Skip to main content

Advertisement

Log in

Fires and storms—a Triassic–Jurassic transition section in the Sichuan Basin, China

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Upper Triassic Xujiahe and Lower Jurassic Zhenzhuchong formations of the Sichuan Basin, China, are important sources of plant fossils and windows into the intervening extinction event. However, there is an on-going debate as to whether the environment represented by the Xujiahe and Zhenzhuchong formations was continental or included an important marine component. We studied the Xujiahe–Zhenzhuchong section near Qili Town of Xuanhan County, in the east of the basin and report hummocky and swaley cross-stratification in the Xujiahe Formation. This, along with minor Skolithos and heterolithic bedding, provides strong evidence for shallow marine conditions and favours an interpretation as the deposits of a wave-dominated coast. It also suggests common and extreme storm activity, possibly hurricanes, at what was a mid-latitude (c. 34–40°N) location in the Late Triassic. Charcoal is found in most samples throughout the section. The predominant fossil wood morphology is consistent with Xenoxylon. Together, the sedimentological evidence of storms and fire suggests a highly disturbed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu Hamad, A. M. B., Hamad, A., Jasper, A., & Uhl, D. (2012). The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96–97, 60–71.

    Article  Google Scholar 

  • Abu Hamad, A. M. B., Jasper, A., & Uhl, D. (2014). Wood remains from the Late Triassic (Carnian) of Jordan and their paleoenvironmental implications. Journal of African Earth Sciences, 95, 168–174.

    Article  Google Scholar 

  • Aigner, T. (1979). Coquinal tempestites in the upper Muschelkalk, Triassic, southern West Germany. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 157, 326–343.

    Google Scholar 

  • Aigner, T. (1982). Calcareous tempestites: Storm–dominated stratification in upper Muschelkalk limestones (Middle Trias, SW-Germany). In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 180–198). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Arnott, R. W. C. (1992). Ripple cross-stratification in swaley cross-stratified sandstones of the Chungo Member, Mount Yamnuska, Alberta. Canadian Journal of Earth Science, 29, 1802–1805.

    Article  Google Scholar 

  • Belcher, C. M., & McElwain, J. C. (2008). Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321, 1197–1200.

    Article  Google Scholar 

  • Belcher, C. M., Collinson, M. E., & Scott, A. C. (2005). Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society, 162, 591–602.

    Article  Google Scholar 

  • Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J., & McElwain, J. C. (2010a). Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate–driven floral change. Nature Geoscience, 3, 1–4.

    Article  Google Scholar 

  • Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C., & Rein, G. (2010b). Baseline intrinsic flammability of Earths’ ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences U.S.A., 107, 22448–22453.

    Article  Google Scholar 

  • Belcher, C. M., Collinson, M. E., & Scott, A. C. (2013). A 450-million-year history of fire. In C. M. Belcher (Ed.), Fire phenomena and the Earth system: an interdisciplinary guide to fire science (pp. 229–249). Chichester: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Bergman, N. M., Lenton, T. M., & Watson, A. J. (2004). COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304, 397–437.

    Article  Google Scholar 

  • Berner, R. A. (2006). A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica, 70, 5653–5664.

    Article  Google Scholar 

  • Berner, R. A. (2009). Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.

    Article  Google Scholar 

  • Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–538.

    Article  Google Scholar 

  • Bose, M. N., & Sah, S. C. D. (1954). On Sahnioxylon rajmahalense, a new name for Homoxylon rajmahalense Sahni, and S. andrewsii, a new species of Sahnioxylon from Amrapara in the Rajmahal Hills, Bihar. Palaeobotanist, 3, 1–8.

    Google Scholar 

  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the Earth system. Science, 324, 481–484.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-016-0058.

  • Bradshaw, M. A. (2013). The Taylor Group (Beacon Supergroup): the Devonian sediments of Antarctica. In M. J. Hambrey, P. F. Barker, P. J. Barrett, V. Bowman, B. Davies, J. L. Smellie, & M. Tranter (Eds.), Antarctic Palaeoenvironments and Earth-surface processes (pp. 67–97). London: Geological Society.

    Google Scholar 

  • Bradshaw, M. A., & Harmsen, F. J. (2007). The paleoenvironmental significance of trace fossils in Devonian sediments (Taylor Group), Darwin Mountains to the dry valleys, southern Victoria Land. In Cooper, A.K., Raymond, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th ISAES X. USGS Open–File Report 2007–1047, Extended Abstract 133, 5.

  • Butler, K. (2008). Interpreting charcoal in New Zealand’s palaeoenvironment-What do those charcoal fragments really tell us? Quaternary International, 184, 122–128.

    Article  Google Scholar 

  • Carroll, A. R., Graham, S. A., & Smith, M. E. (2010). Walled sedimentary basins of China. Basin Research, 22, 17–32.

    Article  Google Scholar 

  • Chaloner, W. G. (1989). Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146, 171–174.

    Article  Google Scholar 

  • Chen, L. Q., Huo, R., Duan, K. B., & Hu, S. Q. (2012). Continental sequence stratigraphic research of the Upper Triassic Xujiahe Formation, northern Sichuan Foreland Basin, China. Journal of Jilin University (Earth Science Edition), 42, 600–611 (in Chinese with English abstract).

    Google Scholar 

  • Clark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30, 67–80.

    Article  Google Scholar 

  • Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., & Krebs, P. (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 555–576.

    Article  Google Scholar 

  • Dalrymple, R. W., & Choi, K. S. (2007). Morphologic and facies trends through the fluvial–marine transition in tide–dominated depositional systems: a systematic framework for environmental and sequence–stratigraphic interpretation. Earth Science Reviews, 81, 135–174.

    Article  Google Scholar 

  • Diessel, C. F. K. (2010). The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81, 251–268.

    Article  Google Scholar 

  • Dott, R. H., & Bourgeois, J. (1982). Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93, 663–680.

    Article  Google Scholar 

  • Duan, S., & Chen, Y. (1984). On plant megafossils from the Late Triassic sediments of the eastern part of Sichuan Basin, China. The Palaeobotanist, 32, 203–210.

    Google Scholar 

  • Duke, W. L. (1985a). The paleogeography of Paleozoic and Mesozoic storm depositional systems: a discussion. The Journal of Geology, 93, 88–90.

    Article  Google Scholar 

  • Duke, W. L. (1985b). Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32, 167–194.

    Article  Google Scholar 

  • Enos, P., Lehrmann, D. J., Jiayong, W., Youyi, Y., Jiafei, X., Chaikin, D. H., Minzoni, M., Berry, A. K., & Montgomery, P. (2006). Triassic evolution of the Yangtze Platform in Guizhou Province, People's Republic of China. Geological Society of America Special Paper, 417, 1–105.

    Google Scholar 

  • Falcon–Lang, H. J., & Cantrill, D. J. (2001). Gymnosperm woods from the cretaceous (mid–Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a high–latitude volcanic arc. Cretaceous Research, 22, 277–293.

    Article  Google Scholar 

  • Forbes, M. S., Raison, R. J., & Skjemstad, J. O. (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment, 370, 190–296.

    Article  Google Scholar 

  • Foster, D. R. (1983). The history and pattern of fire in the boreal forest of southeastern Labrador. Canadian Journal of Botany, 61, 2459–2471.

    Article  Google Scholar 

  • Frederickson, A. F., & Reynolds, R. C. (1959). Geochemical method for determining paleosalinity. Clays and Clay Minerals, 8, 203–213.

    Article  Google Scholar 

  • Fu, G., Zhang, L. H., Yuan, Z. H., & Chen, B. (2010). Sedimentary environment research for Xujiahe Formation of the Upper Triassic series in Sichuan Basin. Chongqing University of Science and Technology Natural Science Edition, 12, 17–21 (in Chinese with English abstract).

    Google Scholar 

  • Gao, H. C., Zheng, R. C., Ke, G. M., & Wen, H. G. (2005). The Upper Triassic Xujiahe Formation in the northeastern Sichuan foreland basin: Sequence-based sedimentary facies and palaeogeography. Sedimentary Geology and Tethyan Geology, 25, 38–45 (in Chinese with English abstract).

    Google Scholar 

  • Gao, C., Shao, L., Li, C. L., Xu, X., & Xu, H. (2009). Sequence stratigraphy and coal accumulation of the Triassic Xujiahe Formation in eastern Sichuan Basin. Journal of Palaeogeography, 11, 689–696 (in Chinese with English abstract).

    Google Scholar 

  • Gerards, T., Damblon, F., Wauthoz, B., & Gerrienne, P. (2007). Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. IAWA Journal, 28, 49–60.

    Article  Google Scholar 

  • Gilbert, G. K. (1899). Ripple–marks and cross-bedding. Bulletin of the Geological Society of America, 10, 135–140.

    Article  Google Scholar 

  • Glasspool, I. J., & Scott, A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630.

    Article  Google Scholar 

  • Glasspool, I. J., Edwards, D., & Axe, L. (2004). Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 32, 381–383.

    Article  Google Scholar 

  • Hagdorn, H. (1982). The Bank der Kleinen Terebrateln (Upper Muschelkalk, Triassic) near Schwaibisch Hall (SW Germany)–a tempestite condensation horizon. In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 263–285). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Harle, K. J. (1997). Late quaternary vegetation and climate change in southeastern Australia: Palynological evidence from marine core E55-6. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 465–483.

    Article  Google Scholar 

  • Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary structures and stratification sequences. SEPM Short Course Notes, 2, 1–161.

    Google Scholar 

  • Harms, J. C., Southard, J. B., & Walker, R. G. (1982). Structures and sequences in clastic rocks. SEPM Short Course Notes, 9, 1–249.

    Google Scholar 

  • Harris, T. M. (1926). The Rhaetic flora of Scoresby Sound East Greenland. Saertryk af. Meddelelser om Grønland, 48, 45–147.

    Google Scholar 

  • Harris, T. M. (1958). Forest fire in the Mesozoic. Journal of Ecology, 46, 447–453.

    Article  Google Scholar 

  • Havlik, P., Aiglstorfer, M., El Atfy, H., & Uhl, D. (2013). A peculiar bone-bed from the Norian Stubensandstein (Löwenstein-Formation, Late Triassic) of southern Germany and its palaeoenvironmental interpretation. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 269, 321–337.

    Article  Google Scholar 

  • Hu, G., & Bao, Z. (2008). Sedimentary facies of fourth and fifth members of upper Triassic Xujiahe formation, Sichuan basin. Journal of Liaoning Technical University (Natural Science), 27, 508–511 (in Chinese with English abstract).

    Google Scholar 

  • Hu, F. S., Brubaker, L. B., Gavin, D. G., Higuera, P. E., Lynch, J. A., Rupp, T. S., & Tinner, W. (2006). How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change, 11, 829–846.

    Article  Google Scholar 

  • Huang Q. S.. (1988). Vertical diversities of the Early Jurassic plant fossils in the Middle–Lower Changjiang Valley. Geological Review, 1988–03, 193–202. (in Chinese, with English abstract).

  • Huang, Q. S. (1995). Paleoclimate and coal–forming characteristics of the Late Triassic Xujiahe stage in northern Sichuan. Geological Review, 41, 92–99 (in Chinese, with English abstract).

    Google Scholar 

  • Huang, Q. S., & Lu, S. M. (1992). The primary studies on the paleoecology of the Late Triassic Xujiahe flora in eastern Sichuan. Earth Science – Journal of China University of Geosciences, 17, 329–335 (in Chinese with English abstract).

    Google Scholar 

  • Jackson, W. D. (1968). Fire, air, water and Earth—an elemental ecology of Tasmania. Proceedings of the Ecological Society of Australia, 3, 9–16.

    Google Scholar 

  • Jiang, Z. X., Tian, J. J., Chen, G. J., Li, X. Z., & Zhang, M. L. (2007). Sedimentary characteristics of the Upper Triassic in Western Sichuan Foreland Basin. Journal of Palaeogeography, 9, 143–154 (in Chinese with English abstract).

    Google Scholar 

  • Jiang, Y., Tao, Y., Shen, Y., Jiang, C., Wang, Z. K., Li, S., & Zhang, G. (2011). A new understanding of sedimentary facies of sandstones in the 2nd, 4th, and 6th members of the Upper Triassic Xujiahe Formation in the large-scale middle Sichuan Basin. Natural Gas Industry, 31, 39–50 (in Chinese with English abstract).

    Google Scholar 

  • Johnson, E. A., Miyanishi, K., & Weir, J. M. H. (1998). Wildfires in the western Canadian boreal forest: landscape patterns and ecosystem management. Journal of Vegetation Science, 9, 603–610.

    Article  Google Scholar 

  • Jones, T. P., Ash, S., & Figueiral, I. (2002). Triassic charcoal from the fossil Forest of Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology, 188, 127–139.

    Article  Google Scholar 

  • Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., & Hu, F. S. (2013). Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS, 110, 13055–13060.

    Article  Google Scholar 

  • Krawchuk, M. A., Moritz, M. A., Parisien, M.–. A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: the current and future distribution of wildfire. PLoS One, 4, e5102. https://doi.org/10.1371/journal.pone.0005102.

    Article  Google Scholar 

  • Kubik, R., Uhl, D., & Marynowski, L. (2015). Evidence of wildfires during deposition of the Upper Silesian Keuper succession. Annales Societatis Geologorum Poloniae, 85, 685–696.

    Google Scholar 

  • Kumar, M., Tewari, R., Chatterjee, S., & Mehrotra, N. C. (2011). Charcoalified plant remains from the Lashly Formation of Allan Hills, Antarctica: evidence of forest fire during the Triassic period. Episodes, 34, 109–118.

    Google Scholar 

  • Leckie, D. A., & Walker, R. G. (1982). Storm–and tide–dominated shorelines in the Cretaceous Moosebar—lower gates interval—outcrop equivalents of deep basin gas trap in western Canada. American Association of Petroleum Geologists Bulletin, 66, 138–157.

    Google Scholar 

  • Li, P. J. (1964). Fossil plants from the Hsuchiaho Kwangyuan Series of Kwangyuan, northern Sichuan. Memoirs of the Institute of Geology and Palaeontology, Academica Sinica, 3, 101–178 (in Chinese with English summary).

    Google Scholar 

  • Li, L., Wang, Y., Liu, Z., Zhou, N., & Wang, Y. (2016). Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin, China. Paläontologische Zeitschrift, 90, 327. https://doi.org/10.1007/s12542-016-0309-5.

    Article  Google Scholar 

  • Liu, X. H., & Zhou, P. Q. (1982). Upper Triassic Series. In Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin of China. Part I. Stratigraphy. (pp. 5–56). Chengdu: Sichuan People’s Publishing House. (In Chinese).

  • Liu, D., Yang, Z., Yang, Y. D., Bao, Y. Y., & Liu, B. (2009). Characteristic of the Flora in the Zhenzhuchong Formation and the Jurassic–Triassic boundary in the Sichuan Basin. Journal of Earth Sciences and Environment, 31, 254–259 (in Chinese with English abstract).

    Google Scholar 

  • Luo, Q. (2011). Understandings of Upper Triassic sedimentary facies in the Sichuan Basin. Journal Natural Gas Industry, 31, 1245 (in Chinese with English abstract).

    Google Scholar 

  • Mao, Q., Zheng, R. C., Zou, G. F., Yang, K., Wang, F., & Zhang, Z. Y. (2012). Upper Triassic sedimentary facies and sedimentary evolution in the north eastern Sichuan foreland basin. Sedimentary Geology and Tethyan Geology, 32, 1–11 (in Chinese with English abstract).

    Google Scholar 

  • Marsaglia, K. M., & Klein deV, G. (1983). The paleogeography of Paleozoic and Mesozoic storm depositional systems. Journal of Geology, 91, 117–142.

  • Marynowski, L., & Simoneit, B. R. T. (2009). Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. PALAIOS, 24, 785–798.

    Article  Google Scholar 

  • Marynowski, L., Scott, A. C., Zaton, M., Parent, H., & Garrido, A. C. (2011). First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the middle Jurassic of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 129–136.

    Article  Google Scholar 

  • McElwain, J. C., Beerling, D. J., & Woodward, F. I. (1999). Fossil plants and global warming at the Triassic-Jurassic boundary. Science, 285, 1386–1390.

    Article  Google Scholar 

  • Meng, F. S., Chen, H. M., & Li, X. B. (2005a). Study of the non-marine Triassic-Jurassic boundary in the Sichuan Basin. Journal of Stratigraphy, 29, 565–572 (in Chinese).

    Google Scholar 

  • Meng, Q. R., Wang, E., & Hu, J. M. (2005b). Mesozoic sedimentary evolution of the northwest Sichuan Basin: implication for continued clockwise rotation of the South China block. GSA Bulletin, 117, 396–410.

    Article  Google Scholar 

  • Moss, P. T., & Kershaw, A. P. (2000). The last glacial cycle from the humid tropics of northeastern Australia: Comparison of a terrestrial and a marine record. Palaeogeography Palaeoclimatology Palaeoecology, 155, 155–176.

    Article  Google Scholar 

  • Patterson III, W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6, 3–23.

    Article  Google Scholar 

  • Petersen, H. I., & Lindstrom, S. (2012). Synchronous wildfire activity rise and mire deforestation at the Triassic–Jurassic boundary. PLoS One, 7, 1–15.

    Google Scholar 

  • Pole, M. (2010). Ecology of Paleocene-Eocene vegetation at Kakahu, South Canterbury, New Zealand. Palaeontologia Electronica, 13(2), 14A 29p; http://palaeo-electronica.org/2010_2/227/index.html.

    Google Scholar 

  • Pole, M., & Philippe, M. (2010). Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand. Alcheringa, 34, 231–263.

    Article  Google Scholar 

  • Pole, M., Wang, Y., Bugdaeva, E. V., Dong, C., Tian, N., Li, L., & Zhou, N. (2016). The rise and demise of Podozamites in east Asia—An extinct conifer life style. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 97–109.

    Article  Google Scholar 

  • Punina, T. A. (2007). Classification and correlation of Triassic limestones in Sikhote-Alin on the basis of corals. In J. M. Dickins, Y. Zunyi, W. Hongfu, S. G. Lucas, & S. K. Acharyya (Eds.), Late Palaeozoic and early Mesozoic Circum-Pacific events and their global correlation (pp. 186–192). Cambridge: Cambridge University Press.

    Google Scholar 

  • Qian, Z. J., & Zhong, K. X. (2009). Sedimentary facies and reservoir features of the Xujiahe Formation in northeastern Sichuan basin. Natural Gas Industry, 29, 9–13 (in Chinese with English abstract).

    Google Scholar 

  • Reineck, H.–. E., & Singh, I. B. (1975). Depositional sedimentary environments–with reference to terrigenous clastics. Berlin: Springer-Verlag.

    Google Scholar 

  • Rief, W. E. (1982). Muschelkalk/Keuper bone-beds (Middle Triassic, SW Germany)—Storm condensation in a regressive cycle. In G. Einsele & A. Seilacher (Eds.), Cyclic and event stratification (pp. 299–235). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Sander, P. M., & Gee, C. T. (1990). Fossil charcoal: Techniques and applications. Review of Palaeobotany and Palynology, 63, 269–279.

    Article  Google Scholar 

  • Scasso, R. A., Dozo, M. T., Cuitiño, J. I., & Bouza, P. (2012). Meandering tidal–fluvial channels and lag concentration of terrestrial vertebrates in the fluvial-tidal transition of an ancient estuary in Patagonia. Latin American Journal of Sedimentology and Basin Analysis, 19, 27–45.

    Google Scholar 

  • Scotese, C. R. (2014). The PALEOMAP Project PaleoAtlas for ArcGIS, version 2, volume 3, Triassic and Jurassic Plate Tectonic, Paleogeographic, and Paleoclimatic reconstructions, Maps 33–48, PALEOMAP Project, Arlington.

  • Scott, A. C. (2000). The pre-quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281–329.

    Article  Google Scholar 

  • Scott, A. C. (2010). Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 11–39.

    Article  Google Scholar 

  • Scott, A. C., Bowman, D. M. J. S., Bond, W. J., Pyne, S. J., & Alexander, M. E. (2014). Fire on Earth: an introduction. Hoboken: Blackwell-Wiley.

    Google Scholar 

  • Shi, Z., Xie, W., Ma, S., & Li, G. (2012). Transgression sedimentary records of the Members 4–6 of Upper Triassic Xujiahe Formation in Sichuan Basin. Journal of Palaeogeography, 14, 583–595 (in Chinese with English abstract).

    Google Scholar 

  • Singh, G., & Geissler, E. A. (1985). Late Cainozoic history of vegetation, fire, lake levels, and climate at Lake George, New South Wales. Philosophical Transactions of the Royal Society of London, B311, 379–477.

    Article  Google Scholar 

  • Sriver, R.L. & Huber, M. (2007). Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580.

  • Stewart, W. N., & Rothwell, G. W. (1993). Palaeobotany and the evolution of plants (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Swain, A. M. (1973). A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Quaternary Research, 3, 383–396.

    Article  Google Scholar 

  • Sze, H. C., & Lee, H. H. (1952). Jurassic plants from Szechuan. Palaeontologica Sinica, 135, 16–38 (In Chinese and English).

    Google Scholar 

  • Tan, X. C., Xia, Q. S., Chen, J. S., Li, L., Liu, H., Luo, B., Xia, J., & Yang, J. J. (2013). Basin-scale sand deposition in the Upper Triassic Xujiahe Formation of the Sichuan Basin, Southwest China: sedimentary framework and conceptual model. Journal of Earth Science, 24, 89–103.

    Article  Google Scholar 

  • Tanner, L. H., Wang, X., & Morabito, A. C. (2012). Fossil charcoal from the Middle Jurassic of the Ordos Basin, China and its paleoatmospheric implications. Geoscience Frontiers, 3, 493–502.

    Article  Google Scholar 

  • Tian, N., Wang, Y., Yang, X., Ni, Q., & Jiang, Z. (2008). Preliminary study on Late Triassic to Early Jurassic strata and floral variation in Hechuan region of Chongqing, southern Sichuan Basin. Global Geology, 11, 125–129.

    Google Scholar 

  • Tian, N., Wang, Y., Philippe, M., & Jiang, Z. (2016). New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 464, 65–75.

    Article  Google Scholar 

  • Traverse, A. (2007). Paleopalynology (2nd ed.). Dordrecht: Springer.

    Google Scholar 

  • Uhl, D., & Montenari, M. (2011). Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geological Journal, 46, 34–41.

    Article  Google Scholar 

  • Umbanhowar, C. E., & McGrath, M. J. (1998). Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. Holocene, 8, 341–346.

    Article  Google Scholar 

  • Upchurch Jr., G. R. (1995). Dispersed angiosperm cuticles: their history, preparation, and application to the rise of angiosperms in Cretaceous and Paleocene coals, southern western interior of North America. International Journal of Coal Geology, 28, 161–227.

    Article  Google Scholar 

  • Walker, R. G., & Plint, A. G. (1992). Wave and storm-dominated shallow marine systems. In R. G. Walker & N. P. James (Eds.), Facies models: response to sea level change (pp. 219–238). Newfoundland: Geological Association of Canada.

    Google Scholar 

  • Wang, Y. D., Fu, B. H., Xie, X. P., Huang, Q. S., Li, K., Li, G., Liu, Z. S., Yu, J. X., Pan, Y. H., Tian, N., & Jiang, Z. K. (2010). The terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China (pp. 1–216). Hefei: University of Science and Technology of China Press (in Chinese and English).

    Google Scholar 

  • Whitlock, C., & Larsen, C. (2001). Charcoal as a fire proxy. In J. P. Smol, H. J. B. Birks, & W. M. (Eds.), Last tracking environmental change using lake sediments (pp. 75–97). Dordrecht: Springer.

    Google Scholar 

  • Woolfe, K. J. (1993). Devonian depositional environments in the Darwin Mountains: marine or non-marine? Antarctic Science, 5, 211–220.

    Article  Google Scholar 

  • Woolfe, K. J., Long, J. A., Bradshaw, M. A., Harmsen, F. J., & Kirkbride, M. P. (1990). Fish-bearing Aztec siltstone (Devonian) in the Cook Mountains, Antarctica. New Zealand Journal of Geology & Geophysics, 33, 511–514.

    Article  Google Scholar 

  • Wu, S. Q. (1999). Upper Triassic plants from Sichuan. Bulletin of Nanjing Institute of Geology and Palaeontology, Academia Sinica, 14, 1–69 (in Chinese, with English abstract).

    Google Scholar 

  • Wu, S. Q., Ye, M. N., & Li, B. X. (1980). Upper Triassic and Lower and Middle Jurassic plants from the Hsiangchi group, western Hubei. Memoirs Nanjing Institute of Geology and Paleontology, Academica Scientia, 14, 64–131 (in Chinese).

    Google Scholar 

  • Xia, Z., Yuan, C., & Li, R. (1982). Jurassic system. In Working Group of Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin (Eds.), Continental Mesozoic stratigraphy and Palaeontology in Sichuan Basin, Vol 1. (pp. 57–150). Chengdu: People's Publishing House. (in Chinese).

  • Ye, M. N., Liu, X. Y., Huang, G. Q., Chen, L. X., Peng, S. J., Xu, A. F., & Zhang, B. X. (1986). Late Triassic and Early–Middle Jurassic fossil plants from northeastern Sichuan (p. 141). Hefei: Anhui Science and Technology Publishing House (in Chinese with English summary).

    Google Scholar 

  • Yuzhen, L., Chao, N., Jianyong, Z., Mingfeng, G., Qiufen, S., Zhishang, L., & Yongguang, X. (2013). Favorable sedimentary facies zones and lithofacies palaeogeography of Middle Triassic Leikoupo Formation in Sichuan Basin. Marine Origin Petroleum Geology, 18, 26–32 (in Chinese with English summary).

    Google Scholar 

  • Zhao, X., Hu, D., Zhang, W., Zhang, Y., Tang, B., & Lin, H. (2013). Tide-dominated estuarine and deltaic deposition of the Upper Triassic Xujiahe Formation in the Yuanba area, Sichuan Basin. Acta Geologica Sinica, 87, 1748–1762 (in Chinese with English abstract).

    Google Scholar 

  • Zheng, R. C., Zhu, R., Dai, C., Gao, H. C., & Zhai, W. (2008). Depositional sequence features during coupling process between basin and mountain of the Xujiahe Formation of Upper Triassic in the Foreland Basin, NE Sichuan. Acta Geologica Sinica, 82, 1077–1087 (in Chinese).

    Google Scholar 

  • Zheng, R. C., Dai, C., Zhu, R., Zhai, W., Gao, H. C., & Gen, G. W. (2009). Sequence-based lithofacies and paleogeographic characteristics of Upper Triassic Xujiahe Formation in Sichuan Basin. Geological Review, 55, 484–495 (in Chinese).

    Google Scholar 

  • Zheng, R. C., Dai, Z. C., Luo, Q. L., Wang, X. P., Lei, G. M., Jiang, H., & Chen, H. (2011). Sedimentary system of the upper Triassic Xujiahe formation in the Sichuan Forelandoid Basin. Natural Gas Industry, 31, 16–24 (in Chinese with English abstract).

    Google Scholar 

  • Zhou, Z. Y. (1995). Jurassic floras. In X. X. Li (Ed.), Fossil floras in China through geological ages (pp. 260–308). Guangzhou: Guangdong Science and Technology Press.

    Google Scholar 

  • Zhu, R., Bai, B., Liu, L., Su, L., Gao, Z., & Luo, Z. (2011). Research on standardization of continental sequence stratigraphy and palaeogeography: a case study from the Upper Triassic Xujiahe Formation in Sichuan Basin. Earth Science Frontiers, 18, 131–143 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

Pole acknowledges support from a CAS President’s International Fellowship Initiative (PIFI) for Visiting Scientists (grant number 2015VEA038) for allowing him to spend time at the Nanjing Institute for Geology and Palaeontology, Chinese Academy of Sciences. Wang acknowledges financial support from the State Key Program of Basic Research of Ministry of Science and Technology, China (2012CB822003), the National Natural Sciences Foundation of China (NSFC 41272010, 41572014) and the Team Program of Scientific Innovation and Interdisciplinary Cooperation of CAS. This is a contribution to the UNESCO / IGCP project 632, Continental Crises of the Jurassic: Major Extinction events and Environmental Changes within Lacustrine Ecosystems. The comments of two anonymous reviewers and D. Uhl greatly improved the manuscript and were much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mike Pole or Yongdong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue “Jurassic biodiversity and terrestrial environments”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pole, M., Wang, Y., Dong, C. et al. Fires and storms—a Triassic–Jurassic transition section in the Sichuan Basin, China. Palaeobio Palaeoenv 98, 29–47 (2018). https://doi.org/10.1007/s12549-017-0315-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-017-0315-y

Keywords

Navigation