Skip to main content

Advertisement

Log in

One hundred years of Quaternary pollen analysis 1916–2016

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

We review the history of Quaternary pollen analysis from 1916 to the present-day, with particular emphasis on methodological and conceptual developments and on the early pioneers of the subject. The history is divided into three phases—the pioneer phase 1916–1950, the building phase 1951–1973, and the mature phase 1974–present-day. We also explore relevant studies prior to Lennart von Post’s seminal lecture in 1916 in Kristiania (Oslo) in an attempt to trace how the idea of Quaternary pollen analysis with quantitative pollen counting and stratigraphical pollen diagrams developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Sources of these images are given in ESM Table 14)

Fig. 2

(Sources of these images are given in ESM Table 14)

Fig. 3

(Sources of these images are given in ESM Table 14)

Fig. 4

(Sources of these images are given in ESM Table 14)

Fig. 5

(Sources of these images are given in ESM Table 14)

Fig. 6

(Sources of these images are given in ESM Table 14)

Fig. 7

(Sources of these images are given in ESM Table 14)

Similar content being viewed by others

References

  • Aaby B (1983) Forest development, soil genesis and human activity illustrated by pollen and hypha analysis of two neighbouring podzols in Draved Forest, Denmark. Danm Geol Unders II 114:1–114

    Google Scholar 

  • Aario L (1940) Waldgrenzen und subrezenten Pollen-spektren in Petsamo, Lapland. Ann Acad Sci Fennicæ A 54:1–120

    Google Scholar 

  • Aario L (1944) Über die pollenanalytischen Methoden zur Untersuchung von Waldgrenzen. Geol Fören i Stockh Förhandl 66:337–354

    Article  Google Scholar 

  • Åkesson C, Nielsen AB, Broström A, Persson T, Gaillard M-J, Berglund BE (2015) From landscape description to quantification: a new generation of reconstructions provides new perspectives on Holocene regional landscapes of SE Sweden. Holocene 25:178–193

    Article  Google Scholar 

  • Ammann B (1989) Late-Quaternary palynology at Lobsigensee—regional vegetation history and local lake development. Diss Bot 137:1–157

    Google Scholar 

  • Ammann B, Birks HJB, Brooks SJ, Eicher U, von Grafenstein U, Hofmann W, Lemdahl G, Schwander J, Tobolski K, Wick L (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347

    Article  Google Scholar 

  • Ammann B, Tobolski K, Züllig H, Chaix L, Hofmann W, Elias SA, Wilkinson B, Siegenthaler U, Eicher U, Andrée M, Oeschger H (1985) Lobsigensee—late-glacial and Holocene environments of a lake on the central Swiss Plateau. Diss Bot 87:127–170

    Google Scholar 

  • Ammann B, van der Knaap WO, Lang G, Gaillard M-J, Kaltenrieder P, Rösch M, Finsinger W, Wright HE, Tinner W (2014) The potential of stomata analysis in conifers to estimate presence of conifer trees: examples from the Alps. Veget Hist Archaeobot 23:249–264

    Article  Google Scholar 

  • Ammann B, van Leeuwen JFN, van der Knaap WO, Lischke H, Heiri O, Tinner W (2013a) Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol 391:40–59

    Article  Google Scholar 

  • Ammann B, van Raden UJ, Schwander J et al (2013b) Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr Palaeoclimatol Palaeoecol 391:111–131

    Article  Google Scholar 

  • Andersen ST (1954) A late-glacial pollen diagram from southern Michigan, USA. Danm Geol Unders II 80:140–155

    Google Scholar 

  • Andersen ST (1960) Silicone oil as a mounting medium for pollen grains. Danm Geol Unders IV 4:1–24

    Google Scholar 

  • Andersen ST (1961) Vegetation and its environment in Denmark in the early Weichselian glacial (Last glacial). Danm Geol Unders II 75:1–175

    Google Scholar 

  • Andersen ST (1966) Interglacial vegetation succession and lake development in Denmark. Palaeobotanist 15:117–127

    Google Scholar 

  • Andersen ST (1969) Interglacial vegetation and soil development. Meddel Dansk Geol Foren 19:90–102

    Google Scholar 

  • Andersen ST (1970) The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danm Geol Unders II 96:1–99

    Google Scholar 

  • Andersen ST (1973) The differential pollen productivity of trees and its significance for the interpretation of a pollen diagram from a forested region. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 109–115

    Google Scholar 

  • Andersen ST (1974a) Wind conditions and pollen deposition in a mixed deciduous forest. I: wind conditions and pollen dispersal. Grana 14:57–63

    Article  Google Scholar 

  • Andersen ST (1974b) Wind conditions and pollen deposition in a mixed deciduous forest. II: seasonal and annual pollen deposition 1967–1972. Grana 14:64–77

    Article  Google Scholar 

  • Andersen ST (1975) The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark. Danm Geol Unders Årbog 1974:49–70

    Google Scholar 

  • Andersen ST (1978) Local and regional vegetational development in eastern Denmark in the Holocene. Danm Geol Unders Årbog 1976:5–27

    Google Scholar 

  • Andersen ST (1979) Brown earth and podzol: soil genesis illuminated by microfossil analysis. Boreas 8:59–73

    Article  Google Scholar 

  • Andersen ST (1980a) Early and Late Weichselian chronology and birch pollen assemblages in Denmark. Boreas 9:53–69

    Article  Google Scholar 

  • Andersen ST (1980b) Influence of climatic variation on pollen season severity in wind-pollinated trees and herbs. Grana 19:47–52

    Article  Google Scholar 

  • Andersen ST (1984a) Forests at Løvenholm, Djursland, Denmark, at present and in the past. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 24:1–208

    Google Scholar 

  • Andersen ST (1984b) Stages in soil development reconstructed by evidence from hypha fragments, pollen, and humus contents in soil profiles. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 295–316

    Google Scholar 

  • Andersen ST (1988) Pollen spectra from the double passage-grave, Klekkendehøj, on Møn. Evidence of Swidden cultivation in the Neolithic in Denmark. J Danish Archaeol 7:77–92

    Google Scholar 

  • Andersen ST (1989) Natural and cultural landscapes since the Ice Age: shown by pollen analyses from small hollows in a forested area in Denmark. J Danish Archaeol 8:188–199

    Google Scholar 

  • Andersen ST (1990) Pollen spectra from the Bronze Age barrow at Egshvile, Thy, Denmark. J Danish Archaeol 9:153–156

    Google Scholar 

  • Andersen ST (1992) Early- and middle-Neolithic agriculture in Denmark: pollen spectra from soils in burial mounds of the Funnel Beaker Culture. J Eur Archaeol 1:153–180

    Article  Google Scholar 

  • Andersen ST (1994) History of the terrestrial environment in the Quaternary of Denmark. Bull Geol Soc Denmark 41:219–228

    Google Scholar 

  • Andersen ST, Aaby B, Odgaard BV (1983) Current studies in vegetational history at the Geological Survey of Denmark. J Danish Archaeol 2:184–196

    Google Scholar 

  • Andersson G (1902) Hasseln i Sverige fordem och nu. Sver Geol Unders Series C 3:1–168

    Google Scholar 

  • Andersson G (1909) The climate of Sweden in the Late-Quaternary period. Facts and theories. Sver Geol Unders Series C Årbok 3:1–88

    Google Scholar 

  • Andreev AA, Tarasov PE, Wennrich V, Raschke E, Herzschuh U, Nowaczyk NR, Brigham-Grette J, Melles M (2014) Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El’Gygytgyn pollen record. Clim Past 10:1017–1039

    Article  Google Scholar 

  • Anonymous (1924) Pollen in peat. Naturalist 811:230

    Google Scholar 

  • Auer V (1921) Zur Kenntnis der Stratigrahie der mittelösterbottnischen Moore. Acta Forestalia Fennica 18:1–40

    Article  Google Scholar 

  • Auer V (1927) Stratigraphical and morphological investigations of peat bogs of southeastern Canada. Communicationes ex Instituto Quaestionum Forestalium Finlandiae Editae 12:1–62

    Google Scholar 

  • Autio J, Hicks S (2004) Annual variation in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: potential for using fossil pollen as a climate proxy. Grana 43:31–47

    Article  Google Scholar 

  • Baker AG, Perry C, Bhagwat SA, Vera FWM, Willis KJ (2017) Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods Ecol Evol 7:1273–1281

    Article  Google Scholar 

  • Baker AG, Zimny M, Keczynski A, Bhagwat SA, Willis KJ, Latałowa M (2016) Pollen productivity estimates from old-growth forest strongly differ from those obtained in cultural landscapes: evidence from the Białowieża National Park, Poland. Holocene 26:80–92

    Article  Google Scholar 

  • Baker RG (1965) Late-glacial pollen and plant macrofossils from Spider Creek, southern St. Louis County, Minnesota. Geol Soc Am Bull 76:601–610

    Article  Google Scholar 

  • Ball IR (1975) Nature and formulation of biogeographical hypotheses. Syst Zool 24:407–730

    Article  Google Scholar 

  • Barnekow L (1999) Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. Holocene 9:253–265

    Article  Google Scholar 

  • Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. J Paleolimnol 23:399–420

    Article  Google Scholar 

  • Behre K-E (1986) Anthropogenic indicators in pollen diagrams. AA Balkema, Rotterdam

    Google Scholar 

  • Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 633–672

    Chapter  Google Scholar 

  • Behre K-E (1990) Some reflections on anthropogenic indicators and the record of prehistoric occupation phases in pollen diagrams from the Near East. In: Bottema S, Entjes-Nieborg G, van Zeist W (eds) Man’s role in the shaping of the Eastern Mediterranean landscape. Balkema, Rotterdam, pp 219–230

    Google Scholar 

  • Bennett KD (1983) Post-glacial population expansion of forest trees in Norfolk, UK. Nature 303:164–167

    Article  Google Scholar 

  • Bennett KD (1986) The rate of spread and population increase of forest trees during the postglacial. Philos Trans R Soc Lond B 314:523–531

    Article  Google Scholar 

  • Bennett KD (1988) Post-glacial vegetation history: ecological considerations. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 699–774

    Chapter  Google Scholar 

  • Bennett KD (1990) Models of plant population growth and analogies with reaction kinetics. Rev Palaeobot Palynol 64:247–251

    Article  Google Scholar 

  • Bennett KD (1994) PSIMPOLL version 2.23: a C program for analysing pollen data and plotting pollen diagrams. INQUA Commission for the Study of the Holocene: Working group on data-handling methods. Newsletter 11:4–6

    Google Scholar 

  • Bennett KD, Willis KJ (1995) The role of ecological factors in controlling vegetation dynamics on long temporal scales. Giornale Botanico Italiano 129:243–254

    Article  Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators. Developments in paleoenvironmental research, vol 3. Kluwer, Dordrecht, pp 5–33

    Chapter  Google Scholar 

  • Berglund BE (1962) Vegetation på ön Senoren I. Bot Not 115:387–419

    Google Scholar 

  • Berglund BE (1966) Late-Quaternary vegetation in eastern Blekinge, south-eastern Sweden. A pollen analytical study I: late-glacial time. Opera Bot 12:1–180

    Google Scholar 

  • Berglund BE (1969) Vegetation and human influence in South Scandinavia during prehistoric time. Oikos 12:9–28

    Google Scholar 

  • Berglund BE (1971) Late-glacial stratigraphy and chronology in South Sweden in the light of biostratigraphic studies on Mt. Kullen, Scania. Geol Fören i Stockh Förhandl 93:11–45

    Article  Google Scholar 

  • Berglund BE (1973) Pollen dispersal and deposition in an area of south-eastern Sweden—some preliminary results. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 117–129

    Google Scholar 

  • Berglund BE (1982) Holocene chronology. Geol Fören i Stockh Förhandl 104:256–259

    Article  Google Scholar 

  • Berglund BE (1985) Early agriculture in Scandinavia: research problems related to pollen-analytical studies. Nor Archaeol Rev 18:77–105

    Article  Google Scholar 

  • Berglund BE (ed) (1986a) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester (Reprinted in 2003 by Blackburn Press, New Jersey)

    Google Scholar 

  • Berglund BE (1986b) The cultural landscape in a long-term perspective: methods and theories behind the research on land-use and landscape dynamics. Striae 24:79–87

    Google Scholar 

  • Berglund BE (ed) (1991) The cultural landscape during 6000 years in southern Sweden—the Ystad Project. Ecological Bulletins 41. Munksgaard International, Copenhagen

    Google Scholar 

  • Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link? Quat Int 105:7–12

    Article  Google Scholar 

  • Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) (1996) Palaeoecological events during the last 15000 years: regional syntheses of palaeoecological studies of lakes and mires. Wiley, Chichester

    Google Scholar 

  • Berglund BE, Digerfeldt G (1970) A palaeoecological study of the Late-Glacial lake at Torreberga, Scania, South Sweden. Oikos 21:98–128

    Article  Google Scholar 

  • Berglund BE, Gaillard M-J, Björk L, Persson T (2008a) Long-term changes in floristic diversity in southern Sweden: palynological richness, vegetation dynamics and land-use. Veget Hist Archaeobot 17:573–583

    Article  Google Scholar 

  • Berglund BE, Malmer N (1971) Soil conditions and Late-Glacial stratigraphy. Geol Fören i Stockh Förhandl 93:11–45

    Article  Google Scholar 

  • Berglund BE, Persson T, Björkman L (2008b) Late Quaternary landscape and vegetation diversity in a North European perspective. Quat Int 184:187–194

    Article  Google Scholar 

  • Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484

    Google Scholar 

  • Bernabo JC, Webb T (1977) Changing patterns in the Holocene pollen record of northeastern North America: a mapped summary. Quat Res 8:64–96

    Article  Google Scholar 

  • Bertsch K (1924) Paläobotanische Untersuchungen im Reichermoos. Jahresh Ver Vaterl Natkd Württ 80:1–19

    Google Scholar 

  • Bertsch K (1931) Paläobotanische Monographie des Federseerieds. Bibl Bot 103:1–127

    Google Scholar 

  • Bertsch K (1935) Der Deutsche Wald im Wechsel der Zeiten. Franz Heine, Tübingen

    Google Scholar 

  • Bertsch K (1940) Geschichte des deutsches Waldes. Fischer, Jena

    Google Scholar 

  • Bertsch K (1942) Lehrbuch der Pollenanalyse - Handbücher der Praktischen Vorgeschichtsforschung, vol 3. Enke, Stuttgart

    Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Birks HH (1973) Modern macrofossil assemblages in lake sediments in Minnesota. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 173–189

    Google Scholar 

  • Birks HH (1984) Late-Quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, north-west Scotland. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. University of Leicester Press, Leicester, pp 377–405

    Google Scholar 

  • Birks HH (1991) Holocene vegetational history and climatic change in west Spitsbergen—plant macrofossils from Skardtjørna. Holocene 1:209–218

    Article  Google Scholar 

  • Birks HH (1993) The importance of plant macrofossils in Late-Glacial climatic reconstructions—an example from western Norway. Quat Sci Rev 12:719–726

    Article  Google Scholar 

  • Birks HH (2000) Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J Paleolimnol 23:7–19

    Article  Google Scholar 

  • Birks HH (2008) The Late-Quaternary history of arctic and alpine plants. Plant Ecol Divers 1:135–146

    Article  Google Scholar 

  • Birks HH (2017a) My life with macrofossils. J Paleolimnol 57:181–200

    Article  Google Scholar 

  • Birks HH (2017b) Plant macrofossil introduction. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam

    Google Scholar 

  • Birks HH, Battarbee RW, Beerling DJ et al (1996) The Kråkenes late-glacial palaeoenvironmental project. J Paleolimnol 15:281–286

    Article  Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J Paleolimnol 23:91–114

    Article  Google Scholar 

  • Birks HH, Birks HJB (2000) Future uses of pollen analysis must include plant macrofossils. J Biogeogr 27:31–35

    Article  Google Scholar 

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veget Hist Archaeobot 15:235–251

    Article  Google Scholar 

  • Birks HH, Birks HJB (2013) Vegetation responses to late-glacial climate changes in western Norway. Preslia 85:215–237

    Google Scholar 

  • Birks HH, Birks HJB, Kaland PE, Moe D (eds) (1988) The cultural landscape past, present and future. Cambridge University Press, Cambridge

    Google Scholar 

  • Birks HH, Bjune AE (2010) Can we detect a west Norwegian tree line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veget Hist Archaeobot 19:325–340

    Article  Google Scholar 

  • Birks HH, Mathewes RW (1978) Studies in the vegetational history of Scotland V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytol 80:455–484

    Article  Google Scholar 

  • Birks HJB (1973a) Modern pollen rain studies in some arctic and alpine environments. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 143–168

    Google Scholar 

  • Birks HJB (1973b) Past and present vegetation of the Isle of Skye—a palaeoecological study. Cambridge University Press, Cambridge

    Google Scholar 

  • Birks HJB (1976) Late-Wisconsinan vegetational history at Wolf Creek, Central Minnesota. Ecol Monogr 46:395–492

    Article  Google Scholar 

  • Birks HJB (1981) Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quat Res 16:322–355

    Article  Google Scholar 

  • Birks HJB (1985) Recent and possible future mathematical developments in quantitative palaeoecology. Palaeogeogr Palaeoclimatol Palaeoecol 50:107–147

    Article  Google Scholar 

  • Birks HJB (1986) Late Quaternary biotic changes in terrestrial and limnic environments, with particular reference to north-west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65

    Google Scholar 

  • Birks HJB (1989) Holocene isochrone maps and patterns of tree-spreading in the British Isles. J Biogeogr 16:503–540

    Article  Google Scholar 

  • Birks HJB (1993) Quaternary palaeoecology and vegetation science—current contributions and possible future developments. Rev Palaeobot Palynol 79:153–177

    Article  Google Scholar 

  • Birks HJB (2005) Fifty years of Quaternary pollen analysis in Fennoscandia 1954–2004. Grana 44:1–22

    Article  Google Scholar 

  • Birks HJB (2008) Holocene climate research—progress, paradigms, and problems. In: Battarbee RW, Binney HA (eds) Natural climate variability and global warming: a Holocene perspective. Wiley, Chichester, pp 7–57

    Chapter  Google Scholar 

  • Birks HJB (2012) Conclusions and future challenges. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques. Developments in paleoenvironmental research, vol 5. Springer, Dordrecht, pp 643–673

    Chapter  Google Scholar 

  • Birks HJB (2014) Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veget Hist Archaeobot 23:309–330

    Article  Google Scholar 

  • Birks HJB (2016) Herbert E Wright, Jr—a biography. Sedimental Journeys—the life and legacy of Herb Wright. http://www.eecrg.uib.no/SedimentalJourneys.htm

  • Birks HJB (2017) European palaeoecological pioneers in Minnesota 1958–1968. Sedimental Journeys—the life and legacy of Herb Wright. http://www.eecrg.uib.no/SedimentalJourneys.htm

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London (Reprinted in 2004 by Blackburn Press, New Jersey)

  • Birks HJB, Birks HH (2004) The rise and fall of forests. Science 305:484–485

    Article  Google Scholar 

  • Birks HJB, Birks HH (2008) Biological responses to rapid climate changes at the Younger Dryas-Holocene transition at Kråkenes, western Norway. Holocene 18:19–30

    Article  Google Scholar 

  • Birks HJB, Birks HH, Ammann B (2016a) The fourth dimension of vegetation. Science 354:412–413

    Article  Google Scholar 

  • Birks HJB, Deacon J, Peglar SM (1975) Pollen maps for the British Isles 5000 years ago. Proc R Soc Lond B 189:87–105

    Article  Google Scholar 

  • Birks HJB, Felde VA, Seddon AWR (2016b) Biodiversity trends within the Holocene. Holocene 26:994-1001

    Article  Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, London

    Google Scholar 

  • Birks HJB, Lotter AF, Juggins S, Smol JP (eds) (2012) Tracking environmental change using lake sediments. Data handling and numerical techniques. Developments in paleoenvironmental research, vol 5. Springer, Dordrecht

    Google Scholar 

  • Birks HJB, Saarnisto M (1975) Isopollen maps and principal components analysis of Finnish pollen data for 4000, 6000, and 8000 years ago. Boreas 4:77–96

    Article  Google Scholar 

  • Birks HJB, Seppä H (2010) Late-Quaternary palaeoclimatic research in Fennoscandia—a historical review. Boreas 39:655–673

    Article  Google Scholar 

  • Birks HJB, Tinner W (2016) European tree dynamics and invasions during the Quaternary. In: Krumm F, Quadt V (eds) Introduced tree species to European forests: challenges and opportunities. Publication Office of the European Union, Luxembourg, pp 20–42

    Google Scholar 

  • Birks HJB, West RG (eds) (1973) Quaternary plant ecology. In: Proceedings of the 14th symposium of the British Ecological Society. Blackwell, Oxford

  • Bjune AE (2014) After 8 years of annual pollen trapping across the tree line in western Norway, are the data still anomalous? Veget Hist Archaeobot 23:299–308

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Blaauw M, Heegaard E (2012) Estimation of age-depth relationships. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques. Developments in paleoenvironmental research, vol 5. Springer, Dordrecht, pp 379-413

    Google Scholar 

  • Blackburn KB (1946) On a peat from the Island of Barra, Outer Hebrides. Data for the study of post-glacial history. X. New Phytol 45:44–49

    Article  Google Scholar 

  • Blackburn KB (1952) The dating of a deposit containing an elk skeleton found at Neasham near Darlington, County Durham. New Phytol 51:364–377

    Article  Google Scholar 

  • Blackburn KB (1953) A long pollen diagram from Northumberland. Trans North Nat Union 2:40–43

    Google Scholar 

  • Blytt A (1876) Essay on the immigration of the Norwegian flora during the alternating rainy and dry periods. Albert Cammermeyer, Christiana

    Google Scholar 

  • Bonny AP (1976) Recruitment of pollen to the seston and sediment of some Lake District lakes. J Ecol 64:859–887

    Article  Google Scholar 

  • Bonny AP (1978) The effect of pollen recruitment processes on pollen distribution over the sediment surface of a small lake in Cumbria. J Ecol 66:385–416

    Article  Google Scholar 

  • Booth RK (2013) Palynologist as artist. Artist as palynologist. https://amongthestatelytrees.wordpress.com/2013/01/02/palynologist-as-artist-artist-as-palynologist/. Accessed 5 Mar 2017

  • Bottema S, Woldring H (1990) Anthropogenic indicators in the pollen record of the Eastern Mediterranean. In: Bottema S, Entjes-Nieborg G, van Zeist W (eds) Man’s role in the shaping of the Eastern mediterranean landscape. Balkema, Rotterdam, pp 231–264

    Google Scholar 

  • Bradbury JP, Dean WE (eds) (1993) Elk Lake, Minnesota: evidence for rapid climate change in the north-central United States. Geological Society of America special paper 276. Geological Society of America, Boulder

  • Bradbury JP, Waddington JCB (1973) The impact of European settlement on Shagawa Lake, Northeastern Minnesota. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 289–307

    Google Scholar 

  • Bradshaw EG, Rasmussen P, Odgaard BV (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: synthesis of multiproxy data, linking land and lake. Holocene 15:1152–1162

    Article  Google Scholar 

  • Bradshaw R, Hannon G (1992) Climatic change, human influence and disturbance regime in the control of vegetation dynamics within Fiby Forest, Sweden. J Ecol 80:625–632

    Article  Google Scholar 

  • Bradshaw RHW (1988) Spatially-precise studies of forest dynamics. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 725–751

    Chapter  Google Scholar 

  • Bradshaw RHW (2013) Stand-scale palynology. In: Elias SA, Mock CJ (eds) Encyclopedia of Quaternary science, vol 3. Elsevier, Amsterdam, pp 846–853

    Chapter  Google Scholar 

  • Bradshaw RHW, Jones CS, Edwards SJ, Hannon GE (2015) Forest continuity and conservation value in western Europe. Holocene 25:194–202

    Article  Google Scholar 

  • Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1679–1686

    Article  Google Scholar 

  • Bradshaw RHW, Sykes MT (2014) Ecosystem dynamics. From the past to the future. Wiley-Blackwell, Chichester

    Google Scholar 

  • Brewer S, Giesecke T, Davis BAS et al (2016) Late-glacial and Holocene European pollen data. J Maps doi:https://doi.org/10.1080/17445647.2016.1197613

    Google Scholar 

  • Brewer S, Jackson ST, Williams JW (2012) Paleoecoinformatics: applying geohistorical data to ecological questions. Trends Ecol Evol 27:104–112

    Article  Google Scholar 

  • Bright RC (1966) Pollen and seed stratigraphy of Swan Lake, southeastern Idaho: its relation to regional vegetational history and to Lake Bonneville history. Tebiwa 9:1–28

    Google Scholar 

  • Broström A (2002) Estimating source area of pollen and pollen productivity in the cultural landscapes of southern Sweden—developing a palynological tool for quantifying past plant cover. PhD thesis, Lund University, Lund

  • Bunting MJ, Middleton R (2009) Equifinality and uncertainty in the interpretation of pollen data: the multiple scenario approach to reconstruction of past vegetation mosaics. Holocene 19:799–803

    Article  Google Scholar 

  • Burney DA, Robinson GS, Burney LP (2003) Sporormiella and the late Holocene extinctions in Madagascar. Proc Natl Acad Sci USA 100:10800–10805

    Article  Google Scholar 

  • Chamberlin TC (1890) The method of multiple working hypotheses. Science 15:92–96

    Google Scholar 

  • Chambers JW, Cameron NG (2001) A rod-less piston corer for lake sediments: an improved, rope-operated percussion corer. J Paleolimnol 25:117–122

    Article  Google Scholar 

  • Cheetham CA (1925) Yorkshire Naturalists’ Union: botanical section. Naturalist 826:340–341

    Google Scholar 

  • Chen Y (1988) Early Holocene population expansion of some rainforest trees at Lake Barrine basin, Australia. Aust J Ecol 13:225–233

    Article  Google Scholar 

  • Clark JS (1988a) Particle motion and theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80

    Article  Google Scholar 

  • Clark JS (1988b) Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quat Res 30:81–91

    Article  Google Scholar 

  • Clark JS (1989) Effects of long-term water balances on fire regime, north-western Minnesota. J Ecol 77:989–1004

    Article  Google Scholar 

  • Clark JS (1990) Fire and climate change during the last 750 years in northwestern Minnesota. Ecol Monogr 60:135–159

    Article  Google Scholar 

  • Clark JS (1993) Fire, climate change, and forest processes during the past 2000 years. In: Bradbury JP, Dean WE (eds) Elk Lake, Minnesota: evidence for rapid climate change in the north-central United States. Geological Society of America special paper 276. Geological Society of America, Boulder, pp 295–308

    Chapter  Google Scholar 

  • Colinvaux PA (1974) Gunnar Erdtman is dead. Yale Rev 63:1–3

    Google Scholar 

  • Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1346–1357

    Article  Google Scholar 

  • Conedera M, Tinner W, Crameri S, Torriami D, Herold A (2006) Taxon-related pollen source areas for lake basins in the southern Alps: an empirical approach. Veget Hist Archaeobot 15:263–272

    Article  Google Scholar 

  • Conway VM (1948) Von Post’s work on climatic rhythms. New Phytol 47:220–237

    Article  Google Scholar 

  • Craig AJ (1972) Pollen influx to laminated sediments: a pollen diagram from northeastern Minnesota. Ecology 53:46–57

    Article  Google Scholar 

  • Cranwell LM, von Post L (1936) Post-Pleistocene pollen diagrams from the southern hemisphere I: New Zealand. Geogr Ann 3–4:308–347

    Google Scholar 

  • Croudace IW, Rothwell RG (eds) (2015) Micro-XRF studies of sediment cores. Applications of a non-destructive tool for the environmental sciences. Developments in paleoenvironmental research, vol 17. Springer, Dordrecht

    Google Scholar 

  • Crowder AS, Cuddy DG (1973) Pollen in a small river basin: Wilton Creek, Ontario. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 61–77

    Google Scholar 

  • Cui Q-Y, Gaillard M-J, Lemdahl G, Sugita S, Greisman A, Jacobson GL, Olsson F (2013) The role of tree composition in Holocene fire history of the hemiboreal and southern boreal zones of southern Sweden, as revealed by the application of the Landscape Reconstruction Algorithm: implications for biodiversity and climate-change issues. Holocene 23:1747–1763

    Article  Google Scholar 

  • Cushing EJ (1963) Late-Wisconsin pollen stratigraphy in east-central Minnesota. PhD thesis, University of Minnesota, Minnesota

  • Cushing EJ (1967a) Evidence for differential pollen preservation in late Quaternary sediments in Minnesota. Rev Palaeobot Palynol 4:87–101

    Article  Google Scholar 

  • Cushing EJ (1967b) Late-Wisconsin pollen stratigraphy and the glacial sequence in Minnesota. In: Cushing EJ, Wright HE (eds) Quaternary paleoecology. Yale University Press, New Haven, pp 59–88

    Google Scholar 

  • Cushing EJ, Shane LCK, King GA (2002) The art of pollen preparation. Limnological Research Center, University of Minnesota, Minneapolis

  • Cushing EJ, Wright HE (1965) Hand-operated corers for lake sediments. Ecology 46:380–384

    Article  Google Scholar 

  • Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912

    Article  Google Scholar 

  • Davis MB (1967a) Pollen accumulation rates at Rogers Lake, Connecticut during late- and post-glacial time. Rev Palaeobot Palynol 2:219–230

    Article  Google Scholar 

  • Davis MB (1967b) Climatic changes in southern Connecticut recorded by pollen deposition at Rogers Lake. Ecology 50:409–422

    Article  Google Scholar 

  • Davis MB (1967c) Pollen deposition in lakes as measured by sediment traps. Bull Geol Soc Am 78:849–858

    Article  Google Scholar 

  • Davis MB (1968) Pollen grains in lake sediments: redeposition caused by seasonal water circulation. Science 162:796–799

    Article  Google Scholar 

  • Davis MB (1973) Redeposition of pollen grains in lake sediment. Limnol Oceanogr 18:44–52

    Article  Google Scholar 

  • Davis MB (1976) Pleistocene biogeography of temperate deciduous forests. Geosci Man 13:13–26

    Google Scholar 

  • Davis MB (1983a) Quaternary history of deciduous forests of eastern North America and Europe. Ann Mo Bot Gard 70:550–563

    Article  Google Scholar 

  • Davis MB (1983b) Holocene vegetational history of the eastern United States. In: Wright HE (ed) Late-Quaternary environments of the United States. vol 2: the Holocene. University of Minnesota Press, Minneapolis, pp 166–181

    Google Scholar 

  • Davis MB (1987) Invasions of forest communities during the Holocene: beech and hemlock in the Great Lakes region. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 373–393

    Google Scholar 

  • Davis MB (2000) Palynology after Y2K—understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci 28:1–18

    Article  Google Scholar 

  • Davis MB, Brubaker LB (1973) Differential sedimentation of pollen grains in lakes. Limnol Oceanogr 18:635–646

    Article  Google Scholar 

  • Davis MB, Brubaker LB, Beiswenger JM (1971) Pollen grains in lake sediments: pollen percentages in surface sediments from southern Michigan. Quat Res 1:450–467

    Article  Google Scholar 

  • Davis MB, Brubaker LB, Webb T (1973) Calibration of absolute pollen influx. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 9–25

    Google Scholar 

  • Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology 79:2641–2659

    Google Scholar 

  • Davis MB, Deevey ES (1964) Pollen accumulation rates: estimates from late-glacial sediment of Rogers Lake. Science 145:1293–1295

    Article  Google Scholar 

  • Davis MB, Moeller RE, Ford J (1984) Sediment focusing and pollen influx. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 261–293

    Google Scholar 

  • Davis MB, Sugita S, Calcote RR, Ferrari JB, Frelich LE (1994) Historical development of alternative communities in a hemlock-hardwood forest in northern Michigan, USA. In: Edwards PJ, May RM, Webb NR (eds) Large-scale ecology and conservation biology. Blackwell, Oxford, pp 19–39

    Google Scholar 

  • Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat Res 28:290–294

    Article  Google Scholar 

  • Davis OK (2001) Lucy May Cranwell Smith 1907–2000. http://www.geo.arizona.edu/palynology/lcrnwobt.html. Accessed 17 Mar 2017

  • Davis OK (2004) Palynology in North America. http://www.geo.arizona.edu/palynology/palynam.html. Accessed 5 April 2017

  • Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50

    Article  Google Scholar 

  • Dawson A, Paciorek CJ, McLachlan JS, Goring S, Williams JW, Jackson ST (2016) Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quat Sci Rev 137:156–175

    Article  Google Scholar 

  • De Klerk P (2017) The roots of pollen analysis—the road to Lennart von Post. Veget Hist Archaeobot. doi:https://doi.org/10.1007/s00334-017-0626-y

    Google Scholar 

  • Deevey ES (1939) Studies on Connecticut lake sediments. I: a postglacial climatic chronology for southern New England. Am J Sci 237:691–724

    Article  Google Scholar 

  • Deevey ES (1943) Additional pollen analyses from southern New England. Am J Sci 241:717–752

    Article  Google Scholar 

  • Deevey ES (1946) An absolute pollen chronology in Switzerland. Am J Sci 244:442–447

    Google Scholar 

  • Deevey ES (1967) Introduction. In: Martin PS, Wright HE Jr (eds) Pleistocene extinctions. Yale University Press, New Haven, pp 63–72

    Google Scholar 

  • Deevey ES (1969) Coaxing history to conduct experiments. BioScience 19:40–43

    Article  Google Scholar 

  • Digerfeldt G (1972) The post-glacial development of Lake Trummen. Regional vegetation history, water-level changes and palaeolimnology. Folia Limnol Scand 16:1–104

    Google Scholar 

  • Dimbleby GW (1957) Pollen analysis of terrestrial soils. New Phytol 56:12–28

    Article  Google Scholar 

  • Dimbleby GW (1961) Soil pollen analysis. J Soil Sci 12:1–10

    Article  Google Scholar 

  • Draper P (1929) A comparison of pollen spectra of old and young bogs in the Erie Basin. Proc Oklahoma Acad Sci 9:50–53

    Google Scholar 

  • Edlund AF, Winthrop ZA (2014) Sharing what he saw: an appreciation of Gunnar Erdtman’s life and illustrations. Grana 53:1–21

    Article  Google Scholar 

  • Edwards ME (1986) Disturbance histories of four snowdonian woodlands and their relation to Atlantic bryophyte distributions. Biol Conserv 37:301–320

    Article  Google Scholar 

  • Edwards KJ (1983) Quaternary palynology: consideration of a discipline. Prog Phys Geogr 7:113–125

    Article  Google Scholar 

  • Edwards KJ (2017) Pollen, women, war and other things: reflections on the history of palynology. Veget Hist Archaeobot. doi:https://doi.org/10.1007/s00334-017-0629-8

    Google Scholar 

  • Edwards KJ, Fyfe RM, Jackson ST (2017) The first 100 years of pollen analysis. Nat Plants 3:17001

    Google Scholar 

  • Eide W, Birks HH, Bigelow NH, Peglar SM, Birks HJB (2006) Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Veget Hist Archaeobot 15:65–85

    Article  Google Scholar 

  • Elias SA, Short SK, Birks HH (1997) Late Wisconsin environment of the Bering Land Bridge. Palaeogeogr Palaeoclimatol Palaeoecol 136:293–308

    Article  Google Scholar 

  • Elias SA, Short SK, Nelson CH, Birks HH (1996) The life and times of the Bering Land Bridge. Nature 382:60–63

    Article  Google Scholar 

  • Erdtman G (1920) Einige geobotanische Resultate einer pollenanalytischen Untersuchung von südwest-schwedischen Torfmooren. Svensk Bot Tidskr 14:292–299

    Google Scholar 

  • Erdtman G (1921) Pollenanalytische Untersuchungen von Torfmooren und marinen Sedimenten in Südwest-Schweden. Archiv für Botanik 17:1–173

    Google Scholar 

  • Erdtman G (1924a) Studies in micro-palæontology, I-IV. Geol Fören i Stockh Förhandl 46:676–681

    Article  Google Scholar 

  • Erdtman G (1924b) Studies in the micropalaeontology of postglacial deposits in Northern Scotland and the Scottish Isles, with especial reference to the history of woodlands. J Linn Soc (Bot) 46:449–504

    Article  Google Scholar 

  • Erdtman G (1927) Peat deposits of the Cleveland Hills. Naturalist 9:39–46

    Google Scholar 

  • Erdtman G (1928a) Studies in the postarctic history of the forests of northwestern Europe. I: investigations in the British Isles. Geol Fören i Stockh Förhandl 50:123–192

    Article  Google Scholar 

  • Erdtman G (1928b) Studien über die postarktische Geschichte der nordwesteuropäischen Wälder. II: Untersuchungen in Nordwestdeutschland und Holland. Geol Fören i Stockh Förhandl 50:368–380

    Article  Google Scholar 

  • Erdtman G (1928c) Études sur l’histoire postarctique des forêts de l-Europe nord-ouest. III: Recherches dans la Belgique et au nord de la France. Geol Fören i Stockh Förhandl 50:419–428

    Article  Google Scholar 

  • Erdtman G (1929) Some aspects of the post-glacial history of British forests. J Ecol 17:112–126

    Article  Google Scholar 

  • Erdtman G (1935) Pollen statistics: a botanical and geological method. In: Wodehouse RP (ed) Pollen grains. McGraw-Hill, New York, pp 110–125

    Google Scholar 

  • Erdtman G (1937) Pollen grains recovered from the atmosphere over the Atlantic. Acta Horti Gothenburgensis 12:185–196

    Google Scholar 

  • Erdtman G (1938) Pollenanalys och pollenmorfologi. Svensk Bot Tidskr 32:130

    Google Scholar 

  • Erdtman G (1943a) An Introduction to pollen analysis. Chronica Botanica Company, Waltham

    Google Scholar 

  • Erdtman G (1943b) Pollenspektra från svenska växtsamhällen jämte pollenanalytiska markstudier i södra Lappland. Geol Fören i Stockh Förhandl 65:37–66

    Article  Google Scholar 

  • Erdtman G (1944) Botanisk pollenanalys. Nägra inlägg. Geol Fören i Stockh Förhandl 66:411–416

    Article  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: angiosperms (An introduction to palynology I). Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Erdtman G (1960) The acetolysis method: a revised description. Svensk Bot Tidskr 54:561–564

    Google Scholar 

  • Erdtman G (1966) Pollen morphology and plant taxonomy: angiosperms (An introduction to palynology I). Corrected reprint of the 1952 edition with a new addendum edn. Hafner, New York

    Google Scholar 

  • Erdtman G (1967) Glimpses of palynology 1916–1966. Rev Palaeobot Palynol 1:23–29

    Article  Google Scholar 

  • Erdtman G (1969) Handbook of palynology: morphology, taxonomy, ecology. Munksgaard, Copenhagen

    Google Scholar 

  • Erdtman G (1972a) Pollen and spore morphology/plant taxonomy: gymnospermae, pteridophyta, bryophyta (An introduction to palynology II). Hafner, New York

    Google Scholar 

  • Erdtman G (1972b) Pollen statistics and primeval agriculture in Denmark. Pollen Spores 14:61–64

    Google Scholar 

  • Erdtman G, Berglund BE, Praglowski JR (1961) An introduction to a Scandinavian pollen flora. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Erdtman G, Praglowski J, Nilsson S (1962) An introduction to a Scandinavian pollen flora II. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Erdtman G, Erdtman H (1933) The improvement of pollen-analysis technique. Svensk Bot Tidskr 27:347–357

    Google Scholar 

  • Fægri K (1935) Quartärgeologicshe Untersuchungen im westlichen Norwegen. I: Über zwei präboreale Klimaschwankungen im südwestlichsten Teil. Bergens Museums Årbok 1935:1–40

    Google Scholar 

  • Fægri K (1940) Quartärgeologicshe Untersuchungen im westlichen Norwegen. II: Zur spätquartären Geschichte Jærens. Bergens Museums Årbok 1939–1940:1–120

  • Fægri K (1943) Studies on the Pleistocene of western Norway III: Bømlo. Bergens Museums Årbok 1943:1–100

  • Fægri K (1944) On the introduction of agriculture in western Norway. Geol Fören i Stockh Förhandl 66:449–462

    Article  Google Scholar 

  • Fægri K (1945) A pollen diagram from the sub-alpine regions of central south Norway. Norsk Geografisk Tidsskrift 25:99–126

    Google Scholar 

  • Fægri K (1947) Heterodokse tanker om pollenanalysen. Geol Fören i Stockh Förhandl 69:55–66

    Article  Google Scholar 

  • Fægri K (1953) On the peri-glacial flora of Jæren. Norsk Geografisk Tidsskrift 14:61–76

    Article  Google Scholar 

  • Fægri K (1954) On age and origin of the beech forest (Fagus silvatica L.) at Lygrefjorden, near Bergen (Norway). Danm Geol Unders II 80:230–249

    Google Scholar 

  • Fægri K (1966) Some problems of representivity in pollen analysis. Palaeobotanist 15:135–140

    Google Scholar 

  • Fægri K (1971) In memoriam Johs. Iversen. Pollen Spores 13:367–380

    Google Scholar 

  • Fægri K (1973) In memoriam O. Gunnar E. Erdtman 1897–1973. Pollen Spores 15:5–12

    Google Scholar 

  • Fægri K (1974) Quaternary pollen analysis—past, present and future. Adv Pollen Spore Res 1:62–69

    Google Scholar 

  • Fægri K (1981) Some pages of the history of pollen analysis. Striae 14:42–47

    Google Scholar 

  • Fægri K (1985) The importance of palynology for the understanding of the archaeological environment in northern Europe. Centre de Recherches Archáeologiques Notes et Monographies Techniques 17:333–342

    Google Scholar 

  • Fægri K, Iversen J (1950) Text-book of modern pollen analysis. Munksgaard, Copenhagen

    Google Scholar 

  • Fægri K, Iversen J (1964) Textbook of pollen analysis. Revised 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Fægri K, Iversen J, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. The Blackburn Press, Caldwell

    Google Scholar 

  • Fagerlind F (1949) Some reflections on the history of the climate and vegetation of the Hawaiian Islands. Svensk Bot Tidskr 43:73–81

    Google Scholar 

  • Fagerlind F (1952) The real signification of pollen diagrams. Bot Not 105:185–224

    Google Scholar 

  • Finsinger W, Tinner W (2005) Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297

    Article  Google Scholar 

  • Firbas F (1934a) Über die Bestimmung der Walddichte und der Vegetation waldloser Gebiete mit Hilfe der Pollenanalyse. Planta 22:109–145

    Article  Google Scholar 

  • Firbas F (1934b) Zur spät- und nacheiszeitlichen Vegetationsgeschichte der Rheinpfalz. Beih Bot Centbl 52(B):119–156

    Google Scholar 

  • Firbas F (1934c) Die Vegetationsentwicklung des mitteleuropäischen Spätglazials. Gessellschaft der Wissenschaften Nachrichten. Mathematisch-Physikalische Klasse - Fachgruppe VI 1:17–24

    Google Scholar 

  • Firbas F (1937) Der pollenanalytische Nachweis des Getreidebaus. Zeitschr Bot 31:447–478

    Google Scholar 

  • Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. I. Fischer, Jena

    Google Scholar 

  • Firbas F, Broihan F (1936) Das Alter der Trockentorfschichten im Hils. Planta 26:291–302

    Article  Google Scholar 

  • Flenley JR (1973) The use of modern pollen rain samples in the study of the vegetational history of tropical regions. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 131–141

    Google Scholar 

  • Flessa KW, Jackson ST (2005) The geological record of ecological dynamics. Understanding the biotic effects of future environmental change. National Research Council of the National Academies, Washington, D.C.

    Google Scholar 

  • Francus P (ed) (2004) Image analysis, sediments and paleoenvironments. Developments in paleoenvironmental research. Springer, Dordrecht

    Google Scholar 

  • Fraser GK (1933) Studies of certain Scottish moorlands in relation to tree growth. Bull For Commission Lond 15:1–128

    Google Scholar 

  • Fraser GK (1943) Peat deposits of Scotland Part I—general account. Geol Survey Gt Br Scotl 36:1–55

    Google Scholar 

  • Fraser GK (1948) Peat deposits of Scotland part II—peat mosses of Aberdeenshire, Banffshire & Morayshire. Geol Survey Gt Br Scotl 36:1–29

    Google Scholar 

  • Fraser GK, Godwin H (1955) Two Scottish pollen diagrams: Carnwath Moss, Lanarkshire and Strichen Moss, Aberdeenshire. Data for the study of post-glacial history XVII. New Phytol 54:216–221

    Article  Google Scholar 

  • Fredskild B (1969) A postglacial standard pollen diagram from Peary Land, North Greenland. Pollen Spores 11:573–585

    Google Scholar 

  • Fredskild B (1973) Studies in the vegetational history of Greenland. Meddelelser om Grønland 198:1–245

    Google Scholar 

  • Fredskild B (1975) A late-glacial and early post-glacial pollen-concentration diagram from Langeland, Denmark. Geol Fören Stockh Förh 97:151–161

    Article  Google Scholar 

  • Fries M (1949) Anmälanden och kritiker. Olof H Selling: On the Late Quaternary history of the Hawaiian vegetation. Studies in Hawaiian pollen statistics, part III: 1948. Geol Fören Stockh Förh 71:347–355

    Article  Google Scholar 

  • Fries M (1967) Lennart von Post’s pollen diagram series of 1916. Rev Palaeobot Palynol 4:9–13

    Article  Google Scholar 

  • Gaillard M-J, Berglund BE (eds) (1998) Quantification of land surfaces cleared of forests during the Holocene—Modern pollen/vegetation/landscape relationships as an aid to the interpretation of fossil pollen data. Paläoklimaforschung 27. Fischer, Stuttgart

  • Gaillard M-J, Birks HJB, Ihse M, Runborg S (1998) Pollen/landscape calibrations based on modern pollen assemblages from surface-sediment samples and landscape mapping—a pilot study in South Sweden. Paläoklimaforschung 27:31–52

    Google Scholar 

  • Gaillard M-J, Sugita S, Bunting MJ et al (2008) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Veget Hist Archaeobot 17:419–443

    Article  Google Scholar 

  • Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J Biogeogr 31:1523–1548

    Article  Google Scholar 

  • Giesecke T, Brewer S, Finsinger W, Leydet M, Bradshaw RHW (2017) Patterns and dynamics of European vegetation change over the last 15000 years. J Biogeogr 44:1441–1456

    Article  Google Scholar 

  • Giesecke T, Davis BAS, Brewer S et al (2014) Towards mapping the late Quaternary vegetation change of Europe. Veget Hist Archaeobot 23:75–86

    Article  Google Scholar 

  • Giesecke T, de Beaulieu J-L, Leydet-Barbier M (2016) The European pollen database: research tool and community. PAGES News 24:48

    Article  Google Scholar 

  • Giesecke T, Fontana SL (2008) Revisiting pollen accumulation rates from Swedish lake sediments. Holocene 18:293–305

    Article  Google Scholar 

  • Giesecke T, Fontana SL, van der Knaap WO, Pardoe HS, Pidek IA (2010a) From early pollen trapping experiments to the Pollen Monitoring Programme. Veget Hist Archaeobot 19:247–258

    Article  Google Scholar 

  • Giesecke T, van der Knaap WO, Bittmann F (2010b) Towards quantitative palynology: using pollen accumulation rates and models of pollen dispersal. Veget Hist Archaeobot 19:243–245

    Article  Google Scholar 

  • Gill J (2013) Is pollen analysis dead? Paleoecology in the era of big data. The contemplative mammoth. https://contemplativemammoth.com/2013/07/10/is-pollen-analysis-dead-paleoecology-in-the-era-of-big-data/

  • Gill JL, McLauchlan KK, Skibbe AM, Goring S, Zirbel CR, Williams JW (2013) Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. J Ecol 101:1125–1136

    Article  Google Scholar 

  • Gill JL, Williams JW, Jackson ST, Donnelly JP, Schellinger GC (2012) Climatic and megaherbiovry controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat Sci Rev 34:66–80

    Article  Google Scholar 

  • Gill JL, Williams JW, Jackson ST, Lininger KB, Robinson GS (2009) Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326:1100–1103

    Article  Google Scholar 

  • Glew JR (1995) Conversion of shallow water gravity coring equipment for deep water operation. J Paleolimnol 14:83–88

    Article  Google Scholar 

  • Godłowska M, Kozłowski JK, Starkel L, Wasylikowa K (1987) Neolithic settlement at Pleszów and changes in the natural environment in the Vistula Valley. Przeglad Archeologiczny 34:133–159

    Google Scholar 

  • Godwin H (1934a) Pollen analysis: an outline of the problems and potentialities of the method. Part I: technique and interpretation. New Phytol 33:278–305

    Article  Google Scholar 

  • Godwin H (1934b) Pollen analysis: an outline of the problems and potentialities of the method. Part II: general applications of pollen analysis. New Phytol 33:325–358

    Article  Google Scholar 

  • Godwin H (1940) Pollen analysis and forest history of England and Wales. New Phytol 39:370–400

    Article  Google Scholar 

  • Godwin H (1958) Pollen analyis in mineral soil. An interpretation of a podzol pollen analysis by G. W. Dimbleby. Flora 146:321–327

    Google Scholar 

  • Godwin H (1960) Radiocarbon dating and Quaternary history in Britain. Proc R Soc Lond B 153:287–320

    Article  Google Scholar 

  • Godwin H (1968) The development of Quaternary palynology in the British Isles. Rev Palaeobot Palynol 6:9–20

    Article  Google Scholar 

  • Godwin H (1973) Obituary: tribute to four botanists. New Phytol 72:1245–1250

    Article  Google Scholar 

  • Godwin H (1978) Fenland: its ancient past and uncertain future. Cambridge University Press, Cambridge

    Google Scholar 

  • Godwin H (1981) The archives of the peat bogs. Cambridge University Press, Cambridge

    Google Scholar 

  • Godwin H, Walker D, Willis EH (1957) Radiocarbon dating and post-glacial vegetational history: Scaleby Moss. Proc R Soc Lond B 147:352–366

    Article  Google Scholar 

  • Godwin H, Willis EH (1959) Radiocarbon dating of the late-glacial period in Britain. Proc R Soc Lond B 150:199–215

    Article  Google Scholar 

  • Goring S, Dawson A, Simpson GL, Ram K, Graham RW, Grimm EC, Williams JW (2015) neotoma: a programmatic interface to the Neotoma Paleoecological Database. Open Quat 1:1–17

    Article  Google Scholar 

  • Gould SJ (1965) Is uniformitarianism necessary? Am J Sci 163:223–228

    Article  Google Scholar 

  • Granlund E (1932) De svenska högmossarnas geologi. Deras bildningsbetingelser, utvecklingshistoria och utbredning jämte sambandet mellan högmossebildning och försumpning. Sver Geol Unders Series C 373:1–193

    Google Scholar 

  • Green DG (1981) Time series and postglacial forest ecology. Quat Res 15:265–277

    Article  Google Scholar 

  • Green DG (1983) The ecological interpretation of fine resolution pollen records. New Phytol 94:459–477

    Article  Google Scholar 

  • Grimm EC (1988) Data analysis and display. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 43–76

    Chapter  Google Scholar 

  • Grimm EC (1990) TILIA and TILIA GRAPH: PC spreadsheet and graphics software for pollen data INQUA Commission for the Study of the Holocene: Working group on data-handling methods. Newsletter 4:5–7

    Google Scholar 

  • Grimm EC, Bradshaw RHW, Brewer S, Flantua S, Giesecke T, Lézine A-M, Takahara H, Williams JW (2013) Databases and their application. In: Elias SA, Mock CJ (eds) Encyclopedia of Quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 831–838

    Chapter  Google Scholar 

  • Groenmann-van Waateringe W, van Geel B (2017) Raised bed agriculture in northwest Europe triggered by climatic change around 850 bc: a hypothesis. Environ Archaeol 22:166–170

    Article  Google Scholar 

  • Gullvåg B (1972) Gunnar Erdtman 28.11.1897–18.2.1973. Grana 12:129–130

    Article  Google Scholar 

  • Hall AR (1980) Late Pleistocene deposits at Wing, Rutland. Philos Trans R Soc Lond B 289:135–164

    Article  Google Scholar 

  • Hansen BCS (1995) Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay Lowlands. Can J Bot 73:244–252

    Article  Google Scholar 

  • Hansen BCS, MacDonald GM, Moser KA (1996) Identifying the tundra-forest border in the stomate record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada. Can J Bot 74:796–800

    Article  Google Scholar 

  • Havinga AJ (1964) Investigation into the differential corrosion susceptibility of pollen and spores. Pollen Spores 6:621–635

    Google Scholar 

  • Havinga AJ (1967) Palynology and pollen preservation. Rev Palaeobot Palynol 2:81–98

    Article  Google Scholar 

  • Havinga AJ (1971) An experimental investigation into the decay of pollen and spores in various soil types. In: Brooks J, Grant P, Muir M, van Gijzel P, Shaw G (eds) Sporopollenin. Academic Press, London, pp 446–479

    Chapter  Google Scholar 

  • Hedberg O (2000) Palynology in perspective. In: Nordenstam B, El-Ghazaly G, Kassas M (eds) Plant systematics for the 21st century. Portland Press, London, pp 25–31

    Google Scholar 

  • Heer O (1865) Die Urwelt der Schweiz. Schulthess, Zürich

    Google Scholar 

  • Heiri C, Bugmann H, Tinner W, Heiri O, Lischke H (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94:206–216

    Article  Google Scholar 

  • Hellman SEV, Gaillard M-J, Broström A, Sugita S (2008) The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. J Quat Sci 23:21–42

    Article  Google Scholar 

  • Henne PD, Elkin CM, Bugmann HKM, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis using a dynamic landscape model. J Biogeogr 38:933–949

    Article  Google Scholar 

  • Henne PD, Elkin C, Colombaroli D, Samartin S, Bugmann H, Heiri O, Tinner W (2013) Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling. Landsc Ecol 28:819–833

    Article  Google Scholar 

  • Henne PD, Elkin C, Franke J, Colombaroli D, Calò C, La Mantia T, Pasta S, Conedera M, Dermody O, Tinner W (2015) Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future. Front Ecol Evol 13:356–362

    Article  Google Scholar 

  • Herzschuh U, Birks HJB, Laepple T, Andreev AA, Melles M, Brigham-Grette J (2016) Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in Asia. Nat Commun 7:11967

    Article  Google Scholar 

  • Heslop Harrison JW, Blackburn KB (1946) The occurrence of a nut of Trapa natans L. in the Outer Hebrides, with some account of the peat bogs adjoining the loch in which the discovery was made. New Phytol 45:124–131

    Article  Google Scholar 

  • Hesselman H (1916) Yttrande med anledning av L. von Post’s föredrag om skogsträdpollen i sydsvenska torfmosselagerfölder. Geol Fören i Stockh Förhandl 38:390–392

    Google Scholar 

  • Hesselman H (1919a) Iakttagelser över skogsträdspollens spridningsförmåga. Meddelanden från Statens Skogsförsöksanstalt 16:27–60

    Google Scholar 

  • Hesselman H (1919b) Om pollenregn på hafvet och fjärrtransport af barrträdspollen. Geol Fören i Stockh Förhandl 41:89–108

    Article  Google Scholar 

  • Hicks S (1974) A method of using modern pollen rain values to provide a time-scale for pollen diagrams from peat deposits. Memoranda Societatis pro Fauna et Flora Fennica 49:21–33

    Google Scholar 

  • Hicks S (1999) The relationship between climate and annual pollen deposition at northern tree-lines. Chemosphere Glob Chang Sci 1:403–416

    Article  Google Scholar 

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29

    Article  Google Scholar 

  • Hicks S (2006) When no pollen does not mean no trees. Veget Hist Archaeobot 15:253–261

    Article  Google Scholar 

  • Hicks S, Hyvärinen H (1999) Pollen influx values measured in different sedimentary environments and their palaeoecological implications. Grana 38:228–242

    Article  Google Scholar 

  • Higuera PE, Peters ME, Brubaker LB, Gavin DG (2007) Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat Sci Rev 26:1790–1809

    Article  Google Scholar 

  • Holmsen G (1919) Litt om grangrænsen i Fæmundstrakten. Tidsskrift for Skogbruk 3–4:39–48

    Google Scholar 

  • Holmsen G (1920a) Naar indvandret granskogen til Kristianiatraken. Tidsskrift for Skogbruk 7–8:1–6

    Google Scholar 

  • Holmsen G (1920b) Resultat af en pollenundersøkelse in kallktuf. Norsk Geologisk Tidsskrift 5:1–4

    Google Scholar 

  • Holst NO (1909) Postglaciala tidsbestämningar. Sver Geol Unders Series C 2:3–74

    Google Scholar 

  • Hooghiemstra H (1984) Vegetational and climatic history of the High Plain of Bogotá, Colombia: a continuous record of the last 3.5 million years. Diss Bot 79:1–368

    Google Scholar 

  • Hu FS, Hampe A, Petit RJ (2009) Paleoecology meets genetics: deciphering past vegetational dynamics. Front Ecol Environ 7:371–379

    Article  Google Scholar 

  • Huckerby E, Oldfield F (1976) The Quaternary vegetational history of the French Pays Basque, II: plant macrofossils and additional pollen-analytical data. New Phytol 77:499–526

    Article  Google Scholar 

  • Hultberg T, Gaillard M-J, Grundmann B, Lindbladh M (2015) Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot. Veget Hist Archaeobot 24:253–266

    Article  Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Huntley B, Webb T (eds) (1988) Vegetation history. Handbook of vegetation science, vol 7. Kluwer, Dordrecht

    Google Scholar 

  • Hyvärinen H (1975) Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142:1–23

    Google Scholar 

  • Hyvärinen H (1976) Flandrian pollen deposition rates and tree-line history in northernmost Fennoscandia. Boreas 5:163–175

    Article  Google Scholar 

  • Iversen J (1934) Moorgeologische Untersuchungen auf Grönland. Dansk Geol Foren 8:341–358

    Google Scholar 

  • Iversen J (1936) Sekundäres Pollen als Fehlerquelle. Danm Geol Unders IV 2:1–24

    Google Scholar 

  • Iversen J (1941) Land occupation in Denmark’s stone age. Danm Geol Unders II 66:1–68

    Google Scholar 

  • Iversen J (1942) En pollenanalytisk tidsfæstelse af ferskvandslagene ved Norre Lyngby. Dansk Geol Foren 10:130–151

    Google Scholar 

  • Iversen J (1944) Viscum, Hedera and Ilex as climate indicators. A contribution to the study of the post-glacial temperature climate. Geol Fören i Stockh Förhandl 66:463–483

    Article  Google Scholar 

  • Iversen J (1945) Conditions of life for the large herbivorous mammals in the late-glacial period. In: Degerbøl M, Iversen J (eds) The bison in Denmark. Danm Geol Unders II 73. pp 49–57

  • Iversen J (1947) Discussion in Nordiskt kvartågeologiskt möte den 5–9 november 1945. Geol Fören i Stockh Förhandl 69:205–206

    Article  Google Scholar 

  • Iversen J (1949) The influence of prehistoric man on vegetation. Danm Geol Unders IV 3:1–25

    Google Scholar 

  • Iversen J (1952–1953) Origin of the flora of western Greenland in the light of pollen analysis. Oikos 4:85–103

  • Iversen J (1953) Radiocarbon dating of the Alleröd period. Science 118:9–11

    Article  Google Scholar 

  • Iversen J (1954) The Late-glacial flora of Denmark and its relation to climate and soil. Danm Geol Unders II 80:87–119

    Google Scholar 

  • Iversen J (1956) Forest clearance in the Stone Age. Sci Am 194:36–41

    Article  Google Scholar 

  • Iversen J (1958a) The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. Systematics of today. Uppsala Universiteit Årsskrift 6:210–215

    Google Scholar 

  • Iversen J (1958b) Pollenanalytischer Nachweis des Reliktencharakters eines jütischen Linden-Mischwaldes. Veröff Geobot Inst Rübel Zür 33:137–144

    Google Scholar 

  • Iversen J (1960) Problems of the early post-glacial forest development in Denmark. Danm Geol Unders IV 4:1–32

    Google Scholar 

  • Iversen J (1964) Retrogressive vegetational succession in the post-glacial. J Ecol 52(Suppl):59–70

    Article  Google Scholar 

  • Iversen J (1967) Naturens udvikling siden sidste Istid. Danmarks Nat 1:345–445

    Google Scholar 

  • Iversen J (1969) Retrogressive development of a forest ecosystem demonstrated by pollen diagrams from fossil mor. Oikos 12:35–49

    Google Scholar 

  • Iversen J (1973) The development of Denmark’s nature since the last glacial. Danm Geol Unders V 7-C:1–126 (English translation of Iversen 1967)

  • Iversen J, Troels-Smith J (1950) Pollenmorfologiske definitions og typer. Danm Geol Unders IV 3:1–54

    Google Scholar 

  • Jackson ST (1989) Postglacial vegetational changes along an elevational gradient in the Adirondack Mountains (New York). A study of plant macrofossils. Biological Survey/Museum Bulletin 465. The New York State Museum, New York

    Book  Google Scholar 

  • Jackson ST (2006) Forest genetics in space and time. New Phytol 171:1–3

    Article  Google Scholar 

  • Jackson ST (2012) Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat Sci Rev 49:1–15

    Article  Google Scholar 

  • Jackson ST, Blois JL (2015) Community ecology in a changing environment: perspectives from the Quaternary. Proc Natl Acad Sci USA 112:4915-4921

    Article  Google Scholar 

  • Jackson ST, Booth RK (2013) Validation of pollen studies. In: Elias SA, Mock CJ (eds) Encyclopedia of Quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 725–732

    Chapter  Google Scholar 

  • Jackson ST, Booth RK, Reeves K, Andersen JJ, Minckley TA, Jones RA (2014) Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat Sci Rev 98:60–73

    Article  Google Scholar 

  • Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75

    Article  Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26(Suppl 4):194–220

    Article  Google Scholar 

  • Jackson ST, Whitehead DR (1991) Holocene vegetation patterns in the Adirondack Mountains. Ecology 72:641–653

    Article  Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Ann Rev Earth Planet Sci 32:495–537

    Article  Google Scholar 

  • Jacobson GL (1979) The palaeoecology of white pine (Pinus strobus) in Minnesota. J Ecol 67:697–726

    Article  Google Scholar 

  • Jacobson GL (1988) Ancient permanent plots: sampling in paleovegetational studies. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 3–16

    Chapter  Google Scholar 

  • Jacobson GL, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96

    Article  Google Scholar 

  • Jacomet S (2013) Uses in environmental archaeology. In: Elias SA, Mock CJ (eds) Encyclopedia of Quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 699–724

    Chapter  Google Scholar 

  • Janssen CR (1966) Recent pollen spectra from the deciduous and coniferous-deciduous forests of northeastern Minnesota: a study in pollen dispersal. Ecology 47:804–825

    Article  Google Scholar 

  • Janssen CR (1967a) A comparison between the recent regional pollen rain and the subrecent vegetation in four major vegetation types in Minnesota (USA). Rev Palaeobot Palynol 2:331–342

    Article  Google Scholar 

  • Janssen CR (1967b) A post-glacial pollen diagram from a small Typha swamp in northwestern Minnesota, interpreted from pollen indicators and surface samples. Ecol Monogr 37:145–172

    Article  Google Scholar 

  • Janssen CR (1973) Local and regional pollen deposition. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 31–42

    Google Scholar 

  • Janssen CR (1981) On the reconstruction of past vegetation by pollen analysis: a review. In: Proceedings of IVth international palynological conference, Lucknow (1976–1977) 3, pp 163–172

  • Janssen CR (1984) Modern pollen assemblages and vegetation in the Myrtle Lake Peatland, Minnesota. Ecol Monogr 54:213–252

    Article  Google Scholar 

  • Jeffers ES, Bonsall MB, Brooks SJ, Willis KJ (2011a) Abrupt environmental changes drive shifts in tree–grass interaction outcomes. J Ecol 99:1063–1070

    Article  Google Scholar 

  • Jeffers ES, Bonsall MB, Froyd CA, Brooks SJ, Willis KJ (2014) The relative importance of biotic and abiotic processes for structuring plant communities through time. J Ecol 103:459–472

    Article  Google Scholar 

  • Jeffers ES, Bonsall MB, Watson JE, Willis KJ (2012) Climate change impacts on ecosystem functioning: evidence from an Empetrum heathland. New Phytol 193:150–164

    Article  Google Scholar 

  • Jeffers ES, Bonsall MB, Willis KJ (2011b) Stability in ecosystem functioning across a climatic threshold and contrasting forest regimes. PLoS One 6:e16134

    Article  Google Scholar 

  • Jessen K (1920) Moseundersøgelser i det nordøstlige Sjælland. Danm Geol Unders II 34:1–268

    Google Scholar 

  • Jessen K, Andersen ST, Farrington A (1959) The interglacial deposit near Gort, Co. Galway, Ireland. Proc R Irish Acad B 60:3–77

    Google Scholar 

  • Jessen K, Milthers V (1928) Stratigraphical and paleontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. Danm Geol Unders II 48:1–379

    Google Scholar 

  • Jessen K, Rasmussen R (1922) Et profil gennem en Tørvemose på Færøerne. Danm Geol Unders IV 1:1–32

    Google Scholar 

  • Jonsell B (2007) Svensk botanisk forskning under 1900-talet. Svensk Bot Tidskr 101:19–54

    Google Scholar 

  • Jørgensen PM (2009) Knut Fægri i historisk perspektiv på 100-årsdagen. Blyttia 67:15–22

    Google Scholar 

  • Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248

    Article  Google Scholar 

  • Juggins S (2007) C2 Software for ecological and palaeoecological data analysis and visualisation. User guide version 1.5. University of Newcastle, Newcastle-upon-Tyne

    Google Scholar 

  • Juggins S (2015) rioja: analysis of Quaternary science data, version 0.9-9. http://cran.r-project.org/web/packages/rioja/index.html

  • Kabailiene MV (1966) On the distribution of pollen in lakes. Palynology in geological research in the Baltic Soviet Republics. Vilnius, pp 113–119

  • Kabailiene MV (1969) On formation of pollen spectra and restoration of vegetation. Ministry of Geology of the USSR, Institute of Geology Transactions II, Vilnius

    Google Scholar 

  • Kabailiene MV (1985) Restoration of Holocene forest history in Lithuania by net-like method. Ecol Mediterr 11:45

    Google Scholar 

  • Kristiansen K (2002) The birth of ecological archaeology in Denmark: history and research environments 1850–2000. In: Fischer A, Kristiansen K (eds) The neolithisation of Denmark: 150 years of debate. Collis, Sheffield, pp 11–31

    Google Scholar 

  • Krog H (1954) Pollen analytical investigation of the C14-dated Alleröd-section from Ruds-Vedby. Danm Geol Unders II 80:120–139

    Google Scholar 

  • Krzywinski K (1977) Different pollen deposition mechanisms in forest: a simple model. Grana 16:199–202

    Article  Google Scholar 

  • Kuhn T (1970) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Kuneš P, Odgaard BV, Gaillard M-J (2011) Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–2164

    Article  Google Scholar 

  • Lagerås P (2000) Burial rituals inferred from palynological evidence: results from a late Neolithic stone cist in southern Sweden. Veget Hist Archaeobot 9:169–173

    Article  Google Scholar 

  • Lagerås P (2007) The ecology of expansion and abandonment. Medieval and post-medieval land-use and settlement dynamics in a landscape perspective. National Heritage Board, Stockholm

    Google Scholar 

  • Lagerås P (ed) (2016) Environment, society and the Black Death. Oxbow Books, Oxford

    Google Scholar 

  • Lagerheim G (1902) Metoder för pollenundersökning. Bot Not 1902:75–78

  • Lang G (1952) Zur späteiszeitlichen Vegetations- und Florengeschichte Südwestdeutschlands. Flora 139:243–294

    Google Scholar 

  • Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, Jena

    Google Scholar 

  • Last WM, Smol JP (eds) (2001a) Tracking environmental change using lake sediments. Basin analysis, coring, and chronological techniques. Developments in paleoenvironmental research, vol 1. Kluwer, Dordrecht

    Google Scholar 

  • Last WM, Smol JP (eds) (2001b) Tracking environmental change using lake sediments. Physical and geochemical methods. Developments in paleoenvironmental research, vol 2. Kluwer, Dordrecht

    Google Scholar 

  • Leng MJ (ed) (2006) Isotopes in palaeoenvironmental research. Developments in paleoenvironmental research. Springer, Dordrecht

    Google Scholar 

  • Lewis IF, Cocke EC (1929) Pollen analysis of Dismal Swamp peat. J Elisha Mitchell Sci Soc 45:37–56

    Google Scholar 

  • Liepelt S, Cheddadi R, de Beaulieu J-L, Fady B, Gömöry D, Hussendörfer E, Konnert M, Litt T, Longauer R, Terhürne-Berson R, Ziegenhagen B (2009) Postglacial range expansion and its genetic imprints in Abies alba (Mill.)—a synthesis from palaeobotanic and genetic data. Rev Palaeobot Palynol 153:139–149

    Article  Google Scholar 

  • Livingstone DA (1955) A lightweight piston sampler for lake deposits. Ecology 36:137–139

    Article  Google Scholar 

  • Livingstone DA (1968) Some interstadial and postglacial pollen diagrams from eastern Canada. Ecol Monogr 38:87–125

    Article  Google Scholar 

  • Lotter AF (1991) Absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quat Res 35:321–330

    Article  Google Scholar 

  • Lotter AF (1999) Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Veget Hist Archaeobot 8:165–184

    Article  Google Scholar 

  • Lotter AF, Ammann B, Hajdas I, Sturm M, van Leeuwen JFN (1995) Faulenseemoos revisited: new results from an old site. In: Robertson A-M, Hackens T, Hicks S, Risberg J, Åkerlund A (eds) Landscapes and life. Studies in honour of Urve Miller. PACT 50. Council of Europe, Rixensart, Belgium, pp 133–144

    Google Scholar 

  • Lotter AF, Birks HJB (2003a) Holocene sediments of Sägistalsee, a small lake at the present-day tree-line in the Swiss Alps. J Paleolimnol 30:253–260

    Article  Google Scholar 

  • Lotter AF, Birks HJB (2003b) The Holocene palaeolimnology of Sägistalsee and its environmental history—a synthesis. J Paleolimnol 30:333–342

    Article  Google Scholar 

  • Lotter AF, Kienast F (1990) Validation of a forest succession model by means of annually laminated sediments. Geol Survey Finl Spec Pap 14:25–31

    Google Scholar 

  • Lotter AF, Renberg I, Hansson H, Stöckli R, Sturm M (1997) A remote controlled freeze corer for sampling unconsolidated surface sediments. Aquat Sci 59:295–303

    Article  Google Scholar 

  • Lundqvist G (1928) Studier i Ölands myrmarker. Sver Geol Unders Series C 353:1–183

    Google Scholar 

  • Lundqvist G (1951) Lennart von Post 16.6 1884–11.1 1951. Svensk Geografisk Årsbok 1951:96–106

    Google Scholar 

  • Lundqvist J (1996) Von Post, Ernst Jakob Lennart. Svensk Biografisktlexikon 29:480–487

    Google Scholar 

  • Lynch EA (1998) Origin of a park-forest vegetation mosaic in the Wind River Range, Wyoming. Ecology 79:1320–1338

    Google Scholar 

  • MacDonald GM (1993a) Fossil pollen analysis and the reconstruction of plant invasions. Adv Ecol Res 24:67–110

    Article  Google Scholar 

  • MacDonald GM (1993b) Methodological falsification and the interpretation of paleoecological records—the cause of the early Holocene birch decline in western Canada. Rev Palaeobot Palynol 79:83–97

    Article  Google Scholar 

  • MacDonald GM (2001) Conifer stomata. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators. Developments in paleoenvironmental research, vol 2. Kluwer, Dordrecht, pp 32–47

    Google Scholar 

  • Magri D, Di Rita F, Aranbarri J, Fletcher WJ, González-Sampériz P (2017) Quaternary disappearance of tree taxa from southern Europe: timing and trends. Quat Sci Rev 163:23–55

    Article  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  Google Scholar 

  • Maher LJ (1972) Absolute pollen diagrams of Redrock Lake, Boulder County, Colorado. Quat Res 2:531–553

    Article  Google Scholar 

  • Maher LJ (1981a) Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Palaeobot Palynol 32:153–191

    Article  Google Scholar 

  • Maher LJ (1981b) The confidence limit is a necessary statistic for relative and absolute pollen data. In: Proceedings IVth international palynological conference, Lucknow (1976–1977) 3, pp 152–162

  • Maher LJ, Heiri O, Lotter AF (2012) Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques. Developments in paleoenvironmental research, vol 5. Springer, Dordrecht, pp 143–166

    Chapter  Google Scholar 

  • Malmström C (1943) Henrik Hesselman. Kungliga Lantbruksakademiens Tidskrift 4:3–7

    Google Scholar 

  • Malmström C (1944) Henrik Hesselman 28/1 1874–11/7 1943. Norrlands Skogsvårdsförbunds Tidskrift 1:1–17

    Google Scholar 

  • Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3:109–128

    Article  Google Scholar 

  • Manten AA (1967) Lennart von Post and the foundation of modern palynology. Rev Palaeobot Palynol 1:11–22

    Article  Google Scholar 

  • Manten AA (1969) Bibliography of palaeopalynology 1836–2966. Rev Palaeobot Palynol 8:1–572

    Google Scholar 

  • Mariani M, Connor SE, Theuerkauf M, Kuneš P, Fletcher M-S (2016) Testing quantitative pollen dispersal models in animal-pollinated vegetation mosaics: an example from temperate Tasmania, Australia. Quat Sci Rev 154:214–225

    Article  Google Scholar 

  • Markgraf V (2016) First pollen record in South America. Commentary: Die Zeichenschrift der Pollenstatistik. Front Earth Sci 4:100

    Article  Google Scholar 

  • Marquer L, Gaillard M-J, Sugita S et al (2014) Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quat Sci Rev 90:199–216

    Article  Google Scholar 

  • Marshall JEA (2005) Arthur Raistrick: Britain’s premier palynologist. In: Bowden AJ, Burek CV, Wilding R (eds) History of palaeobotany: selected essays. Geol Soc London Spec Publ 241, London, pp 161–179

    Google Scholar 

  • Matthias I, Giesecke T (2014) Insights into pollen source area, transport and deposition from modern pollen accumulation rates in lake sediments. Quat Sci Rev 87:12–23

    Article  Google Scholar 

  • Matthias I, Nielsen AB, Giesecke T (2012) Evaluating the effect of flowering age and forest structure on pollen productivity estimates. Veget Hist Archaeobot 12:471–484

    Article  Google Scholar 

  • Mazier F, Gaillard M-J, Kuneš P, Sugita S, Trondman A-K, Broström A (2012) Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev Palaeobot Palynol 187:38–49

    Article  Google Scholar 

  • McAndrews JH (1966) Postglacial history of prairie, savanna, and forest in northwestern Minnesota. Mem Torrey Bot Club 22:1–72

    Google Scholar 

  • McAndrews JH (1988) Human disturbance of North American forests and grasslands: the fossil pollen record. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 673–697

    Chapter  Google Scholar 

  • McAndrews JH (2006) Gunnar Erdtman’s last pollen diagram: location, location, location. Can Assoc Palynol Newslett 29:8–9

    Google Scholar 

  • McAndrews JH, Berti AA, Norris G (1973) Key to the Quaternary pollen and spores of the Great Lakes Region. Life science miscellaneous publication. Royal Ontario Museum, Toronto

    Google Scholar 

  • Mehl IK, Hjelle KL (2016) From deciduous forest to open landscape: application of new approaches to help understand cultural landscape development in western Norway. Veget Hist Archaeobot 25:153–176

    Article  Google Scholar 

  • Melles M, Brigham-Grette J, Minyuk PS et al (2012) 2.8 million years of arctic climate change from Lake El’Gygytgyn, NE Russia. Science 337:315–320

    Article  Google Scholar 

  • Miller PA, Giesecke T, Hickler T, Bradshaw RHW, Smith B, Seppä H, Valdes PJ, Sykes MT (2008) Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. J Ecol 96:247–259

    Article  Google Scholar 

  • Mitchell FJG (1988) The vegetational history of the Killarney oakwoods, SW Ireland: evidence from fine spatial resolution pollen analysis. J Ecol 76:415–436

    Article  Google Scholar 

  • Mitchell FJG (2005) How open were European primeval forests? Hypothesis testing using palaeoecological data. J Ecol 93:168–177

    Article  Google Scholar 

  • Mitchell FJG (2011) Exploring vegetation in the fourth dimension. Trends Ecol Evol 26:45–52

    Article  Google Scholar 

  • Mitchell FJG, Cole E (1998) Reconstruction of long-term successional dynamics of temperate woodland in Białowieża Forest, Poland. J Ecol 86:1042–1059

    Article  Google Scholar 

  • Moe D (1970) Post-glacial immigration of Picea abies into Fennoscandia. Bot Not 123:61–66

    Google Scholar 

  • Moore PD, Webb JA (1978) An illustrated guide to pollen analysis. Hodder & Stoughton, London

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Mortensen MF, Birks HH, Christensen C, Holm J, Noe-Nygaard N, Odgaard BV, Olsen J, Rasmussen KL (2011) Lateglacial vegetation development in Denmark—new evidence based on macrofossils and pollen from Slotseng, a small-scale site in southern Jutland. Quat Sci Rev 30:2534–2550

    Article  Google Scholar 

  • Mrotzek A, Couwenberg J, Theuerkauf M, Joosten H (2016) MARCO POLO—a new and simple tool for pollen-based stand-scale vegetation reconstruction. Holocene 27:321–330

    Article  Google Scholar 

  • Myrbo A (2004) Pollen spike preparations and spiking pollen samples. Limnological Research Center Core Facility, University of Minnesota, Minneapolis

    Google Scholar 

  • Nesje A (1992) A piston corer for lacustrine and marine sediments. Arct Alp Res 24:257–259

    Article  Google Scholar 

  • Nielsen AB (2003) Pollen based quantitative estimation of land cover. PhD thesis, Copenhagen University, Copenhagen

  • Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes at c.ad 1800: an attempt to validate the POLLSCAPE model. J Biogeogr 31:1693–1709

    Article  Google Scholar 

  • Nielsen AB, Giesecke T, Theuerkauf M et al (2012) Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into old questions. Quat Sci Rev 47:131–149

    Article  Google Scholar 

  • Nielsen AB, Møller PF, Giesecke T, Stavngaard B, Fontana SL, Bradshaw RHW (2010) The effect of climate conditions on inter-annual flowering variability monitored by pollen traps below the canopy in Draved Forest, Denmark. Veget Hist Archaeobot 19:309–323

    Article  Google Scholar 

  • Nielsen AB, Odgaard BV (2004) The use of historical analogues for interpreting fossil pollen records. Veget Hist Archaeobot 13:33–43

    Article  Google Scholar 

  • Nilsson T (1935) Die pollenanalytische Zonengliederung der spät- und postglazialen Bildungen Schonens. Geol Fören i Stockh Förhandl 57:385–562

    Article  Google Scholar 

  • Nilsson T (1948) On the application of the Scanian post-glacial zone system to Danish pollen-diagrams. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 5:1–53

    Google Scholar 

  • Nilsson T (1964) Entwicklungsgeschichtliche Studien im Ageröds Mosse, Schonen. Lunds Universitets Årsskrift 59:1–34

    Google Scholar 

  • Nipkov F (1927) Über das Verhalten der Skelette planktischen Kieselalgen im geschichteten Tiefenschlamm des Zurich- und Baldeggersees. Schweiz Z Hydrol 4:11–120

    Google Scholar 

  • Nordlund C (2014) Peat bogs as geological archives: Lennart von Post et al. and the development of quantitative pollen analysis during World War I. Earth Sci Hist 33:187–200

    Article  Google Scholar 

  • Nordlund C (2017) Four points on Lennart von Post and the invention of “pollen statistics”. Veget Hist Archaeobot. doi:https://doi.org/10.1007/s00334-017-0628-9

    Google Scholar 

  • O’Sullivan PE (1983) Annually laminated lake sediments and the study of Quaternary environmental change—a review. Quat Sci Rev 1:245–313

    Article  Google Scholar 

  • O’Sullivan PE, Oldfield F, Battarbee RW (1973) Preliminary studies of Lough Neagh sediments. I: stratigraphy, chronology and pollen analysis. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 267–278

    Google Scholar 

  • Odgaard BV, Rasmussen P (2000) Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. J Ecol 88:733–748

    Article  Google Scholar 

  • Oldfield F, Huckerby E (1979) The Quaternary palaeobotany of the French Pays Basque: a summary. Pollen Spores 21:337–360

    Google Scholar 

  • Overballe-Petersen MV, Nielsen AB, Bradshaw RHW (2013) Quantitative vegetation reconstruction from pollen analysis and historical inventory data around a Danish small forest hollow. J Veget Sci 24:755–771

    Article  Google Scholar 

  • Paciorek CJ, McLachlan JS (2009) Mapping ancient forests: Bayesian inference for spatio-temporal trends in forest composition using the fossil pollen proxy record. J Am Stat Assoc 104:608–622

    Article  Google Scholar 

  • Pardoe HS, Giesecke T, van der Knaap WO et al (2010) Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. Veget Hist Archaeobot 19:271–283

    Article  Google Scholar 

  • Parshall T (2002) Late Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83:1386–1398

    Article  Google Scholar 

  • Parsons RW, Gordon AD, Prentice IC (1983) Statistical uncertainty in forest composition estimates obtained from fossil pollen spectra via the R-value model. Rev Palaeobot Palynol 40:177–189

    Article  Google Scholar 

  • Parsons RW, Prentice IC (1981) Statistical approaches to R-values and the pollen-vegetation relationship. Rev Palaeobot Palynoly 32:127–152

    Article  Google Scholar 

  • Parsons RW, Prentice IC, Saarnisto M (1980) Statistical studies on pollen representation in Finnish lake sediments in relation to forest inventory data. Ann Bot Fenn 17:379–393

    Google Scholar 

  • Paus A (1988) Late Weichselian vegetation, climate, and floral migration at Sandvikvatn, North Rogaland, southwestern Norway. Boreas 17:113–139

    Article  Google Scholar 

  • Peck RM (1973) Pollen budget studies in a small Yorkshire catchment. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 43–60

    Google Scholar 

  • Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. Holocene 3:1–13

    Article  Google Scholar 

  • Peglar SM, Birks HJB (1993) The mid-Holocene Ulmus fall at Diss Mere, south-east England—disease and human impact? Veget Hist Archaeobot 2:61–68

    Google Scholar 

  • Pennington W (1973) Absolute pollen frequencies in the sediments of lakes of different morphometry. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 79–104

    Google Scholar 

  • Pennington W, Bonny AP (1970) Absolute pollen diagram from the British Late-glacial. Nature 226:871–873

    Article  Google Scholar 

  • Perry GLW, Wainwright J, Etherington TR, Wilmshurst JM (2016) Experimental simulation: using generative modelling and palaeoecological data to understand human-environmental interactions. Front Ecol Evol 4:109

    Article  Google Scholar 

  • Petit RJ, Brewer S, Bordács S et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156:49–74

    Article  Google Scholar 

  • Pidek IA, Svitavská-Svobodová H, van der Knaap P et al (2010) Variation in annual pollen accumulation rates of Fagus along a N–S transect in Europe based on pollen traps. Veget Hist Archaeobot 19:259–270

    Article  Google Scholar 

  • Pilcher JR, Smith AG, Pearson GW, Crowder AS (1971) Land clearance in the Irish Neolithic: new evidence and interpretation. Science 172:560–562

    Article  Google Scholar 

  • Prentice IC (1983) Postglacial climatic change: vegetation dynamics and the pollen record. Prog Phys Geogr 7:273–286

    Article  Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size—toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Prentice IC (1986) Forest-composition calibration of pollen data. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 799–816

    Google Scholar 

  • Prentice IC (1988a) Paleoecology and plant-population dynamics. Trends Ecol Evol 3:343–345

    Article  Google Scholar 

  • Prentice IC (1988b) Records of vegetation in time and space: the principles of pollen analysis. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 17–42

    Chapter  Google Scholar 

  • Prentice IC, Berglund BE, Olsson T (1987) Quantitative forest composition sensing characteristics of pollen samples from Swedish lakes. Boreas 16:43–54

    Article  Google Scholar 

  • Prentice IC, Parsons RW (1983) Maximum-likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39:1051–1057

    Article  Google Scholar 

  • Prentice IC, Webb T (1986) Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci 1:35–43

    Article  Google Scholar 

  • Punt W, Blackmore S, Clarke GCS et al (1976–2009) The north-west European pollen flora, vol 1–9. Elsevier, Amsterdam

  • Raistrick A, Blackburn KB (1932) Analysis of some Lake District peats. North Western Nat 7:94–97

    Google Scholar 

  • Ralska-Jasiewiczowa M (1983) Isopollen maps for Poland: 0–11,000 yearsbp. New Phytol 94:133–175

    Article  Google Scholar 

  • Ralska-Jasiewiczowa M, Goslar T, Madeyska T, Starkel L (eds) (1998) Lake Gościąż, Central Poland: a monographic study. W Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Ralska-Jasiewiczowa M, Latałowa M, Wasylikowa K, Tobolski K, Madeyska E, Wright HE, Turner C (eds) (2004) Late glacial and Holocene history of vegetation in Poland based on isopollen maps. W Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Ralska-Jasiewiczowa M, van Geel B, Goslar T, Kuc T (1992) The record of the Late Glacial/Holocene transition in the varved sediments of Lake Gosciaz, Central Poland. Sver Geol Unders Series C 81:257–268

    Google Scholar 

  • Rasmussen P (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: vegetation and land-use history inferred from pollen data. Holocene 15:1116–1129

    Google Scholar 

  • Rasmussen P, Bradshaw EG (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: study aims, natural and cultural setting, chronology and soil erosion history. Holocene 15:1105–1115

    Article  Google Scholar 

  • Renberg I (1981) Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10:255–258

    Article  Google Scholar 

  • Renberg I (1991) The HON-Kajak sediment corer. J Paleolimnol 6:167–170

    Article  Google Scholar 

  • Renberg I, Hansson H (2008) The HTH sediment corer. J Paleolimnol 40:655–659

    Article  Google Scholar 

  • Renberg I, Hansson H (2010) Freeze corer No. 3 for lake sediments. J Paleolimnol 44:731–736

    Article  Google Scholar 

  • Richards K (2017) Report on the conference to mark the Centenary (1916–2016) of pollen analysis and the legacy of Lennart von Post, Stockholm, November 24–25th 2016. AASP Palynol Soc Newsl 50:21–24

    Google Scholar 

  • Ritchie JC (1977) The modern and late Quaternary vegetation of the Campbell-Dolomite uplands, near Inuvik, NWT Canada. Ecol Monogr 42:499–534

    Google Scholar 

  • Ritchie JC (1984) Past and present vegetation of the far northwest of Canada. University of Toronto Press, Toronto

    Google Scholar 

  • Ritchie JC (1991) Paleoecology: status and prospect. In: Shane LCK, Cushing EJ (eds) Quaternary landscapes. University of Minnesota Press, Minneapolis, pp 113–128

    Google Scholar 

  • Ritchie JC (1995) Current trends in studies of long-term plant community dynamics. New Phytol 130:469–494

    Article  Google Scholar 

  • Rowley JR, Rowley J (1956) Vertical migration of spherical and aspherical pollen in a Sphagnum bog. Proc Minn Acad Sci 24:29–30

    Google Scholar 

  • Rudolph K (1930) Grundzüge der nacheiszeitlichen Waldgeschichte Mitteleuropas. Beih Bot Centbl 47:111–176

    Google Scholar 

  • Rudolph K (1932) Die natürliche Holzartenverbreitung in Deutschland nach den bisherigen Ergebnissen der Pollenanalyse. Forstarchiv 1/2:1–8

    Google Scholar 

  • Rudolph K, Firbas F, Sigmond H (1928) Das Koppenplanmoor im Riesengebirge. Lotos 76:173–222

    Google Scholar 

  • Ruosch M, Spahni R, Joos F, Henne PD, van der Knaap WO, Tinner W (2016) Past and present evolution of Abies alba forests in Europe—comparison of a dynamic vegetation model with palaeo data and observations. Glob Chang Biol 22:727–740

    Article  Google Scholar 

  • Saarnisto M (1986) Annually laminated lake sediments. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 343–370

    Google Scholar 

  • Salmi M (1962) Investigations on the distribution of pollen in an extensive raised bog. Comptes Rendus de la Société Géologique de Finlande 34:159–193

    Google Scholar 

  • Sangster AG, Dale HM (1961) A preliminary study of differential pollen grain preservation. Can J Bot 39:35–43

    Article  Google Scholar 

  • Sangster AG, Dale HM (1964) Pollen grain preservation of underrepresented species in fossil spectra. Can J Bot 42:427–449

    Article  Google Scholar 

  • Sears PB (1930) A record of postglacial climate in North America. Ohio J Sci 32:63–66

    Google Scholar 

  • Sears PB (1932) Post-glacial climate in eastern North America. Ecology 13:1–6

    Article  Google Scholar 

  • Sears PB (ed) (1943–1954) Pollen analysis circular and pollen and spore circular, vol 1–18. Oberlin, Ohio

  • Sears PB (1948) Forest sequence and climatic change in northeastern North America since early Wisconsin time. Ecology 29:326–373

    Article  Google Scholar 

  • Sears PB (1952) Palynology in southern North America. I: archaeological horizons in the basin of Mexico. Geol Soc Am Bull 63:241–254

    Article  Google Scholar 

  • Selling OH (1946) Studies in Hawaiian pollen statistics part I: the spores of the Hawaiian pteridophytes. Bernice P Bishop Museum special publication 37. Bernice P Bishop Museum, Honolulu

    Google Scholar 

  • Selling OH (1947) Studies in Hawaiian pollen statistics part II: the pollens of the Hawaiian Phanerogams. Bernice P Bishop Museum special publication 38. Bernice P Bishop Museum, Honolulu

    Google Scholar 

  • Selling OH (1948) Studies in Hawaiian pollen statistics part III: on the late Quaternary history of the Hawaiian vegetation. Bernice P Bishop Museum special publication 39. Bernice P Bishop Museum, Honolulu

    Google Scholar 

  • Selling OH (1951) Lennart von Post 16/6 188–11/1 1951. Svensk Bot Tidskr 45:275–296

    Google Scholar 

  • Seppä H (1996) Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174:1–96

    Google Scholar 

  • Seppä H, Alenius T, Bradshaw RHW, Giesecke T, Heikkilä M, Muukkonen P (2009a) Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. J Ecol 97:629–640

    Article  Google Scholar 

  • Seppä H, Alenius T, Muukkonen P, Giesecke T, Miller PA, Ojala AEK (2009b) Calibrated pollen accumulation rates as a basis for quantitative tree biomass reconstructions. Holocene 19:209–220

    Article  Google Scholar 

  • Seppä H, Bennett KD (2003) Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Prog Phys Geogr 27:548–579

    Article  Google Scholar 

  • Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1501–1516

    Article  Google Scholar 

  • Sernander R (1890) Om förekomsten af subfossila stubbar på svenska insjöars bottem. Bot Not 1890:10–20

    Google Scholar 

  • Sernander R (1894) Studier öfver den Gotländska vegetationens utvecklingshistoria. Akademiska afhandling, Uppsala

    Google Scholar 

  • Shane LCK (2010) Paul B. Sears’ contribution to the development of paleocology. Ohio J Sci 109:76–87

    Google Scholar 

  • Shuman B, Newby P, Huang YS, Webb T (2004) Evidence for the close climatic control of New England vegetation history. Ecology 85:1297–1310

    Article  Google Scholar 

  • Sköld E, Lagerås P, Berglund BE (2010) Temporal cultural landscape dynamics in a marginal upland area: agricultural expansions and contractions inferred from palynological evidence at Yttra Berg, southern Sweden. Veget Hist Archaeobot 19:121–136

    Article  Google Scholar 

  • Smit A, Wijmstra TA (1970) Application of transmission electron microscope analysis to the reconstruction of former vegetation. Acta Bot Neerl 19:867–876

    Article  Google Scholar 

  • Smith AG, Pilcher JR (1973) Radiocarbon dates and vegetational history of the British Isles. New Phytol 72:903–914

    Article  Google Scholar 

  • Smith AG, Willis EH (1961–1962) Radiocarbon dating of the Fallahogy landnam phase. Ulster J Archaeol 24–25:16–24

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Smol JP, Birks HJB, Last WM (eds) (2001a) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators. Developments in paleoenvironmental research, vol 3. Kluwer, Dordrecht

    Google Scholar 

  • Smol JP, Birks HJB, Last WM (eds) (2001b) Tracking environmental change using lake sediments. Zoological indicators. Developments in paleoenvironmental research, vol 4. Kluwer, Dordrecht

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analyses. Pollen Spores 13:615–621

    Google Scholar 

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (1998) Modelling pollen representation of vegetation. Paläoklimaforschung 27:1–16

    Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation. II: all you need is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Sugita S, MacDonald GM, Larsen CPS (1997) Reconstruction of fire disturbance and forest succession from fossil pollen in lake sediments: potential and limitations. In: Clark JS, Cachier H, Goldammer JG, Stocks BJ (eds) Sediment records of biomass burning and global change. Springer, Berlin, pp 387–412

    Chapter  Google Scholar 

  • Swain AM (1973) A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Quat Res 3:383–396

    Article  Google Scholar 

  • Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290

    Article  Google Scholar 

  • Szafer W (1935) The significance of isopollen lines for the investigation of the geographic distribution of trees in the post-glacial period. Bull de l’Acad Pol des Sci B 3:235–239

    Google Scholar 

  • Tallis JH (1991) Plant community history. Chapman and Hall, London

    Google Scholar 

  • Tauber H (1965) Differential pollen dispersion and the interpretation of pollen diagrams. Danm Geol Unders II 89:1–69

    Google Scholar 

  • Tauber H (1967) Investigations of the mode of pollen transfer in forested areas. Rev Palaeobot Palynol 3:277–286

    Article  Google Scholar 

  • Tauber H (1974) A static non-overload pollen collector. New Phytol 73:359–369

    Article  Google Scholar 

  • Tauber H (1977) Investigations of aerial pollen transport in a forested region. Dansk Botanisk Arkiv 32:1–121

    Google Scholar 

  • Ter Braak CJF, Juggins S (1993) Weighted averaging partial least-squares regression (WA-PLS)—an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270:485–502

    Article  Google Scholar 

  • Ter Braak CJF, Juggins S, Birks HJB, van der Voet H (1993) Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environment calibration. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Elsevier, Amsterdam, pp 529–560

    Google Scholar 

  • Theuerkauf M, Couwenberg J (2017) The extended downscaling approach: a new R-tool for pollen-based reconstruction of vegetation patterns. Holocene 27:1252–1258

    Article  Google Scholar 

  • Theuerkauf M, Couwenberg J, Kuparinen A, Liebscher V (2016) A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Veget Hist Archaeobot 25:541–553

    Article  Google Scholar 

  • Theuerkauf M, Dräger N, Kienel U, Kuparinen A, Brauer A (2015) Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25:733–744

    Article  Google Scholar 

  • Theuerkauf M, Joosten H (2009) Substrate dependency of lateglacial forests in north-east Germany: untangling vegetation patterns, ecological amplitudes and pollen dispersal in the past by downscaling regional pollen. J Biogeogr 36:942–953

    Article  Google Scholar 

  • Theuerkauf M, Kuparinen A, Joosten H (2012) Pollen productivity estimates strongly depend on assumed pollen dispersal. Holocene 23:14–24

    Article  Google Scholar 

  • Theuerkauf M, Bos JAA, Jahns S, Janke W, Kuparinen A, Stebich M, Joosten H (2014) Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe. Quat Sci Rev 90:183–198

    Article  Google Scholar 

  • Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439

    Article  Google Scholar 

  • Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505

    Article  Google Scholar 

  • Tollefsrud MM, Kissling R, Gugerli F et al. (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150

    Article  Google Scholar 

  • Torres VT (2006) Pliocene-Pleistocene evolution of flora, vegetation and climate: a palynological and sedimentological study of a 586-m core from the Bogotá Basin, Colombia. PhD thesis, University of Amsterdam, Amsterdam

  • Toulmin S (1972) Human understanding: the collective use and evolution of concepts. Clarendon Press, Oxford

    Google Scholar 

  • Trautmann W (1952) Pollenanalytische Untersuchungen über die Fichtenwälder des Bayerischen Waldes. Planta 41:83–124

    Article  Google Scholar 

  • Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffnungen der mitteleuropäischen Coniferen. Flora 140:523–553

    Google Scholar 

  • Traverse A (2007) Paleopalynology, 2nd edn. Springer, New York

    Google Scholar 

  • Troels-Smith J (1955) Karakterisering af løse jordarter. Danm Geol Unders IV 3:1–73

    Google Scholar 

  • Trondman A-K, Gaillard M-J, Mazier F et al (2015) Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob Chang Biol 21:676–697

    Article  Google Scholar 

  • Tsukada M (1983) Late-Quaternary spruce decline and rise in Japan and Sakhalin. Bot Mag Tokyo 96:127–133

    Article  Google Scholar 

  • Turner J, Peglar SM (1988) Temporally-precise studies of vegetation history. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 753–777

    Chapter  Google Scholar 

  • Tzedakis PC, Hooghiemstra H, Pälike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat Sci Rev 25:3416–3430

    Article  Google Scholar 

  • Usinger H (1977) Bölling-Interstadial und Laacher Bimstuff in einem neuen Spätglazial-Profil aus dem Vallensgård Mose/Bornholm. Mit Pollen grössenstatischer Trennung der Birken. Danm Geol Unders Årbog 1977:5–29

    Google Scholar 

  • Valentine DH (1970) Kathleen Bever Blackburn. Watsonia 8:69–70

    Google Scholar 

  • Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120

    Article  Google Scholar 

  • Van Geel B (1986) Application of fungal and algal remains and other microfossils in palynological analyses. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 497–505

    Google Scholar 

  • Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Tterrestrial, algal, and siliceous indicators. Developments in paleoenvironmental research, vol 3. Kluwer, Dordrecht, pp 99–119

    Chapter  Google Scholar 

  • Van der Wiel AM, Wijmstra TA (1987a) Palynology of the 112.8–197.8 M interval of the core Tenaghi Philippon III, Middle Pleistocene of Macedonia. Rev Palaeobot Palynol 52:89–117

    Article  Google Scholar 

  • Van der Wiel AM, Wijmstra TA (1987b) Palynology of the lower part (78–120 M) of the core Tenaghi Philippon II, Middle Pleistocene of Macedonia, Greece. Rev Palaeobot Palynol 52:73–88

    Article  Google Scholar 

  • Van der Hammen T, Wijmstra TA, Zagwijn WH (1971) The floral record of the Late Cenozoic of Europe. In: Turekian KK (ed) The Late Cenozoic glacial ages. Yale University Press, New Haven, pp 391–424

    Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN, Svitavská-Svobodová H et al (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veget Hist Archaeobot 19:285–307

    Article  Google Scholar 

  • Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner B, Liu Z (2012) No-analog climates and shifting realized niches during the late Quaternary: implications for 21st-century predictions by species distribution models. Glob Chang Biol 18:1698–1713

    Article  Google Scholar 

  • Von Post L (1903a) En profil genom högsta Litorinavallen på södra Gotland. Geol Fören i Stockh Förhandl 25:257–258

    Google Scholar 

  • Von Post L (1903b) En profil genom högsta Litorinavallen på södra Gotland. Geol Fören i Stockh Förhandl 25:339–372

    Article  Google Scholar 

  • Von Post L (1909) Stratigraphische Studien über Torfmoore in Närke. Geol Fören i Stockh Förhandl 31:629–706

    Article  Google Scholar 

  • Von Post L (1913) Über stratigraphische zweiglierderung schwedisher Hochmoore. Sver Geol Unders Series C 6:1–52

    Google Scholar 

  • Von Post L (1916a) Einige Südschwedischen Quellmoore. Bull Geol Inst Uppsala Univ 15:219–278

    Google Scholar 

  • Von Post L (1916b) Mötet den 2 november 1916. Geol Fören i Stockh Förhandl 38:383–394

    Article  Google Scholar 

  • Von Post L (1918) Skogsträdpollen i sydsvenska torvmosselagerföljder. Förhandlingar ved de 16. Skandinavia Naturforskermøte 1916:433–465

  • Von Post L (1924) Ur de sydsvenska skogarnas regionala historia under post-arktisk tid. Geol Fören i Stockh Förhandl 46:83–128

    Article  Google Scholar 

  • Von Post L (1926a) Einige Aufgaben der regionalen Moorforschung. Sver Geol Unders Series C 337:1–41

    Google Scholar 

  • Von Post L (1926b) Medel och mål i skånsk torvmosseforskning. Sydsvenska Geografiska Sällskapets Årsbok 1926:76–114

  • Von Post L (1929) Die Zeichenschrift der Pollenstatistik. Geol Fören i Stockh Förhandl 51:543–565

    Article  Google Scholar 

  • Von Post L (1930) Die postarktische Geschichte der europäischen Wälder nach den vorliegenden Pollendiagrammen. Meddelanden från Stockholms Högskolas Geologiska Institut 16:1–27

    Google Scholar 

  • Von Post L (1933a) A Gothiglacial transgression of the sea in South Sweden. Geogr Ann 15:225–254

    Google Scholar 

  • Von Post L (1933b) Den svenska skogen efter istiden. Studentföreningen Verdandis Småskrifter 357:193–217

    Google Scholar 

  • Von Post L (1944) Pollenanalytiska perspektiv på Jordens klimathistoria. Ymer 64:79–113

    Google Scholar 

  • Von Post L (1946) The prospect for pollen analysis in the study of the Earth’s climatic history. New Phytol 45:193–217

    Article  Google Scholar 

  • Von Post L (1947) Hallands marina fornstränder. Geol Fören i Stockh Förhandl 69:293–320

    Article  Google Scholar 

  • Von Post L (1950) Kritik. Knut Fægri och Johs. Iversen: textbook of modern pollen analysis. Geol Fören i Stockh Förhandl 72:363–364

    Article  Google Scholar 

  • Von Post L (1967) Forest tree pollen in South Swedish peat bog deposits. Pollen Spores 9:375–401 (Translated by M. B. Davis and K. Fægri with introduction by K. Fægri and J. Iversen)

    Google Scholar 

  • Von Post L, Granlund E (1926) Södra Sveriges Torvillgångar, vol I. Sver Geol Unders Series C 335:1–127

    Google Scholar 

  • Von Post L, Sernander R (1910) Pflanzen-physiognomische Studien auf Torfmooren in Närke. In: Proceedings of the international geological congress excursion A7. Stockholm, p 48

  • Von Post L, von Walterstorff A, Lindquist S (1925) Bronsaldersmanteln fram Gerumsberget i Västergötland. Kungliga Vitterhets, Historie och Antikvietetsakademiens Monografiserie 15:1–39

    Google Scholar 

  • Walker D (1982a) The development of resilience in burned vegetation. In: Newman EI (ed) Plant community as a working mechanism. Blackwell, Oxford, pp 27–43

    Google Scholar 

  • Walker D (1982b) Vegetation’s fourth dimension. New Phytol 90:419–429

    Article  Google Scholar 

  • Walker D (1990) Purpose and method in Quaternary palynology. Rev Palaeobot Palynol 64:13–27

    Article  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    Article  Google Scholar 

  • Wasylikowa K (1964) Roslinmósć i klimat Późnego w cŕodkowej polsce na podstawie badán w Witowie koło Leçzucy [Vegetation and climate of the late-glacial in central Poland based on investigations made at Witów near Leçzyca]. Bulletin Peryglacjalny 13:262–417

    Google Scholar 

  • Wasylikowa K, Starkel L, Niedziałkowska E, Skiba S, Stworzewicz E (1985) Environmental changes in the Vistula Valley at Pleszów caused by Neolithic man. Przeglad Archeologiczny 33:19–55

    Google Scholar 

  • Watts WA (1970) The full-glacial vegetation of northwestern Georgia. Ecology 51:17–33

    Article  Google Scholar 

  • Watts WA (1973) Rates of change and stability in vegetation in the perspective of long periods of time. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 195–206

    Google Scholar 

  • Watts WA (1977) The Late Devensian vegetation of Ireland. Philos Trans R Soc Lond B 280:273–293

    Article  Google Scholar 

  • Watts WA (1978) Plant macrofossils and Quaternary palaeoecology. In: Walker D, Guppy JC (eds) Biology and Quaternary environments. Australian Academy of Sciences, Canberra, pp 53–67

    Google Scholar 

  • Watts WA (1979) Late Quaternary vegetation of central Appalachia and the New Jersey coastal plain. Ecol Monogr 49:427–469

    Article  Google Scholar 

  • Watts WA (1988) Europe. In: Huntley B, Webb T (eds) Vegetation history. Kluwer, Dordrecht, pp 155–192

    Chapter  Google Scholar 

  • Watts WA (2008) William Watts, Provost, Trinity College Dublin. A memoir. Lilliput/Hinds, Dublin

    Google Scholar 

  • Watts AS, Fraser GK (1933) Tree roots and the field layer. J Ecol 21:404–414

    Article  Google Scholar 

  • Watts WA, Winter TC (1966) Plant macrofossils from Kirchner Marsh, Minnesota—a paleoecological study. Geol Soc Am Bull 77:1339–1360

    Article  Google Scholar 

  • Watts WA, Wright HE (1966) Late-Wisconsin pollen and seed analysis from the Nebraska Sandhills. Ecology 47:202–210

    Article  Google Scholar 

  • Webb T, McAndrews JH (1976) Corresponding patterns of contemporary pollen and vegetation in central North America. Geol Soc Am Mem 145:267–299

    Google Scholar 

  • Webb T, Richard PH, Mott RJ (1983) A mapped history of Holocene vegetation in southern Quebec. Syllogeus 49:273–336

    Google Scholar 

  • Weber CA (1893) Über die diluviale Flora von Fahrenkrug in Holstein. Beibl Bot Jb 18:1–13

    Google Scholar 

  • Welten M (1944) Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröff Geobot Inst Rübel, Zürich 21:1–201

    Google Scholar 

  • Wesenberg-Lund C (1901) Studier over søkalk, bønnemalm og søgytje i danske indsøer. Meddel Dansk Geol Foren 2:1–180

    Google Scholar 

  • West RG (1957) Interglacial deposits at Bobbitshole, Ipswich. Philos Trans R Soc Lond B 241:1–31

    Article  Google Scholar 

  • West RG (1964) Inter-relations of ecology and Quaternary palaeobotany. J Ecol 52(Suppl):47–57

    Article  Google Scholar 

  • West RG (1980) Pleistocene forest history in East Anglia. New Phytol 85:571–622

    Article  Google Scholar 

  • Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30:261–272

    Article  Google Scholar 

  • Wijkander K (2017) Naturen inför rätta. Skandalen som skakade Vetenskapssverige. Fri Tanke Förlag, Sweden

    Google Scholar 

  • Wijmstra TA (1969) Palynology of the first 30 metres of a 120 m deep section in northern Greece. Acta Bot Neerl 18:511–527

    Article  Google Scholar 

  • Wijmstra TA, Smit A (1976) Palynology of the middle part (30–78 metres) of the 120 m deep section in northern Greece (Macedonia). Acta Bot Neerl 25:297–312

    Article  Google Scholar 

  • Williams JW, Blois JL, Shuman BN (2011) Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J Ecol 99:664–677

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Williams JW, Shuman BN, Webb T, Bartlein PJ, Leduc PL (2004) Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol Monogr 74:309–334

    Article  Google Scholar 

  • Willis KJ, Gillson L, Brncic TM (2004a) How “virgin” is virgin rainforest? Science 304:402–403

    Article  Google Scholar 

  • Willis KJ, Gillson L, Brncic TM (2004b) Virgin rainforests and conservation—Response. Science 305:944–944

    Article  Google Scholar 

  • Witte H (1905) Stratiotes aloides L. funnen i Sveriges postglaciala aflagringar. Geol Fören i Stockh Förhandl 27:432–451

    Article  Google Scholar 

  • Woodhead TW (1923) Botanical survey and ecology in Yorkshire. Naturalist 794:97–128

    Google Scholar 

  • Woodhead TW, Erdtman G (1926) Remains in the peat of the southern Pennines. Naturalist 835:245–253

    Google Scholar 

  • Wright HE (1967) A square-rod piston sampler for lake sediments. J Sediment Petrol 37:975–976

    Article  Google Scholar 

  • Wright HE (1974) Landscape development, forest fires, and wilderness management. Science 186:487–495

    Article  Google Scholar 

  • Wright HE (1980) Cores of soft lake sediments. Boreas 9:107–114

    Article  Google Scholar 

  • Wright HE (1991) Coring tips. J Paleolimnol 6:37–49

    Article  Google Scholar 

  • Wright HE (2010) High points in paleolimnological studies as viewed by a convert. J Paleolimnol 44:497–503

    Article  Google Scholar 

  • Wright HE, Mann DH, Glaser PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659

    Article  Google Scholar 

  • Xu Q, Zhang S, Gaillard M-J, Li M, Cao XY, Tian F, Li F (2016) Studies of modern pollen assemblages for pollen dispersal-deposition-preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: a review based on case studies in China. Quat Sci Rev 149:151–166

    Article  Google Scholar 

  • Yu Z (1997) Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils. Rev Palaeobot Palynol 96:241–254

    Article  Google Scholar 

  • Yu Z (2003) Late Quaternary dynamics of tundra and forest vegetation in the southern Niagara Escarpment, Canada. New Phytol 157:365–390

    Article  Google Scholar 

  • Zolitschka B, Francus P, Ojala AEK, Schimmelmann A (2015) Varves in lake sediments—a review. Quat Sci Rev 117:1–41

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based in part on the lectures we gave at the Centenary (1916–2016) of Pollen Analysis and the Legacy of Lennart von Post held at the Royal Swedish Academy of Sciences, Stockholm on 24–25 November 2016. This meeting was generously supported by the Linnaeus University, the Swedish Research Council, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, the Wenner-Gren Foundation, and the Royal Swedish Academy of Sciences. We are very grateful to Marie-José Gaillard and Kevin J Edwards for the invitation to present our lectures; to Hilary Birks for many helpful discussions and invaluable practical assistance; to the late Svend Th. Andersen, Lucie Čermákova, Kevin Edwards, the late Knut Fægri, Thomas Giesecke, the late Harry Godwin, the late Johs Iversen, Steve Jackson, Per Magnus Jørgensen, Pim de Klerk, the late Tage Nilsson, Anneli Poska, the late Bill Watts, and the late Herb Wright for valuable information about the early history of pollen analysis; to Kevin Edwards, an anonymous reviewer, and Felix Bittmann for comments and suggestions; and to Cathy Jenks for her hard work and meticulous help in preparing the manuscript. We appreciate access to archival material held at the Swedish Geological Survey, Uppsala; the Department of Geological Sciences, Stockholm University; Lund University; and the University of Bergen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. John B. Birks.

Additional information

Communicated by K. J. Edwards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 674 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birks, H.J.B., Berglund, B.E. One hundred years of Quaternary pollen analysis 1916–2016. Veget Hist Archaeobot 27, 271–309 (2018). https://doi.org/10.1007/s00334-017-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-017-0630-2

Keywords

Navigation