Skip to main content
Log in

Genetic transformation of the endangered Tibetan medicinal plant Przewalskia tangutica Maxim and alkaloid production profiling revealed by HPLC

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

To achieve a high yield of tropane alkaloids (TA) and exploit the alpine plant sustainably, an optimized protocol for induction and establishment of hairy roots culture of Prezwalskia tangutica Maxim was developed through selection of appropriate Agrobacterium strain and the explant type. The hypocotyl is more readily facile to induce the HR than the cotyledon is when infected with the three different agrobacterium strains. MUS440 has an efficiency (of up to 20%), whereas the ATCC10060 (A4) can induce HR on both types of explants with the highest frequency (33.33%), root length (21.17 ± 2.84 cm), and root number (10.83 ± 1.43) per explant than the other strains. The highest HR production resulted from using hypocotyl as explants. Independent transformed HR was able to grow vigorously and to propagate on a no-hormone 1/2MS liquid medium. The presence of pRi rolB gene in transformation of HR was confirmed by PCR amplification. In the liquid medium, the HR growth curve appeared to be “S” shaped, and ADB had increased to 4.633 g/l. Moreover, HPLC analysis showed that HR lines have an extraordinary ability to produce atropine (229.88 mg/100 g), anisodine (4.09 mg/100 g), anisodamine (12.85 mg/100 g), and scopolamine (10.69 mg/100 g), which were all more significant than the control roots. In conclusion, our study optimized the culture condition and established a feasible genetics reactor for P. tangutica green exploration and biological study in the alpine region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chandran RP, Potty VP (2011) Different inducer molecules and strains of Agrobacterium rhizogenes on enhancing transformation frequency in host plants. Biotechnology 10:203–208

    Article  CAS  Google Scholar 

  • Christen P, Roberts MF, Phillipson JD, Evans WC (1989) High yield production of tropane alkaloids by hairy root cultures of a Datura candida Hybrid. Plant Cell Rep 8:75–77

    Article  CAS  Google Scholar 

  • Gaire BP, Subedi L (2013) A review on the pharmacological and toxicological aspects of Datura stramonium L. J Integr Med 11:73–79

    Article  Google Scholar 

  • Georgiev MI, Radziszewska A, Neumann M, Marchev A, Aplipieva K, Ludwig-Müller J (2015) Metabolic alterations of Verbascumnigrum L. plants and SAArt transformed roots as revealed by NMR-based metabolomics. Plant Cell Tissue Organ Cult 123:349–356

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439–463

    CAS  Google Scholar 

  • Häkkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkänen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A (2014) Molecular farming in Tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 111:336–346

    Article  Google Scholar 

  • Hsiao PG, Xia GC, He LY (1973) The occurrence of some important tropane alkakoids in Chinese solanaceous plants. J Integr Plant Biol 15:187–194

    CAS  Google Scholar 

  • Xiao PG, He LY (1982) Przewalskia tangutica—a tropane alkaloid containing plant. Planta Med 45:8–11

    Google Scholar 

  • Lei TX, Cai XJ, Zhou DW, Li SL, Wang H, Shen JW (2015) Preliminary establishment of in vitro seed aseptic culture of three Solanaceae plant. Chin Mad Mat 38:447–450

    CAS  Google Scholar 

  • Liu SW (1996) Flora of Qinghai. Qinghai People’s Press, Xining

    Google Scholar 

  • Lu BB, Zhang L, Kai GY, Zhang HM, Ding RX, Chen WS (2005) Establishment of hairy root culture of Hyoscyamus niger. Chin Tradit Herbal Drugs 36:1864–1868

    CAS  Google Scholar 

  • Marchev A, Yordanova Z, Alipieva K, Zahmanov G, Rusinova-Videva S, Kapchina-Toteva V, Simove S, Popova M, Georgiev MI (2016) Genetics transformation of rare Verbascum eriophorum Godr plants and metabolic alterations revealed by NMR-based metabolomics. Biotechnol Lett 38:1621–1629

    Article  CAS  Google Scholar 

  • Sevón N, Oksman-Caldenty KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Plata Med 68:859–868

    Article  Google Scholar 

  • Shi SB (2016) Photosynthesis of alpine plant under strong ultraviolet radiation. Chemical Industry Press, Beijing

    Google Scholar 

  • Skała E, Kicel A, Olszewska MA, Kiss AK, Wysokińska H (2015) Establishment of hairy root cultures of Rhaponticum carthamoides (Willd.) IIjin for the production of biomass and caffeic acid derivatives. Biomed Res Int 2015:181098. https://doi.org/10.1155/2015/181098

    Google Scholar 

  • Spinks A, Wasiak J, Villanueva E, Bernath V (2007) Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Database Syst Rev 18(3):002851

    Google Scholar 

  • Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. Adv Biochem Eng Biotechnol 149:275–324

    CAS  Google Scholar 

  • Verma PC, Rahman LU, Negi AS, Jain DC, Khanuja SPS, Banerjee S (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1:169–174

    Article  Google Scholar 

  • Wan DS, Wang AL, Wu GL, Zhao CM (2008) Isolation of polymorphic microsatellite markers from Przewalskia tangutica (Solanaceae). Conserv Genet 9:995–997

    Article  CAS  Google Scholar 

  • Wang H, Pan L, Zhang XF (2002a) Quantitative analysis of three kinds of tropane alkaloids in Hyoscyamus niger L. and Przewalskia tangutica maxim by HPLC. Northwest Pharm J 17:9–10

    CAS  Google Scholar 

  • Wang H, Shen JW, Zhang XF (2002b) Study on four alkaloid content of Anisodus tanguticus and its relationship with altitudes.Chin J Chin Materia. Medica 27:151–152

    Google Scholar 

  • Wei J, Yu H, Kuang TY, Ben GY (2000) Ultrastructure of Polygonum viviparum L. grown at different elevations on Qinghai Plateau. Acta Phytoecologica Sinica 24:304–307

    Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  Google Scholar 

  • Xu WH, Chen GC, Zhou GY, Sun J, Lu XF (2009) Rapid propagation in a Tibetan medicine-Przewalskia tangutica. Chin Tradit Herbal Drugs 40:297–298

    CAS  Google Scholar 

  • Yang YC, Ho TN, Lu SL, Huang RF, Wang ZX (1991) Tibetan medicines. Qinghai People’s Press, Xining

    Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453

    CAS  Google Scholar 

  • Zhang L, Ding RX, Chai YR, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu TF, Pi Y, Wang ZN, Zhang HM, Kai GY, Liao ZH, Sun XF, Tang KX (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101(17):6786–6791

    Article  CAS  Google Scholar 

  • Zhang HL, Xue SH, Pu F, Tiwari RK, Wang XY (2010) Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russian J Plant Physiol 57:110–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr Lawrence Lyon for reading and revising this manuscript. This work was supported by Grants from the National Foundation of Science (31070208), the Training Qualified People Plan ‘‘Hope of West China’’(Y229151211), the Basic Research Programs of Science and Technology in Qinghai Province (2017-ZJ-702), and the Construction Project for Innovation Platform of Qinghai Province (2017-ZJ-Y14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dangwei Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Wang, H., Li, S. et al. Genetic transformation of the endangered Tibetan medicinal plant Przewalskia tangutica Maxim and alkaloid production profiling revealed by HPLC. 3 Biotech 8, 179 (2018). https://doi.org/10.1007/s13205-018-1203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1203-5

Keywords

Navigation