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Abstract

The spatial variability of landscape features such as topography, soils and vegetation defines the spatial pattern of

hydrological state variables like soil moisture. Spatial variability thereby controls the functional behaviour of the landscape in

terms of its runoff response. A consequence of spatial variability is that exchange processes between landscape patches can

occur at various spatial scales ranging from the plot to the basin scale. In semi-arid areas, the lateral redistribution of surface

runoff between adjacent landscape patches is an important process. For applications to large river basins of 104–105 km2 in

size, a multi-scale landscape discretization scheme is presented in this paper. The landscape is sub-divided into modelling units

within a hierarchy of spatial scale levels. By delineating areas characterized by a typical toposequence, organised and random

variability of landscape characteristics is captured in the model. Using runoff–runon relationships with transition frequencies

based on areal fractions of modelling units, lateral surface and subsurface water fluxes between modelling units at the hillslope

scale are represented. Thus, the new approach allows for a manageable description of interactions between fine-scale landscape

features for inclusion in coarse-scale models. Model applications for the State of Ceará (150,000 km2) in the north-east of Brazil

demonstrate the importance of taking into account landscape variability and interactions between landscape patches in a semi-

arid environment. Using mean landscape characteristics leads to a considerable underestimation of infiltration-excess surface

runoff and total simulated runoff. Re-infiltration of surface runoff and lateral redistribution processes between landscape

patches cause a reduction of runoff volumes at the basin scale and contribute to the amplification of variations in runoff volumes

relative to variations in rainfall volumes for semi-arid areas.

q 2004 Published by Elsevier B.V.
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1. Introduction

1.1. Landscape variability and hydrological processes

in semi-arid areas

River catchments exhibit spatial variability of

landscape characteristics such as geology, topography,
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soils, land use and vegetation. These characteristics

govern the partitioning of precipitation into runoff and

evapotranspiration and contribute to defining the

spatial distribution of soil moisture within the

catchment. Soil moisture patterns, in turn, are a key

factor in influencing runoff generation and the

hydrological response of a catchment. This interaction

of soil moisture and hydrological processes as a

function of landscape variability affects both vertical

and lateral water fluxes. Vertical fluxes occur by

processes such as infiltration, percolation and

evapotranspiration. Lateral fluxes are related to

redistribution processes of surface runoff, water in

the saturated and unsaturated soil zone or in the

groundwater flowing roughly parallel to the terrain

surface. Depending on whether vertical or lateral water

fluxes dominate, Grayson et al. (1997) distinguished

between local and non-local control on soil moisture

patterns. Concerning the variability of landscape

characteristics and related processes, a distinction

can be made between organised and random variability

(Seyfried and Wilcox, 1995; Blöschl and Sivapalan,

1995). In the case of organised variability, a

predictable regularity in the spatial distribution of a

variable such as soil moisture can be observed, e.g. as a

function of topography. Such a catena or toposequence

concept of relating landscape characteristics to the

topographic location goes back to Milne (1935a,b),

cited by Birkeland (1999). There, a specific sequence

of soils along hillslopes was proposed, where each soil

shows a distinct relationship to the soils upslope and

downslope for a variety of geo-morphologic, pedolo-

gical and hydrological reasons. Landscape variability

is generally recognized at different spatial scales from

the profile to the catchment scale (Puigdefabregas et al.,

1999 and examples below). These scale levels can be

described as interlinked levels within a nested

hierarchy where landscape elements at different levels

are related to higher and lower level features, thereby

defining the characteristic patterns and the functional

behaviour of the landscape (see a recent example of the

hierarchy concept by Wielemaker et al. (2001)).

In a semi-arid environment, which is often

characterised by high rainfall intensities and sparse

vegetation cover, a Horton-type infiltration-excess

mechanism producing surface runoff is

generally considered to be the dominant runoff

generation process at the local (point) scale (Yair and

Lavee, 1985). The process is enhanced by the

development of crusted soil surfaces with low

hydraulic conductivities (see a recent review by

Patrick (2002)). Saturation-excess runoff is usually

considered to be of less importance. However, it may

occur for some specific conditions, as, for instance,

during the rainy period in valley bottoms (Ceballos and

Schnabel, 1998; Gresillon and Taha, 1998) or on soils

of high infiltration capacity but low storage capacity,

e.g. shallow soils above bedrock of low

conductivity (Cadier, 1993; Martinez-Mena et al.,

1998; Puigdefabregas et al., 1998). Beyond the local

scale, the runoff response at the hillslope or at the

catchment scale has frequently been shown to be

influenced by the variability of landscape

characteristics An important aspect of patch-scale

variability in semi-arid areas is introduced by the

neighbourhood of vegetated and bare soil surfaces, as

observed in many dryland vegetation types

(see summary of examples in Klausmeier, 1999; Reid

et al., 1999). This patchiness influences, on the one

hand, total evapotranspiration rates of the land surface

by the interaction of energy and momentum fluxes

from bare and vegetated patches (Boulet et al., 1999).

On the other hand, the patchiness gives rise to

redistribution of runoff and associated sediments and

nutrients, with bare soil surfaces tending to act as

source areas of surface runoff and vegetated patches as

sink areas, receiving runon from bare soil surfaces for

re-infiltration (Puigdefabregas and Sanchez, 1996;

Bromley et al., 1997; Reid et al., 1999; Valentin and

d’Herbès, 1999; Cammeraat, 2002). Extending to the

scale of hillslopes or small catchments, additional

variability of landscape characteristics influences the

runoff redistribution. Characteristic sequences of

surface types in terms of vegetation cover, soils and

surface crusts with variable infiltration characteristics

were shown for hillslope transects in semi-arid Africa

by Perrolf and Sandström (1995), Bromley et al. (1997)

and D’Herbès and Valentin (1997) or for semi-arid

Spain (Nicolau et al., 1996). Bergkamp (1998)

distinguished in a hierarchical way five spatial scale

levels by characteristic discontinuities in the

geomorphological and soil properties, ranging from

the terracette level, via various hillslope scales to the

catchment scale. For semi-arid north-eastern Brazil,

Cadier et al. (1996) illustrated the importance of

varying soil types along a hillslope catena where
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surface runoff generated on soils with low infiltration

capacities can directly re-infiltrate in a downslope

strip of soils with high infiltration capacity.

Decreasing runoff coefficients with increasing slope

length due to a large variability of soil characteristics

were also observed by Bonell and Williams (1986) and

Puigdefabregas et al. (1998) for semi-arid and by Van

de Giesen et al. (2000) for sub-humid environments.

A distinction between slope segments as runoff source

areas and colluvial footslope areas or alluvial deposits

in the valley bottoms as sink areas for runon was

highlighted for semi-arid areas by Yair and Lavee

(1985), De Boer (1992), Peugeot et al. (1997), Ceballos

and Schnabel (1998) and Puigdefabregas et al. (1998).

These studies also demonstrate that discontinuities of

hydrological pathways can exist between runoff

generating areas and the channel network or the

catchment outlet particularly for dry conditions

(Fitzjohn et al., 1998; Bergkamp, 1998; Cammeraat,

2002). With increasing catchment area, the importance

of transmission losses of runoff that already became

channel flow by re-infiltration into the channel bed also

increases. This process has often been referred to as

one reason for decreasing runoff coefficients (Cadier

et al., 1996) and an increasing non-linearity of the

runoff response (Goodrich et al., 1997) with increasing

basin area in small semi-arid catchments. All examples

show that runoff at the hillslope or small catchment

scale in semi-arid areas is in general markedly less than

what can be expected by simply summing up the

contributions of individual landscape patches.

Redistribution processes between the patches with

re-infiltration of surface runoff can be of high

importance.

While the outline so far focused on surface runoff,

lateral subsurface flow processes may also be relevant

although they are usually not considered in semi-arid

environments (for an overview and a critique

see Beven, 2002). Lateral subsurface flow in the

semi-arid is generated for specific conditions, for

instance in the presence of soil pipes or other

macropores (Torri et al., 1994; Sandström, 1996),

during the development of a perched water table in

wet periods (Wilcox et al., 1997; Van de Giesen et al.,

2000; Chamran et al., 2002) or during saturation of

alluvial zones next to the main channel (Ceballos and

Schnabel, 1998).

1.2. Model representation of landscape variability

and lateral fluxes

In hydrological models it is required to account for

the spatial variability of landscape characteristics and

for the processes as those mentioned above if the

hydrological response of a catchment should be

adequately represented. Woolhiser et al. (1996),

Merz and Plate (1997), Bronstert and Bárdossy

(1999) and Merz et al. (2002), for instance,

demonstrated the importance of using spatially

variable instead of uniform mean distributions of

soil moisture or infiltration parameters for modelling

surface runoff generation, also stressing the

importance of organization in variability. Flerchinger

et al. (1998) showed the need to sub-divide a

semi-arid catchment into different landscape units

according to major vegetation types in order to

correctly estimate total evapotranspiration

particularly under conditions when water is a limiting

factor. In particular, a model taking into account

spatial variability is required for applications which

intend to assess the effect of changing boundary

conditions or of disturbances, like land cover or

climate change. A lumped catchment model, although

it may well capture the overall catchment dynamics in

terms of the hydrograph at the outlet (Chiew et al.,

1993; Ye et al., 1997), will hardly be able to

incorporate such changes which affect individual

processes or parts of the total catchment area only,

due to the loss of physical foundation of basin-average

model parameters. Additionally, a spatially

distributed model representation of the catchment is

obviously required where distributed results are to be

given as one objective of the model application, for

example when soil moisture patterns have to be linked

to a crop or vegetation model.

Several approaches have been taken to incorporate

landscape variability into hydrological models. One is

the use of complex fully distributed models such as

SHE (Abbott et al., 1986), IHDM (Beven et al., 1987)

or HILLFLOW (Bronstert and Plate, 1997). While

including also explicitly lateral surface and subsurface

fluxes and their redistribution, data and computational

requirements prevent these models from being applied

for larger catchments (Bronstert, 1999).

An alternative approach is to capture the

variability of any essential catchment characteristic
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by a distribution function without any explicit spatial

assignment of areas of different hydrological

characteristics, as, for instance, for the soil moisture

deficit or infiltration capacity (Beven and Kirkby,

1979; Zhao et al., 1980; Wood et al., 1992). These

approaches usually give lumped results at the

catchment scale. A limitation is that lateral water

redistribution among different parts of the study area,

i.e. among different parts of the distribution, cannot be

represented in the model. An exception is the

TOPMODEL approach of Beven and Kirkby (1979),

where the distribution of a topographic index also

implicitly takes into account the effect lateral

subsurface flow on soil moisture in downslope

positions.

Another widely used strategy to capture landscape

variability in hydrological models is by defining areas

of an assumed similar hydrological response, called

hydrological response units (Leavesley et al., 1983) or

hydrotopes (Becker and Nemec, 1987). The crucial

points of this approach lie, first, in the definition of a

hydrological quantity of interest according to which

this similarity is to be defined. Secondly, they lie in

the selection of those landscape characteristics,

heterogeneities and related hydrological processes

that ensure that the assumption of similarity of the

hydrological response within one of the accordingly

delineated modelling units is valid. This selection can

be based on expert knowledge, the perception of the

hydrological behaviour of the study area and on

comparative studies, which evaluate the performance

of models for different ways of delineating the

hydrotopes (Becker and Braun, 1999; Wooldridge

and Kalma, 2001). In most cases, the discretization of

the landscape is done with regard to similarity of

vertical hydrological processes, i.e. hydrotopes being

similar in terms of infiltration, percolation and

evapotranspiration fluxes (Kite and Kouwen, 1992;

Krysanova et al., 1998; Becker and Braun, 1999;

Gurtz et al., 1999; Wooldridge and Kalma, 2001).

This is usually achieved by intersecting physiographic

data such as elevation, soils, vegetation and land use.

An essential shortcoming of this approach is that

interactions between different hydrotopes, e.g. in

terms of redistribution of runoff components between

them, are generally not taken into account. One reason

is that in the case of irregularly shaped hydrotopes, a

routing scheme that relates them in the sense of

upslope–downslope relationships cannot be clearly

defined. Particularly in larger-scale models, another

reason is that hydrotopes are often too large in size to

resolve these hillslope-scale patterns and processes. In

both cases, runoff components generated in each

hydrotope are simply summed up to give the total

basin response, often after passing one or more linear

or non-linear conceptual storages. In other words, a

problem associated with a two-domain scheme as

recommended by Becker and Nemec (1987) with

different ways of discretizing the landscape for the

domain of vertical processes and lateral processes,

respectively, is that it may be difficult to sample

patches, once defined with respect to a similar

behaviour of vertical water fluxes, to give another

type of patches with similarity in lateral function.

A different way, presented by Uhlenbrook and

Leibundgut (2002), is to structure catchments directly

into hydrological functional units as derived from

experimental investigations, where each unit is

characterized by distinct dominating runoff

generation processes which may also include lateral

processes. Each unit is accordingly represented by a

specific model conceptualisation. Another approach

where hydrologically similar units were defined in

terms of both vertical and lateral processes was given

by Karvonen et al. (1999).

Exceptions of hydrotope-based models where

interactions between the modelling units are

accounted for are WATBAL (Knudsen et al., 1986),

the PRMS-based approach of Flügel (1995) and ARC/

EGMO (Becker et al., 2002). In these examples, an

additional criteria for the classification of hydrotopes

is their location within different topographic zones

along hillslopes. By this way, subsurface flow can be

routed between storages of different topographic

position. In WATBAL and ARC/EGMO also surface

runoff can be redistributed among downslope areas

and may re-infiltrate there if sufficient storage

capacity exists. A similar grid-based approach,

which considers the interaction of lateral flow

among cells with different soil-vegetation

combinations has been presented by Schumann et al.

(2000). However, studies which analyse the

applicability of such landscape discretization schemes

for large catchments with regard to the effect of

variability and interaction between modelling units

are rare, in particular in the case of semi-arid areas.
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In view of the above capabilities and limitations of

existing response unit approaches, the purpose of this

study is to develop a process-oriented modelling

framework that includes an appropriate definition of

spatial modelling units to capture landscape

variability and related dominant vertical and lateral

processes in large catchments. The focus is on model

applications in semi-arid environments with the

objective of long-term water balance studies and

global change analysis, e.g. assessing the effect of

climate variability and climate change on runoff and

water availability. The approach should be applicable

to large geographic regions (about 103–105 km2 in

size). Thus, a main question is how to efficiently link

the final scale of interest of model applications with

the process scales including the local and hillslope

scale. In addition, this question has to be seen in

context of limited data availability and resolution, as

is often found for large semi-arid areas. This paper

presents a spatial model structure and its process

formulations and applies the model to a large

semi-arid area (148,000 km2). The effects of

representing landscape variability and lateral

redistribution processes on runoff and water balance

simulations and related parameter sensitivities are

analysed.

2. Spatial model structure and process description

2.1. General features

The hydrological model WASA (Model of Water

Availability in Semi-Arid Environments) is a

deterministic model for continuous simulation,

composed of process-oriented conceptual approaches.

Model formulations are used that basically do not

need calibration of their parameters, as they can be

estimated from physiographic data. The modelling

timestep is usually one day, but for small-area

applications an hourly resolution can be used.

A detailed description of the model is given by

Güntner (2002). In order to capture the influence of

the spatially variable landscape characteristics on soil

moisture patterns and runoff generation, a hierarchical

top–down discretization scheme is used in WASA for

structuring the landscape into modelling units (Fig. 1).

The hierarchy comprises six spatial scale levels

ranging from the entire study area (e.g. a river basin

of about 104–105 km2, not represented in Fig. 1) to

the soil profile. Landscape discretization at scales

smaller than sub-catchments (Levels 2–5 in Fig. 1)

is based on the SOTER concept (Soil and Terrain

Digital Database) (Oldeman and van Engelen, 1993).

This approach basically establishes a way to structure

the landscape according to terrain and soil attributes at

different spatial scale levels, recognizing the

occurrence of specific terrain-soil relationships

which evolve by physical and biological processes

through time. The SOTER concept has been modified

and extended for hydrological purposes in this study.

The specific features and processes representations at

each scale level are described in the following

paragraphs.

2.2. Catchment (Scale level 1)

The entire study area is sub-divided into

catchments averaging 103 km2 in area (Level 1 in

Fig. 1) which are linked via the river network. These

catchments typically represent the basic units for

water resources management. Alternatively, grid cells

can be used as the basic unit. At this level of the

spatial hierarchy, the processes of runoff routing in the

river network are simulated, including abstractions by

water use and evaporation from the river, runoff

retention in reservoirs and reservoir water balance.

The water balance of large reservoirs is calculated

explicitly. Small reservoirs and farm dams, which can

be widespread in semi-arid areas, are represented by

their distribution among different reservoir classes,

using simplifying assumptions on the mean water

balance for each class and on the location of the

reservoirs in the catchment and relative to each other

(Güntner et al., 2004). Runoff routing in the river

network is represented by a simple linear response

function depending on flow length and average slope

of the main river in a sub-basin (Bronstert et al.,

1999). Withdrawal water use is taken into account by

a model-based assessment of water use in various

sectors (irrigation, livestock, domestic, industrial and

tourist water use) (Döll and Hauschild, 2002) and is

directly coupled to river flow and reservoir volumes in

WASA (Bronstert et al., 2000).
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Fig. 1. Hierarchical multi-scale scheme for structuring river basins into modelling units in WASA.
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2.3. Landscape unit (Scale level 2)

Within catchments, so-called landscape units

(LUs) (Fig. 1, Level 2) are delineated. They cover

areas that are similar in underlying lithology and

bedrock characteristics and in the general form of the

land surface, i.e. the type of dissection of the

landscape by valleys in terms of elevation differences

between valley bottoms and hilltops and in terms of

the hillslope length. LUs are also characterised by a

typical toposequence, i.e. by a certain hillslope catena

which may be associated in its different topographic

parts with a specific soil and vegetation association

(i.e. a group of different soil and land use types).

These features of similarity within a LU are assumed

to imply similarity in terms of the variability of

vertical hydrological processes and similarity

of lateral processes. This includes the structure of

water flux redistribution between patches, along

hillslopes and by transmission losses in the valley

bottoms. As a result, a specific spatial pattern of soil

moisture can be expected within a LU. Taken as a

whole, LUs are considered to be homogeneous in

terms of their overall hydrological response at the

landscape scale. In this sense, they can be called

hydrotopes. However, LUs are not areas of quasi-

homogeneous characteristics as in the classical

meaning of hydrotopes, but are similar in terms of

their sub-scale variability of landscape characteristics

and of hydrological state variables. The runoff

volumes generated in each LU of a catchment or

grid cell are added to give the total response of the

catchment.

2.4. Terrain component (Scale level 3)

For the description of organised variability

of landscape characteristics within LUs, LUs are

sub-divided into terrain components (TCs) at the next

smaller scale of the hierarchy (Fig. 1, level 3).

Each LU is composed of, at most, three TCs,

representing high-lands, slopes and valley bottoms,

respectively. It is assumed that by using these three

zones, the most important differences of terrain, soil

and vegetation characteristics within the catena can be

captured. Each TC is thus characterised by a specific

mean slope gradient, its topographic position relative

to other TCs within the toposequence and by

the occurrence of a specific soil type or soil

association and vegetation class. The number of TCs

in a landscape unit can be reduced to two or one if

significantly different topographic zones within the

LU cannot be distinguished. TCs are represented by

their fraction of area within the LU instead of their

exact geographic location. This is due to limited data

availability in the coarse-scale application where the

low resolution of terrain data usually does not allow to

resolve these hillslope-scale features explicitly.

The interaction of surface and subsurface lateral

flow components from upslope topographic zones with

those at downs-lope position, including re-infiltration

and return flow, is represented in a simplified manner.

Surface runoff QTC;x generated in any terrain

component x is separated into (1) flow entering any

downslope terrain component y as runon that is

available for re-infiltration, and (2) into remaining

flow that goes directly into the river and leaves the LU

without being subject to transmission losses. The

percentages of flow among these two components

are assumed to be proportional to the respective

areal fractions of TCs within the LU (aTC;x or aTC;y)

(Eqs. (1) and (2)). A TC which makes up a larger

fraction of the total area of the LU is assumed to

potentially retain a larger fraction of runoff that

originates from upslope areas than a TC with a smaller

areal fraction. (The actual volume of re-infiltration

depends on the soil types and the antecedent moisture

content, see Chapter 2.6).

RTC;y ¼
Xy21

x¼1

QTC;x

aTC;yXm
x

aTC;x

0
BBBB@

1
CCCCA ð1Þ

Rriver ¼
Xm
x¼1

QTC;x

aTC;xXm
x

aTC;x

0
BBBB@

1
CCCCA ð2Þ

x in Eqs. (1) and (2) is the index of a TC which is

runoff source area of flow to be redistributed, y is the

index of a TC which is runoff sink area of

redistributed flow. The values of both x and y are

confined to the range 1 (for the TC of highest

topographic position) to m (TC with lowest

topographic position), where m is the number of
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m ¼ 3 (see above). RTC;y in Eq. (1) is the total inflow

from all upslope TCs x that is received by terrain

component y: Rriver in Eq. (2) is the inflow into the

river from all TCs in the landscape unit. Consider

Fig. 2 as an example of flow redistribution. From the

total surface runoff generated in the highlands ðQTC;1Þ;

50% are attributed as runon to the slope area (TC,2)

which has an areal fraction of 50% in the LU ðaTC;2Þ;

and 20% of the total flow is attributed to the valley

bottoms (TC,3) with aTC;3 ¼ 20%: The remaining

30% of surface runoff from the highlands becomes

directly river runoff. In addition, the valley

bottoms receive 20/70 £ 100 ¼ 29% of the surface

runoff generated in the slope area ðQTC;2Þ as runon

(corresponding to the areal fraction of the valley

bottoms within the total area of slopes and

valley bottoms). Surface runoff from the valley

bottoms ðQTC;3Þ is added directly to river runoff.

Eqs. (1) and (2) apply to the redistribution of

surface runoff only. In the case of lateral subsurface

flow, QTC;x is completely attributed as inflow to the

next downslope TC. Lateral subsurface flow from the

lowest TC becomes river runoff. Both surface and

subsurface inflow to a TC from upslope areas is

partitioned between the various soil-vegetation

components of this TC weighted in proportion to

their areal fractions in the TC (Chapter 2.5).

2.5. Soil-vegetation component (Scale level 4)

In order to describe the heterogeneity of soil and

vegetation characteristics and, thus, of soil moisture

within TCs, each TC is further sub-divided into

soil-vegetation components (SVCs) at the next

smaller spatial scale (level 4 in Fig. 1). Each SVC is

a modelling unit with a specific combination of a soil

type and a land cover class (similar to the

classification used by Schumann et al., 2000). Thus,

the number of SVCs in a TC is given by the number of

existing soil-vegetation combinations. SVCs are

represented by their fraction of area within the TC

without exact geographic reference. The spatial

distribution of SVCs within a terrain component and

the location of SVCs relative to each other is assumed

to be non-organised, i.e. SVCs are modelled as a

randomly distributed mosaic of patches (in contrast to

the clumped depiction used for simplicity of drawing

in Figs. 3 and A1). Lateral redistribution of surface

and subsurface flow between SVCs is taken into

account in WASA. For each SVC, the generated

surface runoff QSVC;x is separated into (1) flow to all

other SVCs of the same TC and into (2) flow QTC;x to a

TC of lower topographic position or to the river. As for

the redistribution among TCs (see Chapter 2.4), flow

redistribution between the different SVCs (or, in other

words, the transition frequencies of water fluxes

between the spatial units) is in proportion to the areal

fraction of SVCs within each TC (aSVC;v or aSVC;z)

(Fig. 3). SVCs with a larger areal fraction receive

more runon from other SVCs than SVCs with a

smaller areal fraction (Eq. (3)). Similarly, the

percentage of runoff transferred to a lower TC or

directly to the river is larger for a SVC with a larger

areal fraction (Eq. (4)).

RSVC;z ¼
Xn

v¼1;v–z

ðQSVC;vaSVC;zÞ ð3Þ

Fig. 2. Simplified scheme of lateral redistribution of surface water

fluxes between terrain components.

Fig. 3. Simplified scheme of lateral redistribution of surface and

sub-surface water fluxes between soil-vegetation components.

Example for a terrain component composed of three SVCs and

for SVC, 1 as source area of lateral flow components.
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QTC;x ¼
Xn

v¼1

ðQSVC;vaSVC;vÞ ð4Þ

v in Eqs. (3) and (4) is the index of a SVC which is

runoff source area of flow to be redistributed, z is the

index of a SVC which is runoff sink area of

redistributed flow. n is the total number of SVCs in

a TC. RSVC;z in Eq. (3) is the total inflow from all other

SVCs v in TC x that is received by soil-vegetation

component z: Eqs. (3) and (4) apply for both surface

and sub-surface runoff. In the case of surface flow,

in receiving SVCs the runon is added as input to the

infiltration routine (see Chapter 2.6). In the case of

subsurface flow, lateral inflow into receiving SVCs is

associated primarily with soil horizons at similar

depths as those in the source area. If a soil profile is

too wet or too shallow to absorb all incoming lateral

subsurface flow, the remaining flow volume becomes

surface runoff (return flow).

In addition, for each SVC a piece-wise linear

distribution function, a simplification of Zhao et al.

(1980), is used to describe the varying soil water

storage capacity within the SVC. This distribution

defines the fraction of the SVC that can generate

saturation-excess surface runoff for a given mean soil

moisture of the SVC.

2.6. Profile (Scale level 5)

At the smallest scale of the hierarchy (level 5 in

Fig. 1), each soil-vegetation component is described by

a representative soil profile. The number of soil

horizons can be freely chosen and can vary between

the SVCs in WASA. The lower boundary of the profile

is usually set to the depth of the bedrock. Thus, near-

surface groundwater bodies can develop above the

bedrock or a less permeable horizon and can generate

lateral subsurface flow. If the bedrock is too deep

below the terrain surface to influence surface pro-

cesses, the lower boundary is set to the depth of the root

zone. The water balance of the profile is calculated

including vertical processes (infiltration, percolation,

evapotranspiration) and lateral flow processes (from/to

TCs of adjacent topographic position, and from/to

SVCs within the same terrain component). The details

of process modelling in WASA with emphasis on the

quantification of lateral flow volumes are given in

Appendix A. In Appendix B, the temporal sequence of

process representation within a timestep is explained.

3. Study area and material

3.1. Study area of Ceará, North-Eastern Brazil

The study area for an example application of

WASA is the Federal State of Ceará (148,000 km2) in

the semi-arid tropical north-east of Brazil (Fig. 4).

Details on natural and socio-economic conditions of

the area are given in Gaiser et al. (2003a). Ceará has

recurrently been affected by droughts which caused

serious economic losses and social impacts like

migration from the rural regions. Mean annual

precipitation is about 850 mm, with more than

1500 mm in some mountainous regions close to the

coast to less than 600 mm in the dry interior (Sertão).

Rainfall is concentrated within a rainy season of about

five months (January–May). Interannual rainfall

variability is high with a coefficient of variation Cv

of annual rainfall of 0.36. Potential evaporation

amounts to about 2100 mm. About 80% of the study

area is characterised by crystalline bedrock and

usually shallow soils. In these areas, a xerophytic

thorn-bearing woodland, mainly deciduous in the dry

season, is the dominant natural vegetation type

(Caatinga). The main agricultural use is extensive

cattle farming and subsistence farming of mainly

beans and maize. River flow in the study area is

Fig. 4. Study area Ceará in North-East Brazil with main river

network and location of gauging stations (empty circles).
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intermittent under natural conditions, including the

largest river, Rio Jaguaribe, with a basin area of

74,000 km2. Mean annual runoff is 10–20% of annual

rainfall. The Cv of annual discharge is generally above

1.0. Surface water provides the largest part of the

water supply. More than 7000 dams exist in the study

area with a total storage capacity of about

12.5 £ 109 m3 (Frischkorn et al., 2003). River flow

below large reservoirs is perennialised.

3.2. Climate and hydrology data

Climate data with daily resolution for this study

covered the period 1960–1998 for precipitation, air

temperature, relative humidity, wind velocity and

short-wave radiation. Precipitation data were based on

time series of 403 stations, of which, on average 200

were simultaneously available at each timestep.

Interpolation was done to cells of a 10 by 10 km

grid, using ordinary kriging with day-specific

variograms. Also the other climate elements were

interpolated to the grid cells, which were used as the

basic spatial units (level 1 in Fig. 1) in the model

application. Monthly discharge time series of variable

length (7–31 years in the period 1960–1998) from 23

gauging stations were available (Fig. 4), partly

provided by the Global Runoff Data Centre (GRDC,

D-56002 Koblenz, Germany).

3.3. Landscape data

Terrain and soil data and the delineation of

landscape units were extracted from a database in

the SOTER structure set up for the study area by

Gaiser et al. (2003b). About 150 landscape units were

differentiated and about 50 different soil types or sub-

types were recorded for the soil-vegetation

components throughout the study area. Each was

represented in the data base by at least one

representative profile with horizon specific soil

properties. Vegetation parameters were estimated

based on a small number of measured data for

vegetation types of the study area and from studies

in other semi-arid environments. Details on the

estimation of terrain, soil and vegetation parameters

for WASA are given in Appendix C.

3.4. Model versions

The reference version of WASA (Model 1)

comprises the full range of landscape variability,

process representation and available data as described

in the previous sections The hierarchy of spatial

modelling units starts out from a sub-division of Ceará

into 107 catchments of about 1500 km2 in size. Each is

made up of several grid cells of 10 by 10 km as

defined by the resolution of the precipitation data set

(Chapter 3.2). Model 1 was considered to be the

conceptually best model version in view of the given

data availability and the perception of the

hydrological behaviour of the study area.

Several other model versions with a reduced

complexity in terms of landscape variability and flow

redistribution were tested (Table 1 for an overview). In

Model 2, only the landscape unit with the largest areal

fraction in each grid cell was considered while

Table 1

Overview on WASA model versions with different complexity of landscape variability and lateral flow redistribution among modelling units

Model version Degree of landscape

variability

Flow redistribution

among terrain

components

Flow redistribution

among soil-vegetation

components

1 (reference) Full X X

2 Only dominant

landscape unit

X X

3 Only dominant

soil-vegetation component

– –

4 Mean parameters – –

5 Full – X

6 Full X –

7 Full – –
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disregarding all smaller landscape units. All other

landscape heterogeneities at smaller scale levels within

the chosen landscape unit were retained with the same

detail as in Model 1. In Model 3, the parameters of the

dominant soil-vegetation component were assigned to

the entire cell. Model 4 used mean terrain, soil and

vegetation parameters within each grid cell, derived as

area-weighted mean of the full variability considered

in Model 1. Models 5–7 consider to a different degree

the runoff redistribution processes among the

modelling units. In Model 7, the runoff from a grid

cell is simply the sum of the contributions of all

individual sub-areas, without any flow redistribution

among terrain components or soil-vegetation

components.

The simulation was executed for all model versions

for the period 1960–1998 with a daily time-step.

A subset of 10 particularly dry years comprised

the following years (in order of decreasing annual

area-average rainfall for Ceará with 10-year mean of

610 mm): 1980, 1981, 1979, 1992, 1990, 1966, 1970,

1998, 1983, and 1993. The subset of the 10 wettest

years (in order of increasing rainfall with 10-year

mean of 1370 mm) was: 1975, 1971, 1989, 1961,

1986, 1973, 1963, 1964, 1985, and 1974.

In simple sensitivity experiments with Model 1,

parameter values were increased and decreased by

previously fixed ratios relative to the best-guess

values in the original Model 1. The change ratios

were chosen according to an assumed range of

parameter uncertainty, depending on the detail and

accuracy of the available data.

4. Results of model applications

4.1. General model validation

The reference version of WASA (Model 1) was

applied to the entire study area of Ceará without

calibration Simulated mean annual river discharge was

generally of the right order of magnitude compared to

the observed values for catchments of different sizes

No systematic over- or underestimation was found

when looking at the entire set of available stations

(Fig. 5a). However, the performance varied

considerably between the gauging stations, with very

good (deviation of mean annual runoff ,5%) to poor

(deviation .20%) results according to an

interpretation of quantitative performance criteria for

large dryland basins (Andersen et al., 2001). It is

pointed out that where runoff is only a small fraction of

rainfall, small deviations in any input parameter may

result in a large percentage deviation of simulated

runoff. For instance, percentage deviations in annual

precipitation cause percentage changes in annual

runoff estimates to be larger by a factor of 2–3

(Güntner and Bronstert, 2003). This is in line with

results for other semi-arid areas, e.g. by Arnell (2000).

Errors in rainfall, which is the most uncertain input

variable in view of the low station density, may thus

cause the large deviations in simulated runoff,

amplified by various other sources of uncertainty.

Model performance was generally better for larger

catchments where such uncertainties average out to

some extent (Fig. 5), although the value of this result is

Fig. 5. Model performance of WASA in terms of different characteristics of simulated discharge for 23 gauging stations in Ceará, for different

validation periods within 1960–1998.
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constrained by the smaller number of the larger

sub-basins.

The large interannual variability of discharge

between dry and wet years was reasonably simulated

by the model (Fig. 5b). A slight underestimation of the

coefficient of variation of annual discharge for larger

catchments was due to an overestimation of simulated

discharge in dry years. This may be due to lack of

detailed information on operation rules for the

numerous reservoirs during dry periods, or due to

increased transmission losses by infiltration into the

alluvium in downstream river reaches which were not

captured by the model.

Model performance in terms of the mean

intra-annual runoff regime (Figs. 5c and 6) and the

monthly hydrograph (Figs. 5d and 7) was fair to very

good with coefficients of efficiency (according to

Nash and Sutcliffe, 1970, and the interpretation by

Andersen et al., 2001) being better than 0.7 for most

catchments. The climatic regime, with its clearly

separated rainy and dry seasons, dominates the

intra-annual variation of monthly runoff and was

one reason for the good model performance for

monthly flows. Poor results were found only

for catchments with perennial baseflow contributions

from deep groundwater bodies of which the

dynamics could not be represented by the

uncalibrated model (Fig. 6d). In general, the model

performance found here was in a similar range as that

of Andersen et al. (2001) for the application of an

uncalibrated model to a set of large catchments in

semi-arid Africa.

Fig. 6. Examples of model performance for mean monthly runoff at 4 gauging stations in the study area of Ceará, different validation periods

within 1960–1998; (–: simulated, –: measured).

Fig. 7. Example of validation of WASA, monthly discharge at station Peixe Gordo, Jaguaribe River, Ceará, basin area 473,000 km2. Lower

graph: cumulative differences between simulation and observation.
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4.2. Sensitivity to the spatial model structure

At the scale of grid cells (100 km2), differences in

simulated mean annual runoff between models

of different detail of the landscape data

(comparing Model 1 and 2, using several or only one

landscape unit per grid cell, respectively) were in the

range of ^40% (Fig. 8a). Thus, for the given type and

resolution of data on landscape characteristics,

differences in the hydrological response of adjacent

landscape units can be large. Taking into account

these differences by using several landscape units,

may therefore be of importance for runoff assessment

at scales similar to that of the grid cells. On the other

hand, the mean and median of the differences for all

cells of the study area were close to zero (Fig. 8a,

Table 2). Thus, for the aggregate response at the scale

of the entire study area (about 105 km2), the loss of

detail of landscape information in Model 2 did not

result in a significant worsening of the simulation

results. The sub-division of the study area into grid

cells of 100 km2 captured major spatial variability at

the scale of landscape units with sufficient

detail. Note, however, that although only one

landscape unit was used in each grid cell in Model 2,

sub-scale variability was considered by terrain and

soil-vegetation components.

In Model 3, all sub-scale variability was excluded

by assigning only the dominant soil-vegetation

component to each grid cell. The estimated

differences in mean annual runoff at a cell basis

compared to the reference Model 1 were negative or

positive with a large scatter between cells (Fig. 8b),

and estimated mean annual runoff for the whole area

was about 15% larger in Model 3 (Table 2).

One reason for the increase was that the dominant

soil-vegetation components in grid cells, which were

now attributed to the entire grid cell, are often areas

with rather shallow or clayey soils occurring in slope

positions and producing comparatively large runoff

volumes. Smaller units with large storage capacities

were skipped in Model 3. This applies, for instance,

for deeper alluvial soils in valley bottoms which had

an areal fraction on the total study area of 3% in

Model 1. In addition, using only one modelling unit in

grid cells in Model 3 eliminated redistribution

processes between modelling units which tended to

reduce total runoff in Model 1 (see below).

Using no sub-scale variability and only one

modelling unit with mean parameters in each grid

Fig. 8. Box-whisker plots of the percentage differences in simulated

mean annual runoff for several WASA model versions relative to

the reference Model 1. Distribution of differences for the 1460 grid

cells (10 £ 10 km2) in the study area of Ceará. Boxes are limited by

the 25th and 75th percentile, whiskers mark 10th and 90th

percentile, dots mark 5th and 95th percentile.

Table 2

Mean annual values of components of the hydrological cycle

(Period 1960–1998) for several WASA model versions

Q CV Qhort Qlat E Qwet Qdry

Model 1 148 1.14 64 41 694 303 41

Model 2 (mm) 147 1.17 64 42 695 300 41

D (%) 21 3 0 2 0 21 0

Model 3 (mm) 170 1.24 87 39 678 322 60

D (%) 15 9 36 25 22 6 46

Model 4 (mm) 85 1.97 0 40 755 206 11

D (%) 243 73 2100 22 9 232 273

Model 5 (mm) 152 1.09 62 49 690 304 45

D (%) 3 24 23 20 21 0 10

Model 6 (mm) 162 1.01 60 46 681 315 55

D (%) 9 211 26 12 22 4 34

Model 7 (mm) 169 0.96 59 53 675 322 59

D (%) 14 216 28 29 23 6 44

Average values for the study area Ceará; D: percentage

differences relative to the reference Model 1; Q : mean annual

total runoff; CV: Coefficient of variation of annual discharge; Qhort :

mean annual Horton-type infiltration excess-runoff; Qlat : mean

annual lateral subsurface flow; E : actual evapotranspiration; Qwet :

runoff in subset of 10 wettest years; Qdry : runoff in subset of 10

wettest years.
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cell (Model 4) gave estimates of mean annual runoff

consistently smaller than for the reference Model 1 for

all grid cells (Fig. 8c). Averaged over the entire study

area, the reduction was large, at about 243%

(Table 2). For cells with a larger proportion of

Horton-type infiltration-excess runoff the effect of

using mean parameters tended to produce more

pronounced reductions (Fig. 9). This difference

between both model versions was mainly a conse-

quence of the strong non-linearity of the infiltration

process, where with spatially averaged soil par-

ameters rainfall intensities rarely exceed the hydraulic

conductivity of the soil. The volume of infiltration-

excess runoff declined to zero while the additionally

infiltrating water was almost completely consumed by

evapotranspiration (Table 2). The results correspond

to those obtained in other studies where inappropriate

mean parameter values have been used (Merz and

Plate, 1997).

4.3. Sensitivity to lateral redistribution processes

Model versions 5–7 with a reduced representation

of lateral interaction of water fluxes between the

modelling units at different scales resulted in larger

simulated runoff than the reference model (Table 2)

If total runoff was simply the sum of runoff volumes

from all individual sub-areas (Model 7), mean annual

runoff was 14% larger at the aggregate scale of Ceará,

and in parts more than 40% for individual cells

(Fig. 8f). Due to a variety of interacting factors it is

difficult to work out clearly the conditions which

favour this effect of lateral redistribution. The main

relevant process is re-infiltration of surface runoff

flowing as runon into adjacent areas in the landscape

(soil-vegetation components and terrain components

in the model structure of WASA) with higher

infiltration capacity. The example in Fig. 10 illustrates

that the absolute effect of redistribution, expressed by

a large increase in the difference of soil moisture

between Models 1 and 7, is often most pronounced

shortly after the onset of the rainy season. At that

time, soil moisture in a patch acting as a source area of

surface runoff (the terrain component of higher

topographic position in Fig. 10) is already large

enough to generate a substantial amount of runoff

while at the same time soil moisture in another unit is

still low enough to act as sink area (the lower terrain

component in Fig. 10).

The results show a tendency for the relative effect

of lateral redistribution to be more pronounced in

areas with lower runoff volumes in absolute terms

(Fig. 11a). In these cases, the average drier soil

conditions due to lower rainfall volumes or more

permeable soils provide more storage capacity for

re-infiltration. The redistribution effect also can be

expected to be larger in areas with soils with strongly

differing water retention characteristics close to each

other which contrast markedly in their behaviour as

runoff source or sink areas. A clear relationship

between the magnitude of the redistribution effect and

the areal fraction of soils with particularly high

infiltration and storage capacity such as alluvial soils,

however, could not be demonstrated (Fig. 11b).

Furthermore, the effect of taking into account lateral

redistribution of water fluxes was found to be of

considerable importance in areas with a significant

generation of lateral subsurface flow, i.e. in landscape

units with steep topography (Fig. 11c). In the

reference Model 1, the subsurface flow component

generated in an upslope area increased soil moisture in

the terrain component with the lowest topographic

position such as the valley bottoms, and was to a large

part extracted by evapotranspiration. In Model 7,

however, it contributed directly to total runoff without

any losses.

Considering Models 5 and 6, random variability of

landscape characteristics within hillslope segments

Fig. 9. Difference in simulated mean annual runoff between Model 4

without landscape variability within grid cells and the reference

Model 1, as a function of the fraction of Horton-type infiltration-

excess runoff for the 1460 grid cells in Ceará.
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(Model 5 with interaction between soil-vegetation

components) was found to have a larger relative effect

on total runoff reduction at the basin scale by

redistribution among modelling units than organised

variability along toposequences (Model 6 with

interaction between terrain components) (Table 2,

Fig. 8d and e). This larger relative importance of

random variability may, on the one hand, be

Fig. 11. Effect of disregarding lateral redistribution of water fluxes among modelling units in WASA for the 10 £ 10 km2 grid cells in Ceará in

Model 7 relative to the reference Model 1, in terms of (a) mean annual runoff, (b) the areal fraction of alluvial soils in grid cells, and

(c) subsurface flow components.

Fig. 10. Plant-available soil moisture in the root zone of two adjacent terrain components of different topographic position in a small sub-basin

(200 km2) in Ceará, simulations with Model 1 and 7, and differences in soil moisture between both models.

HYDROL 14486—17/5/2004—14:09—BELLA—103727 – MODEL 3
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reasonable in view of observations in many semi-arid

environments which favour runoff–runon processes

over small distances (Section 1). Also Bronstert and

Bárdossy (1999) found a stronger impact of random as

compared to organised soil moisture variability

on runoff, although for different scales and

environmental conditions. On the other hand, one

may argue that the contribution of random variability

is overestimated in the WASA application because

too much landscape variability has been attributed

to random variability when parameterizing the model.

A reason is the low spatial resolution of the given

terrain, soil and land use data, which does not allow

recognition of all the patterns of organization that

may exist in the landscape. As a consequence, the

information on soil and land use heterogeneity is used

to define various soil-vegetation-components without

being able to arrange them within a toposequence

structure. More detailed spatial data might have

allowed a better understanding of additional

characteristic toposequences which would increase

the importance of structured variability at the expense

of random variability. The net effect of both types of

interacting variability on total runoff at the catchment

scale may nevertheless be similar to Model 1, which

should be analysed for an areas where more detailed

spatial data were available.

The relative effect of lateral redistribution of fluxes

between modelling units on total runoff was more

apparent in dry years as compared to wet years, with

differences in mean annual runoff between Models 1

and 7 of 44 and 8% for both sets of years, respectively

(Table 2). In dry years, the refillable soil moisture

storage in units adjacent to those generating runoff is

expected to be larger in average. Therefore, a

larger fraction of generated runoff in soil-vegetation-

components and terrain components is retained and

consumed by evapotranspiration. Additionally, the

relative effect is larger because absolute flow volumes

are smaller than in wet years. Lateral redistribution

processes including re-infiltration can thus

substantially contribute to the non-linear hydrological

response between wet and dry conditions in this type

of environment. Similarly, Goodrich et al. (1997)

showed an increasingly non-linear response with

increasing catchment area due to, among others, the

effect of transmission losses in semi-arid basins. As a

consequence of differences between wet and dry

years, the inclusion of lateral redistribution processes

in Model 1 also increased the interannual variability

of total runoff at the scale of grid cells (see coefficients

of variation in Table 2). The fact that the simulated

interannual variability of discharge in Model 1 was

close to the observed variability (see Fig. 5c and

discussion above) corroborated the need to take into

account the interaction between the modelling units.

These results for model sensitivity to lateral

redistribution processes may have important

consequences for model applications in the context

of environmental change impact assessment.

The simulated magnitude of change in discharge for

any change in precipitation in a climate scenario will

be influenced by lateral redistribution effects.

For example, assuming a decreasing precipitation

trend and keeping all other factors constant, the

decreasing trend for discharge will be underestimated

by the model if lateral redistribution processes are not

taken into account.

4.4. Parameter sensitivity for dry and wet conditions

As a consequence of the highly variable semi-arid

climate, the sensitivity of model parameters on runoff

simulations was also found to be of different

magnitudes for wet and dry climatic boundary

conditions. Bedrock parameters such as the soil depth

to bedrock, for instance, were more sensitive in wet

years (Fig. 12a). Only in these wet conditions,

percolation through the soil profile penetrates deep

enough to be influenced by the bedrock characteristics.

For soil parameters such as hydraulic conductivity or

porosity, in contrary, the model reacted more

sensitively in dry years where infiltration-excess runoff

generation and, consequently, the near-surface

characteristics dominate the runoff response (Fig. 12b

and c). Note, however, that in the case of soil hydraulic

conductivity there are hardly any changes in average

runoff if this parameter is set to larger values than in the

original model. Also differences in sensitivity between

wet and dry years are small in that case. The reason is

that a reduction in simulated infiltration-excess runoff

due to a larger hydraulic conductivity is

compensated by an increase in lateral subsurface

flow (Table 3). For vegetation parameters, a larger

model sensitivity for simulated runoff was generally

found in wet years (Fig. 12d–f). In these years, usually
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characterized by a denser temporal sequence of

rainfall events, the antecedent soil moisture conditions

which control runoff generation are more strongly

influenced by previous events than in dry years.

Consequently, vegetation parameters which govern

the transpiration rate and, thus, the rate by which water

is extracted from the soil, are of greater importance for

the sensitivity of runoff simulation in wet than in dry

years. In general, uncertainty of individual model

parameters may thus affect the reliability of model

results differently, according to whether dry or wet

conditions are considered and what are the dominant

processes for the specific condition. In the long-term,

Fig. 12. Sensitivity of soil and terrain parameters in WASA. X-axis: factor by which the parameter is changed multiplicatively. Y-axis:

percentage change of mean annual runoff (period 1960–1998) at the scale of sub-basins as compared to the reference simulation without

parameter change (Model 1) (scaling varies between graphs). Box-whisker-plots give the distribution of model sensitivity among the 107

sub-basins of the study area Ceará; boxes limited by 25th and 75th percentiles; black line within box ¼ median; whiskers mark 10th and 90th

percentiles. Triangles: median change in runoff of all sub-basins for the 10 wettest years within 1960–1998. Circles: median change in runoff of

all sub-basins for the 10 driest years (see chapter 3.4 for details on the years).

Table 3

Model sensitivity to changes in soil hydraulic conductivity on mean

annual runoff

Change factor 0.1 0.5 1.0 5.0 10.0

Q (mm) 181 154 148 142 148

Qhort (mm) 142 86 64 33 23

fhort (%) 79 56 44 23 16

Qlat (mm) 27 38 42 59 71

flat (%) 15 25 29 42 48

Averaged for the study area Ceará, period 1960–1998 (compare

Fig. 12b); Q : mean annual total runoff; Qhort : mean annual Horton-

type infiltration excess-runoff; Qlat : mean annual lateral subsurface

flow; fhort; flat : fraction of both runoff components on total runoff.
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this is also of importance for scenario simulations

where simulated runoff trends for climate change

scenarios differ in reliability for a decreasing or an

increasing precipitation trend.

5. Summary and conclusions

5.1. The landscape discretization scheme

The hierarchical multi-scale concept for

structuring the landscape into modelling units in the

WASA model provides a way to represent dominant

hydrological processes of semi-arid environments at

their specific scales while linking these process scales

with the final scale of interest of model application,

i.e. large catchments. Besides taking into account the

heterogeneity of the landscape and of related vertical

processes, the modelling units are also defined with

regard to lateral processes, in particular the

redistribution of water fluxes between patches at the

hillslope or small-basin scale. Accordingly, landscape

units are delineated which are characterized by

similarity in sub-scale variability, including both

random and structured variability. In order to define

organisation in landscape features, a toposequence

approach is used. It assigns soil, vegetation and land

use patches to zones of a specific topographic

position within the landscape which allows to define

runoff–runon relationships between the modelling

units. Thus, features of the landscape structure of

importance for lateral redistribution processes are

respected a priori in the spatial discretization

scheme. This overcomes the frequent problem in

(semi-)distributed models of defining the lateral

connectivity between the modelling units that have

been delineated according to the similarity of vertical

processes only.

5.2. Assumptions and limitations of the concept

Starting with the terrain components and going to

finer scales in WASA, areal fractions of modelling

units and their location relative to each other instead

of their geographically explicit locations are used.

On the one hand, it is a simplification to use the areal

fraction as the only parameter which determines the

portions of runoff volumes that are re-distributed as

runon among other modelling units, and the validity

of this model assumption could not be directly

checked in this study due to the lack of adequate

small-basin scale observations. On the other hand, the

use of areal fractions is an efficient approach to

capture aspects of landscape variability and patch

interaction in large-scale applications due to limited

data availability (where the best available information

in many cases is the areal fraction only) and due to the

necessity to limit computation times. However, there

are important aspects of landscape variability and

lateral redistribution effects that go beyond the

approach used here. Beneath the finest-scale units in

the WASA hierarchy, plot variability at the scale

of few meters (e.g. crusted/non-crusted soils,

microtopography, or random variability of soil

hydraulic conductivity) is not captured in the model.

Beyond the coarsest-scale of the WASA hierarchy,

regional groundwater flow is disregarded. Although

the importance of plot-scale variability on the

hydrological response has been shown in a large

number of studies, its significance may decline

relative to the other aspects of variability at larger

scales which are described in the current approach.

Testing this hypothesis should be the subject of future

work. At coarser spatial scales, an extension of the

function of landscape units as source or sink areas for

regional, long-distance groundwater fluxes may be a

straightforward extension of the WASA structure for

study areas where such fluxes are considered to be of

importance.

5.3. Implications for representing spatial

heterogeneity in large-scale models

According to the simulation results, it is concluded

that accounting for landscape variability of terrain,

soil and vegetation characteristics in the semi-arid

environment is important for obtaining reasonable

annual and monthly discharge simulations at the scale

of large river basins (104–105 km2). Specifying one

landscape unit, i.e. one specific form of sub-scale

variability, for a 100 km2 grid cell was found to be

an adequate complexity to estimate the large-scale

hydrological response. Disregarding the sub-grid

variability is not advisable in two respects:

First, using mean parameter values led to a

considerable underestimation of runoff volumes,
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particularly in areas where the Horton-type infiltra-

tion-excess runoff process prevails. Second, using

only the dominant soil-vegetation type led to an

overestimation of runoff at the large scale because

sub-areas with small areal fractions acting as runoff

sink areas were omitted.

Implications for representing lateral water

redistribution in large-scale models. The simulation

results demonstrate that lateral water fluxes and

related redistribution processes at the hillslope or

small-basin scale can considerably influence the

hydrological response at the scale of river basins in

the semi-arid environment. The main effect is a

reduction of runoff volumes at larger scales due to

re-infiltration of surface runoff and redistribution of

subsurface runoff. Soil moisture patterns in the

landscape are thus in part under non-local control,

particularly for wet conditions. The effect was found

to be more important in areas with lower runoff

volumes and with steeper slope gradients. It is

concluded that the runoff response of large

catchments cannot simply be represented as the sum

of the contributions of individual sub-areas, but lateral

interaction between them due to landscape variability

has to be taken into account also in large-scale

models. In this sense, the results indicate that even a

(soil moisture) distribution-based approach, although

fulfilling the need to represent sub-scale landscape

variability, may not be adequate as long as it does

not account for redistribution effects which, e.g. may

contribute to changes in the shape of the distribution

in time.

5.4. Sensitivity for wet and dry conditions

The relative effect of lateral redistribution

processes on total basin discharge was found to be

more pronounced in dry years as compared to wet

years. The high amplification factor that relates

changes in annual rainfall to larger percentage

changes in annual runoff in semi-arid areas can

therefore be at least partly attributed to the

redistribution processes. Thus, they have to be

taken into account in process-based hydrological

models if the magnitude of change in runoff in the

context of climate change and related precipitation

change is to be adequately assessed. Additionally,

model sensitivity to uncertainties in model

parameter values differs between years with rainfall

volumes being above or below the average due to a

changing relevance of individual processes. Thus,

for model applications in the context of climate

change impact assessment, the uncertainty of a

simulated long-term change in discharge due to

uncertainties originating from individual process

representations and model parameters varies

between scenarios with increasing or decreasing

precipitation trends. For model uncertainty assess-

ments in this regard we conclude that there is a need

to pursue a process-based approach, i.e. the analysis

of uncertainty from different sources as a function

of changing boundary conditions and, consequently,

a changing dominance of individual hydrological

processes.

5.5. Transferability of the concept

The approach for landscape discretization

developed in this study is in principle considered to

be well transferable to large-scale applications in

other areas, including its applicability as sub-grid

parameterization of the land surface in climate

models. Also in more humid areas, a hierarchical

way of structuring the landscape and landscape

variability which comprises a sub-division into a

small number of (two or three) topographic zones

including their topological relationships may be

suitable to describe the effect of natural

heterogeneity for the coarse-scale hydrological

response in a manageable way. A practical constraint

for a transfer of the approach to other areas, however,

will usually be the lack of data in a structure similar to

SOTER, which includes direct relationships between

topographic, soil and vegetation characteristics.

Assembling such multidisciplinary data sets for

large areas and testing their applicability to adequate

landscape discretization for hydrological and other

ecosystem models is a challenge for future research on

improving coarse-scale models.
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Appendix A. Details of process representation

in WASA

Interception by the vegetation cover is modelled in

WASA by a simple bucket approach with the

interception capacity being a function of the leaf

area index (Dickinson, 1984). Evapotranspiration is

simulated with the approach for a sparse vegetation

cover by Shuttleworth and Wallace (1985), which also

accounts for evaporation from bare soil surfaces.

An increase in canopy surface resistance to

transpiration due to environmental stress factors

such as low soil water availability is respected

according to Jarvis (1976) and Stewart (1988).

The infiltration model is a Green-Ampt approach in

a formulation given by Schulla (1997), extended in

WASA for the infiltration into layered soils. The total

input to the infiltration routine is rainfall minus

interception plus surface runoff from other spatial

units. A temporal scaling factor is applied when

modelling with daily temporal resolution in order to

compensate for underestimated rainfall intensities

(Güntner, 2002).

Percolation from one horizon to the next deeper

horizon occurs if the actual moisture SM of the upper

horizon exceeds soil moisture at field capacity SMFC.

Following Arnold et al. (1990), a temporal delay

factor td in percolation (or travel time through

the horizon) is applied which is related to the actual

unsaturated hydraulic conductivity ku of the horizon

(Eqs. (A1) and (A2)).

PERC ¼ ðSM 2 SMFCÞ 1 2 exp 2
1

td

� 	� 	
ðA1Þ

td ¼
ðSM 2 SMFCÞ

ku

ðA2Þ

The final volume of PERC may be constrained by

the refillable porosity of the lower horizon or by its

saturated hydraulic conductivity ks: If the lowest

horizon of the profile is situated above bedrock,

percolation to deep groundwater may be limited by

the hydraulic conductivity of the bedrock.

For the quantification of lateral subsurface flow

LATF leaving a soil horizon, a simple relationship for

saturated flow based on the Darcy equation is applied

(Eq. (A3)). Comparable formulations for more

complex geometric settings have been used by

Wigmosta et al. (1994) and Tague and Band (2001).

The hydraulic gradient is given by the slope gradient

sTC of the terrain component. Fig. A1 illustrates the

geometric attributes to quantify the effective cross

section AQ for lateral flow, which can be determined

following Eq. (A4). The saturated depth ds of the

contributing horizon is assumed to build up on its

lower boundary, with ds being a function of the

total depth d of the horizon and of the actual

moisture content relative to saturated water content

SMsat (Eq. (A5)).

LATF ¼ AQkssTC ðA3Þ

AQ ¼ 2lSVCds ¼ 2
0:5ASVC

aTClLU

ds ¼
aSVCaTCALU

aTClLU

¼
aSVCALU

lLU

ds ðA4Þ

ds ¼ d
SM 2 SMFC

SMsat 2 SMFC

ðA5Þ

In Eq. (A4), lSVC is the contour length of the SVC

parallel to a downslope TC or to river, lLU is the

slope length of landscape unit, ASVC is the area of

the soil-vegetation component, ALU is the area of

landscape unit, aTC is the areal fraction of TC in the

landscape unit, and aSVC is the areal fraction of the

SVC in the terrain component (see also Fig. A1).

The factor 2 in the first term of Eq. (A4) is introduced
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because the spatial units with their cross sections for

lateral flow are assumed to occur on the hillslopes

along both sides of the river.

The total outflow Q from a horizon (Eq. (A6)),

being the sum of the independently determined

components PERC and LATF, must not exceed the

available soil moisture above field capacity in

the horizon. Otherwise, both flow components are

linearly reduced to their final flow volumes PERCfin

and LATFfin according to Eq. (A7).

Q ¼ PERC þ LAT ðA6Þ

if Q. ðSM2SMFCÞ then

PERCfin¼ðSM2SMFCÞ
PERC

Q

LATFfin¼ðSM2SMFCÞ
LATF

Q

8>>><
>>>:

ðA7Þ

The total lateral subsurface outflow of a profile is

the sum of the individual flows from each horizon. It

is redistributed among profiles in other SVCs or TCs

and river flow according to the descriptions in

Chapters 2.4 and 2.5.

Appendix B. Temporal sequence of process

modelling

The temporal sequence of process modelling

within each time-step in WASA, including lateral

redistribution among modelling units as explained in

Chapters 2.4 and 2.5, is as follows:

1. Start with the terrain component (TC) of the

highest topographic position within the landscape

unit (LU) and do the following steps 2–10 for all

soil-vegetation components (SVCs) in this terrain

component.

2. Update soil moisture of all horizons due to lateral

subsurface inflow (produced in the previous

timestep) from the upslope TC and from SVCs

of the same TC. If the soil water content of a

profile exceeds its saturated water content, the

surplus lateral inflow becomes surface runoff

(return flow).

3. Determine retention of precipitation in the

interception storage and calculate interception

evaporation.

4. Determine saturation-excess surface runoff by

precipitation or lateral surface inflow from

upslope TCs (produced in the same time-step)

onto the surface-saturated fraction of the SVC

(see point 9 below).

5. Calculate infiltration volumes with input from

rainfall and lateral surface flow from upslope TCs

(produced in the same time-step) and from other

SVCs of the same TC. In order to account in an

approximate manner for surface runoff that may

be produced simultaneously on other SVCs,

the infiltration routine is applied with two

iterations. As a first estimation, infiltration-excess

runoff is computed for all SVCs based on input

from precipitation and lateral flow from an upper

TC only. The resulting surface runoff is then

redistributed among all SVCs and accounted for

in the second iteration, which calculates

Fig. A1. Scheme of the structure of terrain components (TCs) and soil-vegetation components (SVCs) within a landscape unit (LU), with

geometric attributes to calculate lateral subsurface flow (Eq. (A3)–(A5)), here for SCV1 as an example. For simplicity of painting, the soil

profile of SVC1 is composed of one horizon only.
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the final values of infiltration and surface runoff

for each SVC.

6. Update soil moisture of all horizons by the

infiltrated water volume.

7. Calculate plant transpiration and evaporation

from the soil surface (both as function of actual

soil moisture) and update the soil moisture of all

horizons.

8. Calculate, for each soil horizon, the percolation to

the next deeper horizon and determine the lateral

subsurface flow volumes to adjacent SVCs and to

the next downslope TC or to the river. Update

the soil moisture of all horizons according to

these outflows.

9. Determine the saturated fraction of the SVC as

function of the actual soil moisture content and

the distribution of storage capacities.

10. Add up lateral outflow of all SVCs of the current

terrain component (surface and subsurface

flow, respectively) and distribute among river

runoff and inflow to downslope TCs.

11. Repeat steps 2–10 for all SVCs of the next

downslope TC.

Appendix C. Details on model parameterization

with landscape data

The delineation of landscape units and the

estimation of terrain and soil parameter in WASA

was based on a database in the SOTER structure set up

for the study area by Gaiser et al. (2003b) using a

regional survey at a scale of 1:106 by SUDENE (1972,

1973). Of the about 150 landscape units in the data

base, some had very small areas or were very similar

to others. No attempt was made to aggregate them in

this study as this would have included subjective

reasoning in skipping some of the detailed

information. An additional attribute was added to

the soil and terrain data base to indicate

the topographic location of terrain components in

the catena of a landscape unit relative to other terrain

components. Patterns of natural vegetation types

derived from a map at a scale of 1:106 (MDME,

1981a,b), patterns of different forms of agricultural

land use available at the scale of administrative units

(IBGE, 1998) and data on soil types within the

landscape units and terrain components (Gaiser et al.,

2003b) were combined to give the distribution of

soil-vegetation components in each terrain component

throughout the study area (see Güntner, 2002, for

details). In this scheme, preferred combinations of

land cover and soil types were identified by using

suitability indices of the different soil types for

agricultural use (Gaiser et al., 2003b).

The about 50 different soil types or sub-types in the

data base of Gaiser et al. (2003b) were each

described by at least one representative profile with

horizon-specific data on texture, bulk density and

content of coarse fragments. Soil porosity (set equal to

saturated water content) was estimated from bulk

density. Soil water retention characteristics were

derived using the model of Van Genuchten (1980),

with parameters based on soil texture and the

regression equations of Rawls and Brakensiek

(1985). Saturated hydraulic conductivity was

estimated from porosity with an equation adapted to

Brazilian tropical soils by Tomasella and Hodnett

(1997). Unsaturated conductivity as a function of

water content was again estimated by the relationship

of Van Genuchten (1980).

The mean slope lengths of the landscape units were

derived from a land surface classification based on

radar remote sensing data performed by MDME

(1981a,b). Resulting slope lengths in the study area

varied between the landscape units from about

200–2500 m. The hydraulic conductivity of the

bedrock in the crystalline area was set to

0.1 mm d21, which implies nearly impermeable

conditions as often assumed in hydrological studies

of the area (Cadier, 1993). If not given by the data of

the representative profiles mentioned above, the

maximum profile depth to bedrock was set to 1.8 m

in the crystal-line area and to 4.5 m for alluvial soils

in valley bottoms, as estimated from data on the

depth of alluvial wells throughout the study area

(CPRM, 1999) and data of CPRM (1996) and Manoel

Filho (2000).

Vegetation parameters were estimated from

measured values of canopy height, biomass, albedo

and leaf area index for some vegetation types of the

study area given by MDME (1981a,b), Pfister and

Malachek (1986); Hayashi (1995), Sampaio et al.

(1998), Tiessen et al. (1998) and Halm (2000).

Additionally, parameters were taken from a

number of studies including values for semi-arid
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environments (Dorman and Sellers, 1989; Dolman,

1993; Schulze et al., 1994; Kelliher et al., 1995;

Fennessy and Xue, 1997; Martin, 1998). Vegetation

parameters for agricultural crops were based on the

crop models EPIC (Williams et al., 1984) and

CROPWAT (FAO, 1992). Minimum stomatal resist-

ance was set to 200 s m21 for most vegetation types,

corresponding to a value of maximum stomatal

conductance of 198 mmol m22 s21 given for semi-

arid shrubs by Körner (1994). Finally, seven natural

vegetation types were differentiated in the study area,

together with degraded sub-type for each, and six

different classes of the most common agricultural

crops. Time-variable vegetation height, root depth,

leaf area index and albedo were estimated by an intra-

annual distribution, as a function of the onset and end

of the rainy season (see Güntner, 2002, for details).
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(Eds.), Global change and regional impacts: water availability

and vulnerability of ecosystems and society in the semi-arid

Northeast of Brazil, Springer, Berlin, pp. 267–278.

Grayson, R.B., Western, A.W., Chiew, F.H., Blöschl, G., 1997.
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Runoff and erosion in a Piñon-Juniper woodland: influence of

vegetation patches. Soil Science Society of America Journal

63(6), 1869–1879.

Sandström, K., 1996. Hydrochemical deciphering of streamflow

generation in semi-arid East Africa. Hydrological Processes 10,

703–720.
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