Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Imaging the Deep Structures of Los Humeros Geothermal Field, Mexico, Using Three-Component Seismic Noise Beamforming

Urheber*innen

Löer,  Katrin
External Organizations;

/persons/resource/taniat

Toledo,  Tania
2.2 Geophysical Imaging of the Subsurface, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

Norini,  Gianluca
External Organizations;

Zhang,  Xin
External Organizations;

Curtis,  Andrew
External Organizations;

Saenger,  Erik Hans
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Löer, K., Toledo, T., Norini, G., Zhang, X., Curtis, A., Saenger, E. H. (2020): Imaging the Deep Structures of Los Humeros Geothermal Field, Mexico, Using Three-Component Seismic Noise Beamforming. - Seismological Research Letters, 91, 6, 3269-3277.
https://doi.org/10.1785/0220200022


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5005118
Zusammenfassung
We present a 1D shear‐velocity model for Los Humeros geothermal field (Mexico) obtained from three‐component beamforming of ambient seismic noise, imaging for the first time the bottom of the sedimentary basement ∼5km below the volcanic caldera, as well as the brittle‐ductile transition at ∼10km depth. Rayleigh‐wave dispersion curves are extracted from ambient seismic noise measurements and inverted using a Markov chain Monte Carlo scheme. The resulting probability density function provides the shear‐velocity distribution down to 15 km depth, hence, much deeper than other techniques applied in the area. In the upper 4 km, our model conforms to a profile from local seismicity analysis and matches geological structure inferred from well logs, which validates the methodology. Complementing information from well logs and outcrops at the near surface, discontinuities in the seismic profile can be linked to geological transitions allowing us to infer structural information of the deeper subsurface. By constraining the extent of rocks with brittle behavior and permeability conditions at greater depths, our results are of paramount importance for the future exploitation of the reservoir and provide a basis for the geological and thermodynamic modeling of active superhot geothermal systems, in general.