to structure observed in vertical profile errors. The
third principal component in blue shows a “red edge” feature
combined with a steep slope in shallow wavelengths. This re-
sembles features of aerosol-related errors from the simulation in
Figure 3. It is also possible that fractional differences in vege-
tation, or the introduction of vegetation spectra as an adjacency
effect, contribute to this feature.

The JPL validation spectra confirm that incorporating the es-
timated Γ improves the fidelity of posterior uncertainty predic-
tions as judged against field data. Both old and new retrievals
produce a best estimate prediction and a posterior uncertainty,
i.e. a confidence interval. We test the consistency of each pos-
terior with the realized error; table 2 shows the p values asso-
ciated with each posterior distribution. The discrepancies are
sufficient to reject the ε only model at for the building roof site

Site Surface RMSE p (ε) p (ε + δ)
I. Mars Yard 0.012 1.0 1.0
II. Building Roof 0.020 <0.01 1.0
III. Old Parking Lot 0.012 1.0 1.0
IV. Fresh Parking Lot 0.015 0.35 1.0

Table 2: Reflectance RMSE and p values associated with the JPL validation
test.

(II), but the ε + δ model is consistent at all four sites.
The improvement in the spectral uncertainty envelopes is

more vivid. Figures 12 to 14 show the retrieval and error predic-
tions for each measured location. Since our posterior includes a
full covariance matrix with correlations, the classical strategy of
drawing “error bars” on the reflectance is inadequate. We por-
tray the predicted posterior uncertainty Ŝ by plotting random
samples from this distribution in grey. The left panels show the
maximum a posteriori estimate for the remote retrieval using ε
only. The instrument noise distribution is compact, so the grey
and black lines nearly overlay each other in the left panels. The
red line signifies the in situ estimate. The ideal is for the grey
lines to envelope the red line, indicating the confidence predic-
tion is consistent with the actual errors. Here it lies well out-
side the envelope of uncertainty Ŝ. Formally, three of the four
cases are still statistically consistent due to the uncertainty in
the ASD measurement. Nevertheless, it is likely that the poste-
rior predicted uncertainty overestimates the inversion accuracy.
The right panels of Figures 12 to 15 show the same results using
an observation noise estimate that includes both ε and the new
δ. Here, the posterior predicted uncertainty is more consistent
with the correlated errors of real spectra. The posterior more
accurately envelopes the observed difference between remote
and in situ data. Surprisingly, water vapor absorption residuals
near 940 and 1140 nm are also improved. The retrieval now
recognizes higher systematic RTM errors in those areas of the
spectrum and is able to weight the measurement data appropri-
ately.

5. Discussion

These experiments demonstrate a practical approach for op-
erational quantification of RTM uncertainty. Naturally, it is
only one of many tools available. When discrepancies are well
understood, such as the case of numerical approximation errors,
a range of bottom-up tools exist for evaluating the measure-
ment power of the observation. These include analytical meth-
ods such as degree of freedom analyses and simulation-based
methods such as Monte Carlo estimation. We do not intend to
replace these approaches. Instead, we aim to provide a data-
driven alternative by which aggregate forward model errors can
be quantified for large datasets. Both the reductive analytical
approaches and the data-driven empirical approaches can play
a role to advance the science of imaging spectroscopy.

For simplicity we use a generic δ that is the same for all
observing conditions. This is an improvement over conven-
tional methods, which ignore δ altogether, and is sufficient to
demonstrate a closed uncertainty budget for held-out test cases.
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Figure 6: A subset of flightlines ang201605t051247 and ang20180320t042247, acquired in 2016 and 2018 respectively, after coregistration. The rightmost panel
shows the root mean squared differences between spectra. Green areas represent terrain that is filtered due to vegetation in one or both scenes. Location A has the
least spectral change, location B shows the 0.1 percentile, and Location C has the most spectral change.
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Figure 7: A subset of flightlines ang20160208t064659 and ang20180326t051645, acquired in 2016 and 2018 respectively, after coregistration. The rightmost panel
shows the root mean squared differences between spectra. Green areas represent terrain that is filtered due to vegetation in one or both scenes. Location A has the
least spectral change, location B shows the 0.1 percentile, and Location C has the most spectral change.

However, a more sophisticated analysis could improve our re-
sult. First, instead of simply combining together all uncertain-
ties that are not instrument noise, one could further partition Γ
into more specific and interpretable components. For example,
calibration errors have a specific correlation structure and can
be estimated independently; they might be treated separately
from atmospheric errors. These additional uncertainty compo-
nents might be scene dependent, allowing uncertainty to vary as
a function of local observing conditions. One can account for
them uncertainties using a linearized forward model (Rodgers,
2000; Connor et al., 2016) by defining a covariance Sb over un-
known variables b, and Jacobians Kb describing the change in
radiance per unit change in the unknown variables:

Sε = cov(y − F(x) | x) = Γ + Λ + KbSbKT
b (15)

with similar adjustments to the derived expressions. Now Γ
contains only the model discrepancy from ∆ f (x,b), and any un-
known variance not modeled explicitly in the Sb matrix. Book-

keeping phenomena in Sb instead of Γ represents an improve-
ment in understanding and a more accurate uncertainty predic-
tion.

A second way future studies might improve our result is to
use a larger dataset. Here we estimate model discrepancies us-
ing 33 pairs of flightlines. In theory, the model discrepancy co-
variance Γ depends on the underlying distribution of x and b, so
it will be more accurate for scenes that are similar to the India
dataset. In practice, we find that the Γ estimate improves our
test scene despite dramatic differences in atmosphere and con-
tent. This bodes well for its generality. However, a larger base
dataset would permit a more granular partitioning of observing
conditions, letting the user estimate a Γ which is matched to the
specific content of the new observation. Future studies like the
Surface Biology and Geology investigation will cover the globe
multiple times per month, providing enough data to repeat this
experiment over 10000 times each week. Estimating location-
specific Γ for specific regions will become possible. Larger
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Figure 8: Spectra drawn from locations A, B, and C in Figure 6. Location A
shows the least spectral change across the two flightlines. Location B represents
the top 0.1 percentile. Location C has the greatest change between overflights.

datasets might also capture other uncertainties such as distor-
tions from sub-visible clouds or cirrus, which were absent from
the India campaign data but will be important at global scales.

In addition to improving error predictions, there is potential
to improve the reflectance estimates themselves. One could use
opportunistic invariant surfaces as if they were ground calibra-
tion points (Furby & Campbell, 2001; Schott et al., 1988). Pre-
vious acquisitions under clear conditions could provide good
quality reference estimates, which could then act as a reference
to erase errors incurred later under poor conditions. One could
simply fit a linear transformation to correct the distortions as
in Clark et al. (2002). Such a procedure could be made fully
automatic to scale globally if needed. Alternatively, work is
underway to evaluate time series data to see if a combined mul-
titemporal retrieval similar to the MAIAC approach (Lyapustin
et al., 2018) can provide more accurate inversions. Even with-
out such measures the JPL reference case demonstrates that his-
torical model discrepancy estimates can also improve retrievals
for scenes taken individually by downweighting spectrum fit-
ting error in directions that are likely to have model discrepan-
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Figure 9: Spectra drawn from locations A and B in Figure 7. Location A shows
the least spectral change across the two flightlines. Location B represents the
top 0.1 percentile. Location C has the greatest change between overflights.

cies.
There is some similarity between our proposed method and

an existing approach which models systematic errors using em-
pirical orthogonal functions, or EOFs. The EOF approach esti-
mates principal components of the inversion residuals, adds the
dominant directions to the forward model, and retrieves their
magnitudes as part of the state vector. This compensates for
systematic errors in calibration or modeling and improves the
spectrum fit. Such approaches have been used effectively in
missions such as the Orbiting Carbon Observatory 2 (Boesch
et al., 2015). Here we show that this does not perfectly repre-
sent systematic error in the forward model; it is closer to a plug
in approach that models the part of the systematics which the re-
trieval cannot already absorb into the state vector. In this work,
we use scene invariants to derive a more direct estimate of Γ,
and represent the systematics as a noise distribution rather than
a null subspace in the forward model. A probabilistic interpre-
tation means systematic error can be propagated appropriately
to posterior confidence estimates.

Scene invariant properties certainly exist for other domains
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Figure 10: Marginal standard deviations of different uncertainty sources as a
fraction of a typical radiance spectrum. The red line indicates uncertainty due
to model discrepancy errors with covariance Γ. The black line indicates noise
due to instrument noise with covariance Λ.
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Figure 11: The top three eigenvectors in the order black, red, and blue, each
scaled by the square root of its eigenvalue and expressed as a fraction of a
typical radiance spectrum. These principal components contain 90% of the
estimated model discrepancy variance.

outside atmospheric correction. Snow or water surfaces are
not temporally invariant, but they may be spatially smooth at
certain lengthscales. Investigators might use spatial ensembles
in place of temporal ones, sampling Γ from scenes containing
visible artifacts or spatial discontinuities. As another example,
estimates of spatially smooth atmospheric properties can show
discontinuities due to interference from the underlying surface
reflectance. A contiguous spatial group of atmospheric state
retrievals, that encloses one or more such artifacts, would be a
suitable dataset for Equation 12. Finally, while we have demon-
strated the technique in solar reflected regimes, they may also
be relevant for surface retrievals in the thermal infrared where
the emitted radiance is a function of both emissivity and tem-
perature. It is probable that scenes contain some subset of pix-
els with stable surface emissivity. If these can be identified,
the time-variable temperature parameter can be retrieved con-
ditioned upon the invariant emissivity. This is the direct ana-
logue of the variable atmospheric state vector elements in the

VSWIR. Scene invariant properties can thus be a general tool
for decomposing and estimating model discrepancy error across
a wide range of imaging spectroscopy disciplines.

6. Conclusion

This article presents an approach for quantifying uncertainty
in Radiative Transfer Models (RTMs) based on the statistical
properties of large diverse imaging spectroscopy datasets. We
describe methods for finding model discrepancy based on scene
invariants - properties of the environment which are stable over
time. We provide a practical estimator for transforming mul-
tiple consecutive observations of the same location where one
or more elements of the state vector are expected to be invari-
ant. We explore the properties of this estimator using the case
study of atmospheric correction, evaluating performance ana-
lytically and in simulation. We demonstrate that it is possible
to discover invariant surfaces in flight based on the retrieved
state vector, and that one need not identify the population ex-
actly to get an accurate estimate of model discrepancy noise.
Finally, we calculate the actual model discrepancy error for a
standard inversion method using a large catalogue of data from
the AVIRIS-NG India campaigns of 2016 and 2018. We ap-
ply the model discrepancies estimated from the India dataset
to an independent validation experiment, where they improve
retrieval accuracy and the fidelity of posterior uncertainty pre-
dictions vis a vis in situ data. Estimation of RTM modeling un-
certainty will be important to improve operational uncertainty
predictions for future global spectroscopy missions.
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Appendix A. Derivation of Residual Covariances

This section derives the covariances of the model fitting
residuals in Equations 10 and 11. We first define the gain ma-
trix G, an n × m matrix with elements containing ∂R/∂y; it
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Figure 12: Samples from the posterior distribution incorporating ε (left) and ε + δ (right) for validation site I.
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Figure 13: Samples from the posterior distribution incorporating ε (left) and ε + δ (right) for validation site II.

represents the sensitivity of the retrieval to a change in the mea-
surement.

G = SaKT (KSaKT + Sε)−1 (A.1)

The gain matrix is related to the Jacobian and averaging kernel
matrices:

A = GK (A.2)

The error for a single retrieval, x̂ − x, adapted from Rodgers
(2000), is:

x̂ − x = (A − In)(x − xa) + G(δ + ε) (A.3)

where In is the n × n identity matrix. The first term to the
right of the equality sign captures the imperfect resolution of
the retrieval algorithm as the averaging kernel departs from the
identity. The second term indicates the influence of model dis-
crepancy and sensor noise on the retrieval. For an ensemble
of states drawn from the prior, and an optimal inversion algo-
rithm that correctly balances the prior and measurement noise,
the residuals y − F(x̂) are:

y − F(x̂) = K[x − x̂] + δ + ε (A.4)
= K[(In − A)(x − xa) − G(δ + ε)] + δ + ε

(A.5)

This assumes a forward model that is linearized locally at x.
Again following Rodgers (2000), the fit residuals have the fol-
lowing covariance:

cov(y − F(x̂) | x̂) = (I −KG)(KSaKT + Sε)(I −KG)T (A.6)

For an optimal retrieval we substitute Equation A.1 to obtain:

cov(y − F(x̂) | x̂) = Sε(KSaKT + Sε)−1Sε (A.7)

which appears as Equation 10.
For the scene invariants approach the model fitting error is

similar to Equation A.3, but in the average of a large ensemble,
the zero mean random variables δ and ε go to zero via the law
of large numbers. Removing them from the expression yields:

x̄ − x = (A − In)(x − xa) (A.8)

The residual radiance fitting error is simply:

y − F(x̄) = K[x − x̄] + δ + ε (A.9)
= K[(In − A)(x − xa)] + δ + ε (A.10)

This is closely related to Equation A.5, but the expression in
brackets, which relates to the retrieval process, no longer con-
tains the noise sources. Intuitively, using the mean of a multi-
observation series x̄ prevents overfitting the noise of any one
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Figure 14: Samples from the posterior distribution incorporating ε (left) and ε + δ (right) for validation site III.
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Figure 15: Samples from the posterior distribution incorporating ε (left) and ε + δ (right), for each surface in the JPL validation experiment IV.

observation. For an ensemble of states drawn from the prior
distribution, the residual covariance is:

cov(y − F(x̄) | x̄) = K(In − A)Sa(In − A)TK + Sε (A.11)

thereby demonstrating Equation 11.

Appendix B. India Flightlines

Table B.3 shows a list of the India campaign flightlines used
in this experiment.
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Flight ID (2016) Solar zenith θs (2016) Flight ID (2018) Solar zenith θs (2018) Longitude Latitude Elevation
ang20160303t063225 28 ang20180512t040324 28 87.142 21.023 1
ang20160127t075428 36 ang20180224t073528 26 75.374 14.416 381
ang20160205t060857 43 ang20180331t090745 36 75.151 24.413 285
ang20160208t060316 42 ang20180326t052601 33 70.796 20.411 38
ang20160205t062340 42 ang20180331t092019 39 75.185 24.417 293
ang20160208t061104 41 ang20180326t055043 28 71.283 20.818 40
ang20160127t080253 37 ang20180224t074617 27 75.228 14.238 378
ang20160105t070345 34 ang20180320t060717 17 75.488 10.520 1287
ang20160205t055344 45 ang20180331t085541 34 75.202 24.470 279
ang20160127t081224 38 ang20180224t075707 28 75.270 14.279 384
ang20160208t062935 39 ang20180326t055821 27 71.344 20.854 41
ang20160127t085223 43 ang20180224t084052 34 75.320 14.261 380
ang20160105t062045 35 ang20180320t052750 26 75.465 10.515 1237
ang20160105t073139 35 ang20180320t062955 14 75.522 10.547 1310
ang20160208t070843 36 ang20180328t065631 19 72.898 20.940 272
ang20160127t084302 42 ang20180224t082952 32 75.513 14.455 380
ang20160208t081158 39 ang20180328t075945 22 72.964 20.921 294
ang20160208t074610 37 ang20180328t074721 20 72.961 20.935 292
ang20160208t063818 39 ang20180326t054307 29 70.960 20.526 39
ang20160208t061908 40 ang20180326t053523 31 70.936 20.526 38
ang20160105t052624 41 ang20180320t043543 38 75.559 10.631 1047
ang20160105t051247 43 ang20180320t042247 41 75.538 10.642 1018
ang20160127t083154 40 ang20180224t081906 31 75.366 14.343 388
ang20160127t082153 39 ang20180224t080824 29 75.380 14.355 384
ang20160105t064945 34 ang20180320t055409 20 75.495 10.523 1311
ang20160105t055235 37 ang20180320t050110 32 75.592 10.647 1116
ang20160208t064659 38 ang20180326t051645 34 71.187 20.819 38
ang20160205t063811 41 ang20180331t093315 42 75.167 24.400 306
ang20160205t065233 41 ang20180331t094559 44 75.199 24.397 311
ang20160210t080717 38 ang20180326t065943 20 70.609 21.525 91
ang20160208t075849 38 ang20180328t072141 18 72.919 20.927 279
ang20160208t072124 36 ang20180328t073435 19 72.937 20.940 281
ang20160208t073349 36 ang20180328t070902 18 72.906 20.924 279

Table B.3: List of flightlines used in the validation experiment. Fligthtline IDs show the 8 digit date (year, month, day) followed by the 6 digit UTC time (hour,
minute, second).Columns show solar zenith angles and the mean longitude, latitude, and elevation of each site.
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