Skip to main content
Log in

Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Deschampsia antactica E. Desv. is one of the only two native vascular plants of Antarctica, having a disjunct distribution with South America. Its presence in different environmental conditions turns it into an interesting evolution model, particularly for genomic evolutionary studies. The repetitive DNA is a genome component that cause important changes in genome size and chromosome organization, and therefore, its variation is very important in group’s delimitation. Some tandem repetitive DNA sequences, known as satellite DNA (satDNAs) are shared between many groups of Poaceae (e.g., of these are the CON1, CON2, COM1, and COM2 sequences) highlighting its evolutionary component. This study aims to identify, classify, and characterize repetitive elements in the D. antarctica genome by clustering analysis of genome sequences, focusing on the CON1, CON2, COM1, and COM2. Repetitive DNA represented about 73.3% of the D. antarctica genome. All studied populations presented loci for the studied satDNAs but the distribution pattern showed differences that seem to be related to the geographic distribution. The analysis of CON/COM sequences in D. antarctica contributes to the understanding of these elements in Poaceae genomes and highlights the importance of changes in chromosome organization of repetitive DNA in populations with fragmented geographical distribution. The distribution of such chromosome changes may both reflect the process of colonization of D. antarctica in Antarctica and explain some evolutionary processes of differentiation in Deschampsia species complex in the Patagonia, which is still unresolved with other DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberdi M, Bravo LA, Gutiérrez A et al (2002) Ecophysiology of Antarctic vascular plants. Physiol Plant 115:479–486

    Article  CAS  PubMed  Google Scholar 

  • Alix K, Baurens F-C, Paulet F et al (1998) Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 41:854–864

    Article  CAS  PubMed  Google Scholar 

  • Amosova AV, Bolsheva NL, Samatadze TE et al (2015) Molecular cytogenetic analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PLoS ONE 10:e0138878

    Article  PubMed  PubMed Central  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii Genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Plant DNA C-values database. http://data.kew.org/cvalues. Accessed 24 April 2017

  • Bennett MD, Smith JB, Smith R (1982) DNA amounts of angiosperms from the Antarctic and South Georgia. Environ Exp Bot 22:307–318

    Article  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bostock C (1980) A function for satellite DNA? Trends Biochem Sci 5:117–119

    Article  CAS  Google Scholar 

  • Brandes A, Röder MS, Ganal MW (1995) Barley telomeres are associated with two different types of satellite DNA sequences. Chromosome Res 3:315–320

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Ulloa N, Zuñiga GE et al (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Cardone S, Sawatani P, Rush P et al (2008) Karyological studies in Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:427–433

    Article  Google Scholar 

  • Chiapella J (2007) A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: support for the recognition of Avenella and Vahlodea. Taxon 56:55–64

    Google Scholar 

  • Chiapella J, Zuloaga FO (2010) A Revision of Deschampsia, Avenella, and Vahlodea (Poaceae, Poeae, Airinae) in South America. Ann Mo Bot Gard 97:141–162

    Article  Google Scholar 

  • Chwedorzewska KJ (2006) Preliminary genetic study on species from genus Deschampsia from Antarctic (King George I.) and Arctic (Spitsbergen). Polar Biosci 19:142–147

    CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derks MFL, Smit S, Salis L et al (2015) The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol Evol 7:2321–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–129

    Article  CAS  PubMed  Google Scholar 

  • Dover GA (1986) Molecular drive in multigene families: How biological novelties arise, spread and are assimilated. Trends Genet 2:159–165

    Article  CAS  Google Scholar 

  • Emadzade K, Jang T-S, Macas J et al (2014) Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann Bot 114:1597–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evtushenko EV, Vershinin AV (2010) Heterogeneous organization of a tandem repeat family in subtelomeric heterochromatin of rye. Russ J Genet 46:1074–1076

    Article  CAS  Google Scholar 

  • Fasanella M, Premoli AC, Urdampilleta JD, González ML, Chiapella J (2017) How did a grass reach Antarctica? The Patagonian connection of Deschampsia antarctica (Poaceae). Bot J Linn Soc (in press)

  • Feitoza L, Guerra M (2011) Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica 139:305–314

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B 312:227–242

    Article  CAS  Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in Plants: more than Just Rubbish. Cytogenet Genome Res 146:153–170

    Article  CAS  PubMed  Google Scholar 

  • Gidekel M, Destefano-Beltrán L, García P et al (2003) Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7:459–469

    Article  CAS  PubMed  Google Scholar 

  • González ML, Urdampilleta JD, Fasanella M et al (2016) Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations. Polar Biol 39:1663–1677

    Article  Google Scholar 

  • Grebenstein B, Grebenstein O, Sauer W, Hemleben V (1995) Characterization of a highly repeated DNA component of perennial oats (Helictotrichon, Poaceae) with sequence similarity to a A-genome-specific satellite DNA of rice (Oryza). Theor Appl Genet 90:1101–1105

    Article  CAS  PubMed  Google Scholar 

  • Grebenstein B, Grebenstein O, Sauer W, Hemleben V (1996) Distribution and complex organization of satellite DNA sequences in Aveneae species. Genome 39:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (1988) Introdução à citogenética geral. Guanabara Koogan

  • Hemleben V, Kovarik A, Torres-Ruiz RA et al (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

    Article  Google Scholar 

  • Holderegger R, Stehlik I, Lewis Smith RI, Abbott RJ (2003) Populations of Antarctic hairgrass (Deschampsia antarctica) show low genetic diversity. Arct Antarct Alp Res 35:214–217

    Article  Google Scholar 

  • Ištvánek J, Jaroš M, Křenek A, Řepková J (2014) Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am J Bot 101:327–337

    Article  PubMed  Google Scholar 

  • Jiang J, Hulbert SH, Gill BS, Ward DC (1996) Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol Gen Genet 252:497–502

    Article  CAS  PubMed  Google Scholar 

  • John UP, Polotnianka RM, Sivakumaran KA et al (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ 32:336–348

    Article  CAS  PubMed  Google Scholar 

  • King M (1995) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge

    Google Scholar 

  • Komarkova V, Poncet S, Poncet J (1985) Two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis: a new southernmost locality and other localities in the Antarctic Peninsula area. Arctic Alpine Res 17:401

    Article  Google Scholar 

  • Komarkova V, Poncet S, Poncet J (1990) Additional and revisited localities of vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. in the Antarctic Peninsula area. Arctic Alpine Res 22:108

    Article  Google Scholar 

  • Křivánková A, Kopecký D, Stočes Š et al (2017) Repetitive DNA: a versatile tool for karyotyping in Festuca pratensis Huds. Cytogenet Genome Res 151:96–105

    Article  PubMed  Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55

    Article  CAS  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ et al (2007) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane Rayburn A, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  Google Scholar 

  • Lee J, Kang Y, Shin SC et al (2014) Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv. PLoS ONE 9:e92501

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Ney York

    Google Scholar 

  • López-Flores I, Garrido-Ramos MA (2012) The repetitive DNA content of eukaryotic genomes. Genome Dyn 7:1–28

    Article  PubMed  Google Scholar 

  • Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom 8:427

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinform 12:164–171

    Article  Google Scholar 

  • Metzlaff M, Troebner W, Baldauf F et al (1986) Wheat specific repetitive DNA sequences—construction and characterization of four different genomic clones. Theor Appl Genet 72:207–210

    Article  CAS  PubMed  Google Scholar 

  • Montiel P, Smith A, Keiller D (1999) Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res 18:229–235

    Article  Google Scholar 

  • Moore DM (1970) Studies in Colobanthus Quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. Br Antarct Surv Bull 23:63–80

    Google Scholar 

  • Mosyakin SL, Bezusko LG, Mosyakin AS (2007) Origins of native vascular plants of Antarctica: comments from a historical phytogeography viewpoint. Tsitol Genet 41:54–63

    CAS  PubMed  Google Scholar 

  • Murray BG, De Lange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot 96:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navrotska DO, Twardovska MO, Andreev IO et al (2014) New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine islands of the Maritime Antarctic region. Ukrainian Antarct J 13:185–191

    Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378

    Article  Google Scholar 

  • Novák P, Neumann P, Pech J et al (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    Article  PubMed  Google Scholar 

  • Novák P, Ávila Robledillo L, Koblížková A et al (2017) TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. doi:10.1093/nar/gkx257

    PubMed  PubMed Central  Google Scholar 

  • Parnikoza IY, Maidanuk DN, Kozeretska IA (2007a) Are Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. migratory relicts? Tsitol Genet 41:36–40

    PubMed  Google Scholar 

  • Parnikoza IY, Miryuta NY, Maidanyuk DN et al (2007b) Habitat and leaf cytogenetic characteristics of Deschampsia antarctica Desv. in the Maritime Antarctica. Polar Sci 1:121–128

    Article  Google Scholar 

  • Plohl M (2005) The species-specificity and evolution of satellite DNAs with emphasis on satellite DNAs in tenebrionid beetles. Entomol Croat 9:85–96

    Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2012) Satellite DNA evolution. Genome Dyn 7:126–152

    Article  CAS  PubMed  Google Scholar 

  • Premoli AC, Mathiasen P, Acosta CM, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus ss How deep can it be? New Phytol 193:261–275

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Kiefer-Meyer MC, Delseny M (1993) Characterization of new variants of a satellite DNA from Oryza officinalis, specific for the CC genome of wild rice. Genome 36:750–761

    Article  CAS  PubMed  Google Scholar 

  • Röser M, Winterfeld G, Döring E, Schneider J (2014) Chromosome evolution in grass tribes Aveneae/Poeae (Poaceae): insights from karyotype structure and molecular phylogeny. Schlechtendalia 28:1–21

    Google Scholar 

  • Ruhland CT, Day TA (2000) Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109:244–251

    Article  CAS  Google Scholar 

  • Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Schwarzacher T (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54:11–23

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P et al (2000) Practical in situ hybridization. BIOS Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    Article  CAS  PubMed  Google Scholar 

  • Stergianou KK (1989) Habit differentiation and chromosome evolution in Pleione (Orchidaceae). Plant Syst Evol 166:253–264

    Article  Google Scholar 

  • Sýkorová E, Fajkus J, Ito M, Fukui K (2001) Transition between two forms of heterochromatin at plant subtelomeres. Chromosome Res 9:309–323

    Article  PubMed  Google Scholar 

  • Tiwari VK, Wang S, Danilova T et al (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5 mg of Aegilops geniculata. Plant J 84:733–746

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (1989) The multiple codes of nucleotide sequences. Bull Math Biol 51:417–432

    Article  CAS  PubMed  Google Scholar 

  • Ugarković Đ (2008) Satellite DNA libraries and centromere evolution. The Open Evolution Journal 2:1–6

    Article  Google Scholar 

  • van de Wouw M, van Dijk P, Huiskes A (2008) Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). J Biogeogr 35:365–376

    Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira RC, Mantovani A (1995) Anatomia foliar de Deschampsia antarctica Desv. (Gramineae). Rev Brasil Bot 18:207–220

    Google Scholar 

  • Vittorazzi SE, Lourenço LB, Recco-Pimentel SM (2014) Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. BMC Genet 15:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Ma L, Becher H et al (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125:683–699

    Article  CAS  PubMed  Google Scholar 

  • Weising K, Nybom H, Pfenninger M et al (2005) DNA fingerprinting in plants: principles, methods, and applications, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Winterfeld G, Röser M (2007) Chromosomal localization and evolution of satellite DNAs and heterochromatin in grasses (Poaceae), especially tribe Aveneae. Plant Syst Evol 264:75

    Article  CAS  Google Scholar 

  • Wolf PG, Sessa EB, Marchant DB et al (2015) An exploration into fern genome space. Genome Biol Evol 7:2533–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CONICET, ANPCyT-FONCyT, and SECyT-UNC for financial support and to Dirección Nacional del Antártico and the personnel of the Carlini Station for logistic support for fieldwork in Antarctica. This work was funded by project PICTO 2010–0095 (ANPCyT-DNA) and the Mrs. Jorgelina Brasca for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, M.L., Chiapella, J.O. & Urdampilleta, J.D. Characterization of some satellite DNA families in Deschampsia antarctica (Poaceae). Polar Biol 41, 457–468 (2018). https://doi.org/10.1007/s00300-017-2205-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2205-1

Keywords

Navigation