Skip to main content

Advertisement

Log in

Groundwater depth as a constraint on the woody cover in a Neotropical Savanna

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To identify the role of soil properties and groundwater depth on the structure of a fire-protected neotropical savanna. We aimed to address: i) What is the contribution of soil properties and groundwater depth to the physiognomic variation? ii) Are these factors associated with patterns in woody structure? iii) Are open physiognomies maintained by shallow groundwater?

Methods

We measured soil properties, tree basal area, density, richness, and monitored groundwater depth in two types of grassland and three types of savanna during two years. We also investigated vegetation dynamics over three decades using remote sensing.

Results

There were no differences in soil properties between physiognomies, except for a greater soil organic matter content in flood-prone grasslands. Woody structure attributes were related to groundwater depth and clay content at coarse spatial scales (1 ha) and to groundwater depth and organic matter at fine spatial scales (100 m). Open savannas and grasslands remained unchanged and occurred where the groundwater depth was lower than 4 m.

Conclusion

Soil fertility did not drive the spread of closed physiognomies. Low clay content and shallow groundwater depth tended to decrease the woody cover, favoring the occurrence of open savannas and grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu RCR, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3(8):e1701284. https://doi.org/10.1126/sciadv.1701284

    Article  PubMed  PubMed Central  Google Scholar 

  • Amorim PK, Batalha MA (2007) Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecol 32:319–327

    Article  Google Scholar 

  • Assis ACC, Coelho RM, da Silva Pinheiro E, Durigan G (2011) Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol 212:1135–1147

    Article  Google Scholar 

  • Bates DM, Maechler M, Bolker B, Walker S (2014) Lme4:linear mixed-effects models using eigen and s4. R Package Version 1.1–6. Http:/cran.R-project.Org/package=lme4

  • Bond WJ (2010) Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant Soil 334:47–60. https://doi.org/10.1007/s11104-010-0440-0

    Article  CAS  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538. https://doi.org/10.1111/j.1469-8137.2004.01252.x

    Article  CAS  PubMed  Google Scholar 

  • Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (2013) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas, Instituto Agronômico

    Google Scholar 

  • Carvalho DA, Oliveira Filho AT, Vilela EA, Curi N, Van Den Berg E, Fontes MAL, Botezelli L (2005) Distribuição de espécies arbóreo-arbustivas ao longo de um gradiente de solos e topografia em um trecho de floresta ripária do rio São Francisco em Três Marias, MG, Brasil. Braz J Bot 28:329–345

    Article  Google Scholar 

  • Coutinho LM (1978) O conceito de cerrado. Rev Bras Bot 1:17–23

    Google Scholar 

  • de Castro EA, Kauffman JB (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14:263–283

    Article  Google Scholar 

  • Durigan G, Ratter JA (2016) The need for a consistent fire policy for Cerrado conservation. J. J Appl Ecol 53:11–15. https://doi.org/10.1111/1365-2664.12559

    Article  Google Scholar 

  • ESRI (2006) ARCGIS, version 9.2. ESRI Redlands, Calif

  • Fensham R, Fairfax R, Archer S (2005) Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J Ecol 93:596–606. https://doi.org/10.1111/j.1365-2745.2005.00998.x

    Article  Google Scholar 

  • Ferreira JN, Bustamante MMC, Davidson EA (2009) Linking woody species diversity with plant available water at a landscape scale in a Brazilian savanna. J Veg Sci 20:826–835

    Article  Google Scholar 

  • Ferreira-Júnior WG, Schaefer CEGR, Cunha CN, Duarte TG, Chieregatto LC, Carmo FMS (2016) Flood regime and water table determines tree distribution in a forest-savanna gradient in the Brazilian Pantanal. An Acad Bras Cienc 88:719–731. https://doi.org/10.1590/0001-3765201620150341

    Article  PubMed  Google Scholar 

  • Goldstein G, Meinzer FC, Bucci SJ, Scholz FG, Franco AC, Hoffmann WA (2008) Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiol 28:395–404

    Article  PubMed  Google Scholar 

  • Goodland R, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol 61(1):219–224

    Article  Google Scholar 

  • Haridasan M (1992) Observations on soils, foliar nutrients concentrations and floristic composition of cerrado sensu stricto and cerradão communities in central Brazil. Nature and Dynamics of forest-savanna boundaries UK, Chapman & Hall

  • Higgins SI, Bond WJ, February EC, Bronn A, Euston-Brown DI, Enslin B, Govender N, Rademan L, O'Regan S, Potgieter AL, Scheiter S, Sowry R, Trollope L, Trollope WS (2007) Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88:1119–1125

    Article  PubMed  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235. https://doi.org/10.1126/science.1210657

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. https://doi.org/10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Hudak AT, Wessman CA, Seastedt TR (2003) Woody overstorey effects on soil carbon and nitrogen pools in south African savanna. Austral Ecol 28:173–181. https://doi.org/10.1046/j.1442-9993.2003.01265.x

    Article  Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505. https://doi.org/10.1093/aob/mci205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoop W, Walker B (1985) Interactions of woody and herbaceous vegetation in a southern African savanna. J Ecol 73:235–253

    Article  Google Scholar 

  • Köppen W (1948) Climatologia. México. Fundo de Cultura Econômica[Links]

  • Lehmann CE, Anderson TM, Sankaran M, Higgins SI, Archibald S, Hoffmann WA, Hanan NP, Williams RJ, Fensham RJ, Felfili J (2014) Savanna vegetation-fire-climate relationships differ among continents. Science 343:548–552

    Article  CAS  PubMed  Google Scholar 

  • Leite MB (2014) A influência dos fatores abióticos na determinação dos padrões florísticos existentes na estação Ecológica de Itirapina, SP. Programa de Pós-Graduação em Ecologia e Recursos Naturais. Universidade Federal de São Carlos

  • Lopes A, Cox F (1977) Cerrado vegetation in Brazil: an edaphic gradient. Agron J 69:828–831

    Article  Google Scholar 

  • Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926

    Article  Google Scholar 

  • Marimon BS, Colli GR, Marimon-Junior BH, Mews HA, Eisenlohr PV, Feldpausch TR, Phillips OL (2015) Ecology of floodplain Campos de murundus savanna in southern Amazonia. Int J Plant Sci 176:670–681

    Article  Google Scholar 

  • Medina E, Silva J (1990) Savannas of northern South America: a steady state regulated by WaterFire interactions on a background of low nutrient availability. J Biogeogr 17:403–413. https://doi.org/10.2307/2845370

    Article  Google Scholar 

  • Mordelet P, Abbadie L, Menaut JC (1993) Effects of tree clumps on soil characteristics in a humid savanna of West Africa (Lamto, Côte d'Ivoire). Plant Soil 153:103–111. https://doi.org/10.1007/bf00010549

    Article  Google Scholar 

  • Murphy BP, Bowman DMJS (2012) What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758. https://doi.org/10.1111/j.1461-0248.2012.01771.x

    Article  PubMed  Google Scholar 

  • Nix H (1983) Climate of tropical savannas. In: Boulière F (ed) Ecosystems of the world, vol 13. Tropical Savannas. Elsevier, Amsterdam, pp 37–61

    Google Scholar 

  • Oliveira PTS, Wendland E, Nearing M, Scott R, Rosolem R, da Rocha H (2015) The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol Earth Syst Sci 19:2899–2910. https://doi.org/10.5194/hess-19-2899-2015

    Article  Google Scholar 

  • Oliveira PTS, Nearing MA, Hawkins RH, Stone JJ, Rodrigues DBB, Panachuki E, Wendland E (2016) Curve number estimation from Brazilian Cerrado rainfall and runoff data. J Soil Water Conserv 71:420–429. https://doi.org/10.2489/jswc.71.5.420

    Article  Google Scholar 

  • Oliveira PTS, Leite MB, Mattos T, Nearing MA, Scott RL, de Oliveira Xavier R, da Silva Matos DM, Wendland E (2017) Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology. https://doi.org/10.1002/eco.1759

  • Orellana F, Verma P, Loheide SP, Daly E (2012) Monitoring and modeling water–vegetation interactions in water table-dependent ecosystems. Rev Geophys 50:RG3003. https://doi.org/10.1029/2011RG000383

    Article  Google Scholar 

  • Pinheiro ES, Durigan G (2009) Dinâmica espaço-temporal (1962-2006) das fitofisionomias em unidade de conservação do Cerrado no sudeste do Brasil. Rev Bras Bot 32:441–454

    Article  Google Scholar 

  • Pinto J, Oliveira-Filho A, Hay J (2005) Influence of soil and topography on the composition of a tree community in a central Brazilian valley forest. Edinb J Bot 62:69–90. https://doi.org/10.1017/S0960428606000035

    Article  Google Scholar 

  • Ponnamperuma F (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, Orlando, pp 9–45

  • R_Core_Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria

  • Reatto A, Bruand A, Silva EM, Martins ES, Brossard M (2007) Hydraulic properties of the diagnostic horizon of latosols of a regional toposequence across the Brazilian central plateau. Geoderma 139:51–59. https://doi.org/10.1016/j.geoderma.2007.01.003

    Article  Google Scholar 

  • Rodriguez-Iturbe I, D'Odorico P, Laio F, Ridolfi L, Tamea S (2007) Challenges in humid land ecohydrology: interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resour Res 43:W09301. https://doi.org/10.1029/2007WR006073

    Article  Google Scholar 

  • Rossatto DR, Silva LCR, Villalobos-Vega R, Sternberg LDSL, Franco AC (2012) Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ Exp Bot 77:259–266. https://doi.org/10.1016/j.envexpbot.2011.11.025

    Article  Google Scholar 

  • Rossatto DR, Silva LCR, Sternberg LSL, Franco AC (2014) Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. S Afr J Bot 91:14–18. https://doi.org/10.1016/j.sajb.2013.11.011

    Article  Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, southeastern Brazil. Plant Ecol 160:1–16. https://doi.org/10.1023/a:1015819219386

    Article  Google Scholar 

  • Sahrawat KL (2003) Organic matter accumulation in submerged soils. Adv Agron 81:169–201. https://doi.org/10.1016/S0065-2113(03)81004-0

    Article  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento G, Pinillos M (2001) Patterns and processes in a seasonally flooded tropical plain: the Apure llanos, Venezuela. J Biogeogr 28:985–996. https://doi.org/10.1046/j.1365-2699.2001.00601.x

    Article  Google Scholar 

  • Silva DA (2005) Levantamento do meio físico das estações Ecológica e Experimental de Itirapina, São Paulo, Brasil. Revisto do Instituto Florestal 17: 113–128

  • Silva LCR (2015) Seasonal variation in groundwater depth does not explain structure and diversity of tropical savannas. J Veg Sci 26:404–406. https://doi.org/10.1111/jvs.12244

    Article  Google Scholar 

  • Silva JF, Zambrano A, Fariñas MR (2001) Increase in the woody component of seasonal savannas under different fire regimes in Calabozo, Venezuela. J Biogeogr 28:977–983. https://doi.org/10.1046/j.1365-2699.2001.00614.x

  • Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232

    Article  CAS  PubMed  Google Scholar 

  • Tinley KL (1982) The influence of soil moisture balance on ecosystem patterns in southern Africa. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 175–192

  • Valenti M, Cianciaruso M, Batalha M (2008) Seasonality of litterfall and leaf decomposition in a cerrado site. Braz J Biol 68:459–465

    Article  CAS  PubMed  Google Scholar 

  • Villalobos-Vega R, Salazar A, Miralles-Wilhelm F, Haridasan M, Franco AC, Goldstein G (2014) Do groundwater dynamics drive spatial patterns of tree density and diversity in Neotropical savannas? J Veg Sci 25:1465–1473. https://doi.org/10.1111/jvs.12194

    Article  Google Scholar 

  • Xavier RdO, Leite MB, da Silva-Matos DM (2016) Stress responses of native and exotic grasses in a Neotropical savanna predict impacts of global change on invasion spread. Austral Ecol: n/a-n/a https://doi.org/10.1111/aec.12475, 42, 562, 576

  • Zanchetta D, Silva CEFS, Reis CM, Silva DA, Luca EFL, Fernandes FS, Lutgens HD, Tannus JLS, Pinheiro LS, Martins MRC, Sawaya R (2006) Plano de manejo integrado das unidades de Itirapina-1ª revisão. Secretaria do Meio Ambiente, Instituto Florestal, São Paulo

    Google Scholar 

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

We are thankful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for funding granted to the first and fourth authors; to the Cearense Foundation of Scientific and Technological Support (FUNCAP) for funding to the first author; to the São Paulo Research Foundation for the scholarship granted to the second and third authors (FAPESP, Grant N.15/05134-0 and 2011/21019-6, respectively); to the Coordination for the Improvement of Higher Education Personnel for the scholarship granted to the forth author; to the National Council for Scientific and Technological Development for financial support and scholarship granted to the forth author (CNPq, grant 307839/2014-1); to the São Paulo Forestry Institute for the research permit and to the Itirapina Ecological Station staff for logistical assistance and support. We also thank K. Dexter and four anonymous reviewers for their valuable suggestions and A. L. Somavilla and P. Dodonov for reviewing the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Boccia Leite.

Additional information

Responsible Editor: Susan Schwinning.

Electronic supplementary material

Table A.1

(DOCX 13 kb)

Figure A.1

(DOCX 1555 kb)

Figure A.2

(DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, M.B., Xavier, R.O., Oliveira, P.T. et al. Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant Soil 426, 1–15 (2018). https://doi.org/10.1007/s11104-018-3599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3599-4

Keywords

Navigation