Skip to main content
Log in

Notes on the postglacial spread of abundant European tree taxa

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The reaction of vegetation to past climate change provides important insights for vegetation responses to future climate change. A key problem for projections into the future is obtaining estimates of the rates at which plants are able to spread as their environment changes. To address this uncertainty, we review the palaeoecological and phylogeographic literature to estimate the range of observed rates of spread for the major European trees and discuss aspects of their postglacial spread. The review is illustrated with isochrone maps depicting the time when particular thresholds in pollen proportion were reached in pollen diagrams available from the European Pollen Database. We find that rates of at least 1,000 m year−1 were realised by early colonisers including Corylus and Ulmus, while trees spreading later into established woodlands, e.g. Quercus and Tilia, achieved rates of around 500 m year−1. Phylogeographic investigations are available for most of the abundant European trees, often indicating that populations in the central and southern parts of the three south European peninsulas were not the origins for the postglacial colonization of central and northern Europe. In some cases, the results of these studies clearly show the direction of postglacial spread, while generally providing new information to help in interpreting pollen data. Phylogeographic results for Alnus suggest that the high apparent rates of postglacial spread are due to an initial spread at low population density and a later expansion. This decoupling between spread and population expansion is also seen for late expanding trees such as Picea, Fagus and Carpinus. Here, population expansion was probably not delayed by dispersal, but by a limiting climate as assumed by von Post. While the late Holocene expansion of Picea and Fagus in Sweden was important as a dating tool in the development of pollen analysis by von Post 100 years ago, we remain unable to determine which particular driver caused the late expansion of these two trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abel Schaad D et al (2014) Persistence of tree relicts in the Spanish Central System through the Holocene. Lazaroa 35:107–131

    Article  Google Scholar 

  • Alba-Sánchez F, López-Sáez JA, Benito-Pando B, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228

    Article  Google Scholar 

  • Amon L, Veski S, Vassiljev J (2014) Tree taxa immigration to the eastern Baltic region, southeastern sector of Scandinavian glaciation during the Late-glacial period (14,500–11,700 cal bp). Veget Hist Archaeobot 23:207–216

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bennett KD, Birks HJB (1990) Postglacial history of alder (Alnus glutinosa (L.) Gaertn.) in the British Isles. J Quatern Sci 5:123–133

    Article  Google Scholar 

  • Bertsch K (1940) Geschichte des deutschen Waldes. Fischer, Jena

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Birks HJB (1989) Holocene isochrone maps and patterns of tree-spreading in the British-Isles. J Biogeogr 16:503–540

    Article  Google Scholar 

  • Birks HJB, Birks HH (2008) Biological responses to rapid climate change at the Younger Dryas-Holocene transition at Kråkenes, western Norway. Holocene 18:19–30

    Article  Google Scholar 

  • Birks HH, Giesecke T, Hewitt GM, Tzedakis PC, Bakke J, Birks HJB (2012) Comment on “Glacial survival of boreal trees in northern Scandinavia”. Science 338:742

    Article  Google Scholar 

  • Bittmann F (2007) Reconstruction of the Allerød vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900 cal bp Veget Hist Archaeobot 16:139–156

    Article  Google Scholar 

  • Bos JAA, Dambeck R, Bouman MTIJ (2012) Paläoökologische Untersuchungen im nördlichen Oberrheingraben vom Spätglazial bis zum Atlantikum—vegetationsgeschichte und anthropogene Einflüsse. Frankfurter Archäologische Schriften 18:59–90

    Google Scholar 

  • Bos JAA, Huisman DJ, Kiden P, Hoek WZ, van Geel B (2005) Early Holocene environmental change in the Kreekrak area (Zeeland, SW-Netherlands): a multi-proxy analysis. Palaeogeogr Palaeoclimatol Palaeoecol 227:259–289

    Article  Google Scholar 

  • Bradley LR, Giesecke T, Halsall K, Bradshaw RH (2013) Exploring the requirement for anthropogenic disturbance to assist the stand-scale expansion of Fagus sylvatica L. outside southern Scandinavia. Holocene 23:579–586

    Article  Google Scholar 

  • Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1,679–1,686

  • Brewer S, Cheddadi R, De Beaulieu JL, Reille M, Data contributors (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. For Ecol Manage 156:27–48

    Article  Google Scholar 

  • Brewer S, Giesecke T, Davis BAS et al (2016) Late-glacial and Holocene European pollen data. J Maps. https://doi.org/10.1080/17445647.2016.1197613

  • Douda J, Doudová J, Drašnarová A et al (2014) Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review. PLoS ONE 9:e88709

    Article  Google Scholar 

  • Feurdean A, Bhagwat SA, Willis KJ, Birks HJB, Lischke H, Hickler T (2013) Tree migration-rates: narrowing the gap between inferred post-Glacial rates and projected rates. PLoS One 8:e71797

    Article  Google Scholar 

  • Fineschi S, Salvini D, Taurchini D, Carnevale S, Vendramin GG (2003) Chloroplast DNA variation of Tilia cordata (Tiliaceae). Can J For Res 33:2,503–2,508

    Article  Google Scholar 

  • Finsinger W, Bigler C, Krähenbühl U, Lotter AF, Ammann B (2006) Human impacts and eutrophication patterns during the past similar to 200 years at Lago Grande di Avigliana (N. Italy). J Paleolimnol 36:55–67

    Article  Google Scholar 

  • Finsinger W, Lane CS, van den Brand GJ, Wagner-Cremer F, Blockley SPE, Lotter AF (2011) The Lateglacial Quercus expansion in the southern European Alps: rapid vegetation response to a late Allerød climate warming? J Quat Sci 26:694–702

    Article  Google Scholar 

  • Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen, vol 1. Allgemeine Waldgeschichte. Fischer, Jena

    Google Scholar 

  • Friedrich M, Remmele S, Kromer B et al (2004) The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe: a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46:1,111–1,122

    Article  Google Scholar 

  • Fries M (1967) Lennart von Post’s Pollen Diagram Series of 1916. Rev Palaeobot Palynol 4:9–13

    Article  Google Scholar 

  • Giesecke T (2004) The Holocene Spread of Spruce in Scandinavia. Acta Universitatis Upsaliensis, Uppsala

    Google Scholar 

  • Giesecke T (2005a) Holocene dynamics of the southern boreal forest in Sweden. Holocene 15:858–872

    Article  Google Scholar 

  • Giesecke T (2005b) Holocene forest development in the central Scandes Mountains, Sweden. Veget Hist Archaeobot 14:133–147

    Article  Google Scholar 

  • Giesecke T (2016) Did thermophilous trees spread into central Europe during the Late. Glacial? New Phytol 212:15–18

    Article  Google Scholar 

  • Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J Biogeogr 31:1,523–1,548

    Article  Google Scholar 

  • Giesecke T, Bennett K, Birks HJB et al (2011) The pace of Holocene vegetation change - testing for synchronous developments. Quat Sci Rev 30:2,805–2,814

    Article  Google Scholar 

  • Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW (2017) Patterns and dynamics of European vegetation change over the last 15,000 years. J Biogeogr 44:1,441–1,456

    Article  Google Scholar 

  • Giesecke T, Davis B, Brewer S et al (2014) Towards mapping the late Quaternary vegetation change of Europe. Veget Hist Archaeobot 23:75–86

    Article  Google Scholar 

  • Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw RHW (2007) Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–131

    Article  Google Scholar 

  • Grivet D, Petit RJ (2003) Chloroplast DNA phylogeography of the hornbeam in Europe: Evidence for a bottleneck at the outset of postglacial colonization. Conserv Genet 4:47–56

    Article  Google Scholar 

  • Hatziskakis S, Papageorgiou AC, Gailing O, Finkeldey R (2009) High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.). Plant Biol 11:425–433

    Article  Google Scholar 

  • Havrdová A, Douda J, Krak K, Vít P, Hadincová V, Zákravský P, Mandák B (2015) Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol Ecol 24:4,759–4,777

    Article  Google Scholar 

  • Heikkilä M, Fontana SL, Seppä H (2009) Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J Quat Sci 24:802–815

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Hyvärinen H (1975) Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142:1–23

    Google Scholar 

  • Jalas J, Suominen J (eds) (1972–1999) Atlas florae Europaeae: distribution of vascular plants in Europe. The Committee for mapping the flora of Europe and Societas biologica Fennica Vanamo, Helsinki

  • Kullman L (2008) Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quat Sci Rev 27:2,467–2,472

    Article  Google Scholar 

  • Liepelt S, Cheddadi R, de Beaulieu J-L et al (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.) - A synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153:139–149

    Article  Google Scholar 

  • Lisitsyna OV, Giesecke T, Hicks S (2011) Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev Palaeobot Palynol 166:311–324

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1,052–1,055

    Article  Google Scholar 

  • López-Merino L, Lopez-Saez JA, Zapata MBR, Garcia MJG (2008) Reconstructing the history of beech (Fagus sylvatica L.) in the north-western Iberian Range (Spain): From Late-Glacial refugia to the Holocene anthropic-induced forests. Rev Palaeobot Palynol 152:58–65

    Article  Google Scholar 

  • Magri D, Vendramin GG, Comps B et al (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  Google Scholar 

  • Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the Great Hungarian Plain. J Biogeogr 37:915–935

    Article  Google Scholar 

  • Maliouchenko O, Palmé AE, Buonamici A, Vendramin GG, Lascoux M (2007) Comparative phylogeography and population structure of European Betula species, with particular focus on B. pendula and B. pubescens. J Biogeogr 34:1,601–1,610

    Article  Google Scholar 

  • Mandák B, Havrdová A, Krak K, Hadincová V, Vít P, Zákravský P, Douda J (2016) Recent similarity in distribution ranges does not mean a similar postglacial history: a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast. DNA Var New Phytol 210:1,395–1,407

    Article  Google Scholar 

  • Mortensen MF, Henriksen PS, Bennike O (2014) Living on the good soil: relationships between soils, vegetation and human settlement during the late Allerød period in Denmark. Veget Hist Archaeobot 23:195–205

    Article  Google Scholar 

  • Muñoz-Sobrino C, Ramil-Rego P, Gomez-Orellana L, Da Costa JF, Varela RAD (2009) Climatic and human effects on the post-glacial dynamics of Fagus sylvatica L. in NW Iberia. Plant Ecol 203:317–340

    Article  Google Scholar 

  • Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J (2007) Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evol Biol 7:233

    Article  Google Scholar 

  • Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M (2003) Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol 12:201–212

    Article  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  Google Scholar 

  • Petit RJ, Brewer S, Bordács S et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

    Article  Google Scholar 

  • Petit RJ, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia: evolutionary perspectives on the origins and conservation of European biodiversity. Springer, Dordrecht, pp 23–97

    Chapter  Google Scholar 

  • Pigott CD (1981) Nature of Seed Sterility and natural Regeneration of Tilia cordata near its northern Limit in Finland. Ann Bot Fenn 18:255–263

    Google Scholar 

  • Pigott CD, Huntley JP (1981) Factors controlling the Distribution of Tilia cordata at the northern Limits of its geographical Range 3. Nat Causes Seed Steril New Phytol 87:817–839

    Google Scholar 

  • Pyhäjärvi T, Salmela MJ, Savolainen O (2008) Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genet Genomes 4:247–254

    Article  Google Scholar 

  • Ralska-Jasiewiczowa M, Nalepka D, Goslar T (2003) Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veget Hist Archaeobot 12:233–247

    Article  Google Scholar 

  • Rudolph K (1930) Grundzüge der nacheiszeitlichen Waldgeschichte Mitteleuropas. Beih Bot Centbl 47:111–176

    Google Scholar 

  • Savolainen O, Kujala ST, Sokol C et al (2011) Adaptive Potential of Northernmost Tree Populations to Climate Change, with Emphasis on Scots Pine (Pinus sylvestris L.). J Hered 102:526–536

    Article  Google Scholar 

  • Smith AG, Pilcher JR (1973) Radiocarbon dates and vegetational history of the British Isles. New Phytol 72:903–914

    Article  Google Scholar 

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613

    Article  Google Scholar 

  • Svenning JC, Sandel B (2013) Disequilibrium Vegetation Dynamics under Future Climate Change. Am J Bot 100:1,266–1,286

    Article  Google Scholar 

  • Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439

    Article  Google Scholar 

  • Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549

    Article  Google Scholar 

  • Tollefsrud MM, Kissling R, Gugerli F et al (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4,134–4,150

    Article  Google Scholar 

  • Tollefsrud MM, Latałowa M, van der Knaap WO, Brochmann C, Sperisen C (2015) Late Quaternary history of North Eurasian Norway spruce (Picea abies) and Siberian spruce (Picea obovata) inferred from macrofossils, pollen and cytoplasmic DNA variation. J Biogeogr 42:1,431–1,442

    Article  Google Scholar 

  • Tollefsrud MM, Sonstebo JH, Brochmann C, Johnsen O, Skroppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562

    Article  Google Scholar 

  • Tsuda Y, Chen J, Stocks M et al (2016) The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west?. Mol Ecol 25:2,773–2,789

    Article  Google Scholar 

  • Van Dinter M, Birks HH (1996) Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: Implications for the late-glacial vegetational history of western Norway. Veget Hist Archaeobot 5:229–240

    Article  Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN, Finsinger W et al (2005) Migration and population expansion of Abies, Fagus, Picea. and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quat Sci Rev 24:645–680

    Article  Google Scholar 

  • Vendramin GG, Degen B, Petit RJ, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1,117–1,126

    Article  Google Scholar 

  • Vescovi E, Ammann B, Ravazzi C, Tinner W (2010) A new Late-glacial and Holocene record of vegetation and fire history from Lago del Greppo, northern Apennines, Italy. Veget Hist Archaeobot 19:219–233

    Article  Google Scholar 

  • Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv 117:109–124

    Article  Google Scholar 

  • von Post L (1918) Ett finiglacialt granfynd i södra Värmland. GFF 40:19–23

  • von Post L (1946) The prospect for pollen analysis in the study of the earth’s climatic history. New Phytol 45:193–217

    Article  Google Scholar 

  • Wolters S (1999) Spät- und postglaziale Vegetationsentwicklung im Bereich der Fercher Berge südwestlich von Potsdam. Gleditschia 27:25–44

    Google Scholar 

Download references

Acknowledgements

Pollen data were extracted from the European Pollen Database (EPD; http://www.europeanpollendatabase.net/) and the work of the data contributors and the EPD community is gratefully acknowledged. Giesecke acknowledges funding from the DFG Grant GI 732/5-1. Brewer was funded by NSF Grant EAR-1003848.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Giesecke.

Additional information

Communicated by M.-J. Gaillard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2542 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giesecke, T., Brewer, S. Notes on the postglacial spread of abundant European tree taxa. Veget Hist Archaeobot 27, 337–349 (2018). https://doi.org/10.1007/s00334-017-0640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-017-0640-0

Keywords

Navigation