Skip to main content
Log in

Plant epigenetic mechanisms: role in abiotic stress and their generational heritability

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plants have evolved various defense mechanisms including morphological adaptations, cellular pathways, specific signalling molecules and inherent immunity to endure various abiotic stresses during different growth stages. Most of the defense mechanisms are controlled by stress-responsive genes by transcribing and translating specific genes. However, certain modifications of DNA and chromatin along with small RNA-based mechanisms have also been reported to regulate the expression of stress-responsive genes and constitute another line of defense for plants in their struggle against stresses. More recently, studies have suggested that these modifications are heritable to the future generations as well, thereby indicating their possible role in the evolutionary mechanisms related to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Jebara M (2017) Analysis of DNA methylation patterns associated with drought stress response in faba bean (Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot 142:34–44

    Article  CAS  Google Scholar 

  • Agius F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylases/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci 103:11796–11801

    Article  CAS  Google Scholar 

  • Arıkan B, Özden S, Turgut-Kara N (2018) DNA methylation related gene expression and morphophysiological response to abiotic stresses in Arabidopsis thaliana. Environ Exp Bot 149:17–26

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29(4):449–459

    Article  Google Scholar 

  • Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta M (2001) Three Tnt1 subfamilies show different stress-associated pattern of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–221

    Article  CAS  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    Article  CAS  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  CAS  Google Scholar 

  • Blodner C, Goebel C, Feussner I, Gatz C, Polle A (2007) Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. Plant Cell Environ 30:165–175

    Article  CAS  Google Scholar 

  • Bologna NG (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    Article  CAS  Google Scholar 

  • Bond DM, Baulcombe DC (2014) Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 24(2):100–107

    Article  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins FJ, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5(3):9514

    Article  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010b) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078

    Article  CAS  Google Scholar 

  • Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11(1):408

    Article  CAS  Google Scholar 

  • Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci 99(4):16491–16498

    Article  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM et al (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10(1):1004115

    Article  CAS  Google Scholar 

  • Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277(5):589–600

    Article  CAS  Google Scholar 

  • Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1:118–128

    Article  CAS  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  Google Scholar 

  • Dalakouras A, Wassenegger M (2013) Revisting RNA-directed DNA methylation. RNA Biol 10(3):453–455

    Article  CAS  Google Scholar 

  • Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M (2015) Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 12(3):268–275

    Article  Google Scholar 

  • Deleris A, Halter T, Navarro L (2016) DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol 54:579–603

    Article  CAS  Google Scholar 

  • Ding B, Bellizzi Mdel R, Ning Y, Meyers BC, Wang GL (2012) HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense related genes in rice. Plant Cell 24:3783–3794

    Article  CAS  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochem 71(4):461–465

    CAS  Google Scholar 

  • Eekhout T, Larsen P, DeVeylder L (2017) Modification of DNA checkpoints to confer aluminum tolerance. Trends Plant Sci 22(2):102–105

    Article  CAS  Google Scholar 

  • Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165(3):933–947

    Article  CAS  Google Scholar 

  • Fang H, Liu X, Thorn G, Duan J, Tian L (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405

    Article  CAS  Google Scholar 

  • Fu Y, Ma H, Chen S, Gu T, Gong J (2017) Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot 69(3):579–588

    Article  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Li Y, Cai H et al (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001

    Article  CAS  Google Scholar 

  • Gayacharan Joel AJ (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19:379–387

    Article  CAS  Google Scholar 

  • Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    Article  CAS  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Jian-Kang Z (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111(6):803–814

    Article  CAS  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochem Biophys Acta 1819:176–185

    CAS  Google Scholar 

  • Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    Article  CAS  Google Scholar 

  • Henikoff S, Comai L (1998) A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149:307–318

    CAS  Google Scholar 

  • Hidetoshi S, Kazuo T, Tatsuo K, Taisuke N (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  Google Scholar 

  • Hollender C, Liu Z (2008) Histone deacetylase genes in Arabidopsis development. J Integr Plant Biol 50(7):875–885

    Article  CAS  Google Scholar 

  • Huang W, Xian Z, Hu G, Li Z (2016) SlAGO4A, a core factor of RNA-directed DNA methylation (RdDM) pathway, plays an important role under salt and drought stress in tomato. Mol Breed 36(3):28

    Article  CAS  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. ​​Science 337(6100):1360–1364

    Article  CAS  Google Scholar 

  • Jacob Y, Bergamin E et al (2014) Selective methylation of histone H3 variant H3.1 Regulates heterochromatin replication. Science 343:1249–1253

    Article  CAS  Google Scholar 

  • Jiang D, Berger F (2017) DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357(6356):1146–1149

    Article  CAS  Google Scholar 

  • Jones RS, Gelbart WM (1993) The Drosophila polycomb-group gene enhancer of zeste contains a region with sequence similarity to trithorax. Mol Cell Biol 13:6357–6366

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Nat Acad Sci 97(12):6603–6607

    Article  CAS  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6):e40203

    Article  CAS  Google Scholar 

  • Karlsson M, Weber W, Fussenegger M (2011) De novo design and construction of an inducible gene expression system in mammalian cells. Methods Enzymol 497:239–253

    Article  CAS  Google Scholar 

  • Kim J, To T, Ishida J, Morosawa T, Kawashima M, Matsui A et al (2009) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 50:1856–1864

    Article  CAS  Google Scholar 

  • Kovarik A, Koukalova B, Bezdek M, Opatrny Z (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    Article  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  Google Scholar 

  • Kwon CS, Lee D, Choi G, Chung WI (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121

    Article  CAS  Google Scholar 

  • Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini- Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699

    Article  CAS  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  Google Scholar 

  • Law JA, Du J, Hale CJ, Feng S, Krajewski K, Palanca AM, Strahl BD, Patel DJ, Jacobsen SE (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389

    Article  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V, Feinbaum A (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  Google Scholar 

  • Li KK, Luo C, Wang D, Jiang H, Zheng YG (2012) Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 32(4):815–867

    Article  CAS  Google Scholar 

  • Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Yin W (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15(1):S9

    Article  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5(4):e10326

    Article  CAS  Google Scholar 

  • Lister R, Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  Google Scholar 

  • Lv D, Bai X, Li Y, Ding X, Ge Y, Cai H et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  CAS  Google Scholar 

  • Ma X, Lv S, Zhang C, Yang C (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32(4):465–478

    Article  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Botany 94:481–495

    Article  CAS  Google Scholar 

  • Mahrez W, Arellano MST, Moreno-Romero J, Nakamura M, Shu, Nanni P et al (2016) H3K36ac is an evolutionary conserved plant histone modification that marks active genes. Plant Physiol 170(3):1566–1577

    CAS  Google Scholar 

  • Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789(1):58–68

    Article  CAS  Google Scholar 

  • Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (2012) MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 13(1):714–723

    Article  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Müller JM et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    Article  CAS  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442(7106):1046–1049

    Article  CAS  Google Scholar 

  • Mosher RA, Schwach F, Studholme D, Baulcombe DC (2008) PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. PNAS 105:3145–3150

    Article  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113

    Article  CAS  Google Scholar 

  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol 67(6):671–681

    Article  CAS  Google Scholar 

  • Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, Luschnig C, Mittelsten Scheid O (2009) Transgenerational stress memory is not a general response in Arabidopsis. PLoS One 4(4):e5202

    Article  CAS  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Article  CAS  Google Scholar 

  • Penterman J, Uzawa R, Fischer RL (2007) Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol 145(4):1549–1557

    Article  CAS  Google Scholar 

  • Ponferrada-Marin MI, Roldan-Arjona T, Ariza RR (2012) Demethylation initiated by ROS1 glycosylase involves random sliding along DNA. Nucl Acids Res 40:11554–11562

    Article  CAS  Google Scholar 

  • Pontvianne F, Blevins T, Pikaard PS (2010) Arabidopsis histone lysine methyltransferases. Adv Bot Res 53:1–22

    Article  CAS  Google Scholar 

  • Qian C, Zhou M (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. CMLS 63:2755–2763

    Article  CAS  Google Scholar 

  • Raju SKK, Shao MR, Wamboldt Y, Mackenzie S (2018) Epigenomic plasticity of Arabidopsis msh1 mutants under prolonged cold stress. bioRxiv 263780

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  Google Scholar 

  • Sako K, Kim JM, Matsui A, Nakamura K, Tanaka M, Kobayashi M, Yoshida M (2015) Ky-2, a histone deacetylase inhibitor, enhances high-salinity stress tolerance in Arabidopsis thaliana. Plant Cell Physiol 57(4):776–783

    Article  CAS  Google Scholar 

  • Sawan C, Herceg Z (2010) Histone modifications and cancer. Adv Genet 70:57–85

    CAS  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    Article  CAS  Google Scholar 

  • Scaramuzzino C, Casci I, Parodi S et al (2015) Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy. Neuron 85:88–100

    Article  CAS  Google Scholar 

  • Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M et al (2009) Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS One 4:5980

    Article  CAS  Google Scholar 

  • Shen L, Song CX, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  CAS  Google Scholar 

  • Shi D, Zhuang K, Xia Y, Zhu C, Chen C, Hu Z, Shen Z (2017) Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquat Toxicol 193:97–104

    Article  CAS  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    Article  CAS  Google Scholar 

  • Stassen MJ, Bailey D, Nelson S, Chinwalla V, Harte PJ (1995) The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mech Dev 52:209–223

    Article  CAS  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nuc Acids Res 28:3250–3259

    Article  CAS  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  Google Scholar 

  • Surdonja K, Eggert K, Hajirezaei MR, Harshavardhan VT, Seiler C, von Wirén N, Kuhlmann M (2017) Increase of DNA Methylation at the HvCKX2. 1 promoter by terminal drought stress in Barley. Epigenomes 1(2):9

  • Takuno S, Gaut BS (2012) Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29(1):219–227

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Kapazoglou A, Tani E, Kovacevic NM (2007) Epigenetics and plant breeding. Plant Breed Rev 30:49–178

    Google Scholar 

  • Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    CAS  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genome 271:658–666

    Article  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  • Wang X, Xin C, Cai J, Zhou Q, Dai T, Cao W, Jiang D (2016) Heat priming induces trans-generational tolerance to high temperature stress in wheat. Front Plant Sci 7:501

    Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sänger H (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76(3):567–576

    Article  CAS  Google Scholar 

  • Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany-Botanique 87:650–657

    Article  CAS  Google Scholar 

  • Wood A (2004) Posttranslational modifications of histones by methylation. Adv Protein Chem 67:201–222

    Article  CAS  Google Scholar 

  • Xiao B, Jing C, Wilson JR, Walker PA et al (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421(6923):652–656

    Article  CAS  Google Scholar 

  • Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genom 16(1):23–31

    Article  CAS  Google Scholar 

  • Xu C, Tian J, Mo B (2013) siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 4(9):656–663

    Article  CAS  Google Scholar 

  • Xuehua Z et al (2014) Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. PNAS 112(3):911–916

    Google Scholar 

  • Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X et al (2011) Small RNAs from MITE derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J 65:820–828

    Article  CAS  Google Scholar 

  • Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  Google Scholar 

  • Yuan H, Marmorstein R (2013) Histone acetyltransferases: rising ancient counterparts to protein kinases. Biopolymer 99(2):98–111

    Article  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 4:328–338

    Google Scholar 

  • Zemach A et al (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies micro RNAs involved in cold stress response. BMC Genomics 10:449

    Article  CAS  Google Scholar 

  • Zhang H, Ma ZY, Zeng L, Tanaka K et al (2013) DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci USA 110:8290–8295

    Article  CAS  Google Scholar 

  • Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67(6):1703–1713

    Article  CAS  Google Scholar 

  • Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X (2017) iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 152:88–101

    Article  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA methylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  Google Scholar 

  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers interdependence between methylation and transcription. Natl Genet 39:61–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudan, J., Raina, M. & Singh, R. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8, 172 (2018). https://doi.org/10.1007/s13205-018-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1202-6

Keywords

Navigation