Skip to main content

Advertisement

Log in

Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To study the impact of keV levels of virtual monoenergetic images generated from rapid kVp-switching dual-energy CT (rsDECT) on CT texture analysis (CTTA).

Methods

This study included 30 consecutive patients (59.3 ± 12 years; range 34–77 years; 17M:13F) who underwent portal venous phase abdominal CT on a rsDECT scanner. Axial 5-mm monoenergetic images at 5 energy levels (40/50/60/70/80 keV) were created and CTTA of liver was performed. CTTA comprised a filtration-histogram technique with different spatial scale filter (SSF) values (0–6). CTTA quantification at each SSF value included histogram-based statistical parameters such as mean intensity, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis. The values were compared using repeated measures ANOVA.

Results

Among the different CTTA metrics, mean intensity (at SSF > 0), skewness, and kurtosis did not show variability whereas entropy, MPP, and SD varied with different keV levels. There was no change in skewness and kurtosis values for all 6 filters (p > 0.05). Mean intensity showed no change for filters 2–6 (p > 0.05). Mean intensity at SSF = 0 i.e., mean attenuations were 91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7, 179.8 ± 6.9, and 250.5 ± 10.1 HU for 80, 70, 60, 50, and 40 keV images, respectively demonstrating significant variability (decrease) with increasing keV levels (p < 0.001). Entropy, MPP, and SD values showed a statistically significant decrease with increasing keV of monoenergetic images on all 6 filters (p < 0.001).

Conclusion

The energy levels of monoenergetic images have variable impact on the different CTTA parameters, with no significant change in skewness, kurtosis, and filtered mean intensity whereas significant decrease in mean attenuation, entropy, MPP, and SD values with increasing energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Davnall F, Yip CSP, Ljungqvist G, et al. (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 3(6):573–589

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ganeshan B, Miles KA (2013) Quantifying tumour heterogeneity with CT. Cancer Imaging Off Publ Int Cancer Imaging Soc. 26(13):140–149

    Google Scholar 

  4. Armato SG, Li F, Giger ML, et al. (2002) Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology. 225(3):685–692

    Article  PubMed  Google Scholar 

  5. Armato SG, Giger ML, MacMahon H (2001) Automated detection of lung nodules in CT scans: preliminary results. Med Phys. 28(8):1552–1561

    Article  PubMed  Google Scholar 

  6. Giger ML, Bae KT, MacMahon H (1994) Computerized detection of pulmonary nodules in computed tomography images. Invest Radiol. 29(4):459–465

    Article  PubMed  CAS  Google Scholar 

  7. Halligan S, Mallett S, Altman DG, et al. (2011) Incremental benefit of computer-aided detection when used as a second and concurrent reader of CT colonographic data: multiobserver study. Radiology. 258(2):469–476

    Article  PubMed  Google Scholar 

  8. Lawrence EM, Pickhardt PJ, Kim DH, Robbins JB (2010) Colorectal polyps: stand-alone performance of computer-aided detection in a large asymptomatic screening population. Radiology. 256(3):791–798

    Article  PubMed  Google Scholar 

  9. Li J, Van Uitert R, Yao J, et al. (2008) Wavelet method for CT colonography computer-aided polyp detection. Med Phys. 35(8):3527–3538

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gletsos M, Mougiakakou SG, Matsopoulos GK, et al. (2003) A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc. 7(3):153–162

    Article  Google Scholar 

  11. Huang Y-L, Chen J-H, Shen W-C (2006) Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images. Acad Radiol. 13(6):713–720

    Article  PubMed  Google Scholar 

  12. Kido S, Kuriyama K, Higashiyama M, Kasugai T, Kuroda C (2002) Fractal analysis of small peripheral pulmonary nodules in thin-section CT: evaluation of the lung-nodule interfaces. J Comput Assist Tomogr. 26(4):573–578

    Article  PubMed  Google Scholar 

  13. Klein HM, Klose KC, Eisele T, et al. (1993) The diagnosis of focal liver lesions by the texture analysis of dynamic computed tomograms. ROFO Fortschr Geb Rontgenstr Nuklearmed. 159(1):10–15

    Article  PubMed  CAS  Google Scholar 

  14. Way TW, Sahiner B, Chan H-P, et al. (2009) Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys. 36(7):3086–3098

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 67(2):157–164

    Article  PubMed  CAS  Google Scholar 

  16. Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging Off Publ Int Cancer Imaging Soc. 6(10):137–143

    Google Scholar 

  17. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 22(4):796–802

    Article  PubMed  Google Scholar 

  18. Haider MA, Vosough A, Khalvati F, et al. (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging. 17:4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology. 266(1):177–184

    Article  PubMed  Google Scholar 

  20. Ozkan E, West A, Dedelow JA, et al. (2015) CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. Am J Roentgenol. 205(5):1016–1025

    Article  Google Scholar 

  21. Shac Y, Liu L, Wang F, et al. (2008) Quantitative evaluation of CT-MRI images of various tumors with expansive or infiltrative growth pattern. Zhonghua Yi Xue Za Zhi. 88(21):1503–1506

    PubMed  Google Scholar 

  22. Win T, Miles KA, Janes SM, et al. (2013) Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 19(13):3591–3599

    Article  CAS  Google Scholar 

  23. Hayano K, Tian F, Kambadakone AR, et al. (2015) Texture analysis of non-contrast enhanced CT for assessing angiogenesis and survival of soft tissue sarcoma. J Comput Assist Tomogr. 39(4):607–612

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 261(1):165–171

    Article  PubMed  Google Scholar 

  25. Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol. 85(10):1867–1874

    Article  PubMed  Google Scholar 

  26. De Cecco CN, Ganeshan B, Ciolina M, et al. (2015) Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Invest Radiol. 50(4):239–245

    Article  PubMed  CAS  Google Scholar 

  27. Rao S-X, Lambregts DM, Schnerr RS, et al. (2016) CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy? United Eur Gastroenterol J. 4(2):257–263

    Article  CAS  Google Scholar 

  28. Ravanelli M, Farina D, Morassi M, et al. (2013) Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol. 23(12):3450–3455

    Article  PubMed  Google Scholar 

  29. Yip SSF, Coroller TP, Sanford NN, et al. (2016) Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Phys Med Biol. 61(2):906–922

    Article  PubMed  CAS  Google Scholar 

  30. Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging. 40(6):1705–1712

    Article  PubMed  Google Scholar 

  31. Wu J, Gong G, Cui Y, Li R (2016) Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging JMRI. 44(5):1107–1115

    Article  PubMed  Google Scholar 

  32. Teruel JR, Heldahl MG, Goa PE, et al. (2014) Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. NMR Biomed. 27(8):887–896

    Article  PubMed  Google Scholar 

  33. Michoux N, Van den Broeck S, Lacoste L, et al. (2015) Texture analysis on MR images helps predicting non-response to NAC in breast cancer. BMC Cancer. 5(15):574

    Article  Google Scholar 

  34. Ahmed A, Gibbs P, Pickles M, Turnbull L (2013) Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging JMRI. 38(1):89–101

    Article  PubMed  Google Scholar 

  35. Parakh A, Baliyan V, Sahani DV (2017) Dual-energy CT in focal and diffuse liver disease. Curr Radiol Rep. 5(8):35

    Article  Google Scholar 

  36. Parakh A, Patino M, Sahani DV. Spectral CT/dual-energy CT. In Springer Berlin Heidelberg; 2017 [cited 2017 Apr 3]. p. 1–21. (Medical Radiology). http://link.springer.com.ezp-prod1.hul.harvard.edu/chapter/10.1007/174_2017_28

  37. Patel BN, Alexander L, Allen B, et al. (2017) Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol. 42(3):676–687

    Article  Google Scholar 

  38. Mileto A, Barina A, Marin D, et al. (2015) Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. 279(1):269–277

    Article  PubMed  Google Scholar 

  39. Ganeshan B, Goh V, Mandeville HC, et al. (2013) Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 266(1):326–336

    Article  PubMed  Google Scholar 

  40. Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging Off Publ Int Cancer Imaging Soc. 13(3):400–406

    Google Scholar 

  41. Hsu CC-T, Kwan GNC, Singh D, Pratap J, Watkins TW. Principles and clinical application of dual-energy computed tomography in the evaluation of cerebrovascular disease. J Clin Imaging Sci [Internet]. 2016 Jun 29 [cited 2017 Jun 14];6. : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964665/

  42. Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF (2017) Update of dual-energy CT applications in the genitourinary tract. Am J Roentgenol. 208(6):1185–1192

    Article  Google Scholar 

  43. Roele ED, Timmer VCML, Vaassen LAA, van Kroonenburgh AMJL, Postma AA. Dual-energy CT in head and neck imaging. Curr Radiol Rep [Internet]. 2017 [cited 2017 Jun 14];5(5). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371622/

  44. Liguori C, Frauenfelder G, Massaroni C, et al. (2015) Emerging clinical applications of computed tomography. Med Devices Auckl NZ. 5(8):265–278

    Google Scholar 

  45. De Cecco CN, Boll DT, Bolus DN, et al. (2017) White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, part 4: abdominal and pelvic applications. J Comput Assist Tomogr. 41(1):8–14

    Article  PubMed  Google Scholar 

  46. Ganeshan B, Miles KA, Young RCD, Chatwin CR (2007) In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol. 14(9):1058–1068

    Article  PubMed  Google Scholar 

  47. Ganeshan B, Miles KA, Young RCD, Chatwin CR (2009) Texture analysis in non-contrast enhanced CT: impact of malignancy on texture in apparently disease-free areas of the liver. Eur J Radiol. 70(1):101–110

    Article  PubMed  Google Scholar 

  48. Miles KA, Ganeshan B, Griffiths MR, Young RCD, Chatwin CR (2009) Colorectal cancer: texture analysis of portal phase hepatic CT images as a potential marker of survival. Radiology. 250(2):444–452

    Article  PubMed  Google Scholar 

  49. Agrawal MD, Pinho DF, Kulkarni NM, et al. (2014) Oncologic applications of dual-energy CT in the abdomen. RadioGraphics. 34(3):589–612

    Article  PubMed  Google Scholar 

  50. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 199(5 Suppl):S9–S15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kambadakone.

Ethics declarations

Disclosure

Balaji Ganeshan: director, part-time employee, and shareholder of Feedback Plc (Cambridge, England, UK), company that develops and markets the TexRAD texture analysis algorithm described in this manuscript. Dushyant Sahani: GE healthcare research grant, royalties from Elsevier.

Funding

This study was not funded.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

Balaji Ganeshan is director, part-time employee, and shareholder of Feedback Plc (Cambridge, England, UK), company that develops and markets the TexRAD texture analysis algorithm described in this manuscript. Dushyant Sahani has GE healthcare research grant, royalties from Elsevier, other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baliyan, V., Kordbacheh, H., Parameswaran, B. et al. Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis. Abdom Radiol 43, 2693–2701 (2018). https://doi.org/10.1007/s00261-018-1527-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1527-y

Keywords

Navigation