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Abstract. Interactions between the biosphere and the atmosphere can be well characterized by fluxes between the two. In

particular, carbon and energy fluxes play a major role for understanding biogeochemical processes on ecosystem level or

global scale. However, the fluxes can only be measured at individual sites, e.g., by eddy covariance towers, and an upscaling of

these local observations is required to analyze global patterns. Previous work focused on upscaling monthly, eight-day, or daily

average values and global maps for each flux have been provided accordingly. In this paper, we raise the upscaling of carbon5

and energy fluxes between land and atmosphere to the next level by increasing the temporal resolution to subdaily scales. We

provide continuous half-hourly fluxes for the period from 2001 to 2014 at 0.5◦ spatial resolution, which allows for analyzing

diurnal cycles globally. The dataset contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE),

latent heat (LE), and sensible heat (H). We propose two prediction approaches for the diurnal cycles based on large-scale

regression models and compare them in extensive cross-validation experiments using different sets of predictor variables.10

We analyze the results for a set of FLUXNET tower sites showing the suitability of our approaches for this upscaling task.

Finally, we have selected one approach to calculate the global half-hourly data products based on predictor variables from

remote sensing and meteorology at daily resolution as well as half-hourly potential radiation. In addition, we provide a derived

product that only contains monthly average diurnal cycles, which is a lightweight version in terms of data storage that still

enables to study the important characteristics of diurnal courses globally. We recommend to primarily use these monthly15

average diurnal cycles, because they are less affected by the impacts of day-to-day variation, observation noise, and short-

term fluctuations on subdaily scales compared to the plain half-hourly flux products. The global half-hourly data products are

available at https://doi.org/10.17871/BACI.224.

1 Introduction

Understanding the coupling of the atmosphere and the biosphere is key to understand Earth system dynamics and ultimately20

to predict future trajectories based on dynamic and fully coupled Earth system models (Bonan, 2008). Eddy covariance mea-

surements of energy and carbon fluxes have revealed major insights into land-atmosphere interactions (see the overview by

Balddocchi, 2014), but the underlying observations are local by nature and it remains difficult to derive global inferences. To

overcome this limitation, continental to global scale products of biosphere-atmosphere fluxes have been produced using ma-
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chine learning techniques that combine flux tower measurements, observations from remote sensing, and climate data (Jung

et al., 2009; Papale et al., 2015). These products proofed to be useful for example in terms of assessing large-scale patterns

of biosphere-atmosphere fluxes with climate data (Jung et al., 2010) or to provide cross-consistency checks for process-model

simulations (Bonan et al., 2011). The general principle of this upscaling approach has been to exploit relationships between

climate or satellite-based driver variables like temperature or leaf area index, and the targeted biosphere-atmosphere flux (Xiao5

et al., 2012). In the first (“training”) step, a machine learning model of the flux data is established based on the driver vari-

ables across a regional or global network of towers. In the second (“production”1) step, the model is being applied to large

spatial domains where only gridded estimates of the drivers are available. Machine learning techniques are very effective here

since they are fully data-adaptive, do not require making assumptions on functional relationships, and can cope with nonlinear

dependencies.10

One of the first papers by Jung et al. (2009) deals with empirical upscaling of monthly average values of Gross Primary

Production (GPP) obtained from a biosphere model. They propose using a model tree ensemble approach to perform the

predictions and introduce both a new model tree induction algorithm and a specific ensemble approach. Later, Beer et al. (2010)

estimated GPP for different biomes, focussing on global median annual GPP derived using different prediction approaches.

Covering a larger number of variables, Jung et al. (2011) produced global flux products at 0.5◦ spatial resolution for monthly15

average values of GPP, terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent heat (LE), and sensible

heat (H). Their findings were confirmed by a comprehensive cross-validation analysis using FLUXNET2 towers. In the latest

study of Jung et al. (2017), they investigate the dependencies of changes in temperature and water availability on the interannual

variability of carbon fluxes both locally and globally using their upscaled data products and process-based global land models.

There exist further upscaling approaches in the literature based on support vector regression models (Yang et al., 2007;20

Ueyama et al., 2013; Ichii et al., 2017) that estimate carbon fluxes on regional to continental scale. The work of Xiao et al.

(2008, 2010) deals with estimating carbon fluxes for the United States using data from MODIS and AmeriFlux. Only recently,

a systematic comparison of different regression algorithms for predicting carbon and energy fluxes has been carried out by

Tramontana et al. (2016). The authors of this paper were interested in the best prediction performances for estimating GPP,

TER, NEE, LE, H, as well as net radiation at either eight-day or daily temporal resolution. In their cross-validation analysis,25

they found that prediction performance varies only slightly among different regression algorithms from machine learning.

However, they could show that accuracies clearly differ between the individual fluxes, meaning that some fluxes are harder to

estimate than others, which is probably due to a lack of information in the set of explanatory variables. The very recent work

of Zhang et al. (2017) presents a global product of GPP at eight-day temporal and 500 m spatial resolution, which is based on

an improved light use efficiency theory and driven by MODIS satellite data as well as NCEP climate reanalysis data.30

Today, global flux products feature at best a daily temporal resolution as presented by Tramontana et al. (2016). This is partly

due to rapidly growing computational issues in the training and production step scaling quadratically with spatial resolution.

1Note that an alternative notion would be to use the term “prediction” here. However, in the climate community “prediction” is typically used for future

scenarios, while in machine learning the application domain could be also at ungauged spatial locations etc.
2http://fluxnet.fluxdata.org/
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In addition, consistent global long-term products of driver data with hourly or higher temporal resolutions are lacking or are

not readily available. Upscaling half-hourly carbon and energy fluxes rises previous upscaling approaches to the next level by

increasing the temporal resolution to subdaily scales.

In addition, there is a need for a global data product of half-hourly fluxes. Such a data product would allow for characterizing

subdaily variations in the diurnal cycles at places where no towers are currently installed. Characterizing typical subdaily flux5

patterns is critically needed for certain satellite remote sensing applications. For example, the interpretation of satellite retrievals

of sun-induced fluorescence as proxy for photosynthesis (Guanter et al., 2014; Sun et al., 2015) or integrated atmospheric

column carbon dioxide (XCO2) at certain overpass times (usually around mid-day) requires consideration of strong diurnal

variations of biosphere-atmosphere carbon fluxes. Another area where half-hourly data products would be a crucial piece of

information are land-atmosphere feedback modeling studies. The derived products could allow to check the cross-consistency,10

since many processes governing land-atmosphere interactions, e.g., related to the formation of heavy rainfall or heat waves, in

fact operate at subdaily time scales (Dirmeyer et al., 2012).

In view of the need for global high-frequency flux data, we aim at increasing the temporal resolution of data-driven carbon

and energy flux products to subdaily scales by estimating half-hourly values at global scale. We tackle the problem of predicting

diurnal cycles with half-hourly values globally for both carbon and energy fluxes between biosphere and atmosphere by treating15

the upscaling task as a large-scale regression problem. From the machine learning perspective, the random forest regression

framework serves as a basis for our computations due to its good performance and suitable scaling properties with respect to

large data sets. We test two approaches for estimating half-hourly GPP with random forest models and evaluate both of them

using a leave-one-site-out cross-validation strategy for a large set of FLUXNET sites. We produce derived global products with

0.5◦ spatial and half-hourly temporal resolution for GPP and NEE as well as for LE and H covering the years 2001 to 2014.20

For the sake of clarity, some figures in this paper only show the results obtained for GPP although similar plots can easily be

created for the other three fluxes that have been considered. Thus, GPP serves as the running example throughout this paper.

The following sections are organized as follows. First, we introduce the used data basis by describing both site-level and

global forcing data (Sect. 2) that are used in our study. Then, we explain the methodological background (Sect. 3) and the

algorithmic concept (Sect. 4) of the proposed upscaling approaches in detail. In Sect. 5, extensive evaluations and comparisons25

of the different upscaling strategies are presented based on leave-one-site-out cross-validation, which validate the proposed

approach and the derived global products. Afterwards, we present the empirical results at global scale in Sect. 6 and highlight

intrinsic features of the new data sets. Finally, we discuss both our findings and possible improvements for future applica-

tions (Sect. 7). The global data sets presented in this paper are freely available to any interested user (see Sect. 8).

2 Data sources30

In this section, we shortly describe the two data sources we are using in our studies. For learning the relationships between

predictor variables and the target fluxes as well as for the cross-validation experiments, we make use of site-level data extracted
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at FLUXNET sites that are equipped with eddy covariance towers (Sect. 2.1). To perform global upscaling of diurnal cycles,

we require gridded data products of the predictor variables on a global scale. The latter are described in Sect. 2.2.

2.1 Site-level data

We aim at predicting fluxes on a half-hourly resolution which can currently only be measured using the eddy covariance method

at globally distributed towers. The eddy covariance method (Baldocchi et al., 1988; Aubinet et al., 2012) has revolutionized5

the study of land-atmosphere interactions by offering a means of continuously observing net land-atmosphere fluxes of CO2,

latent heat, and sensible heat (Balddocchi, 2014). Today, the towers are running for sufficient time to enable studies about the

interannual variability of land-surface dynamics, yet the temporal representativeness is highly uneven (Chu et al., 2017). In

our studies, we rely on data from 222 FLUXNET eddy covariance towers (see Appendix A for a full list of involved sites).

All towers are typically equipped with a suite of comparable micrometeorological devices so that a local training of machine10

learning methods is possible. Gross carbon fluxes can be derived using different flux partitioning methods as described, e.g., by

Reichstein et al. (2005) or Lasslop et al. (2010), and here we rely on the former method. In all our experiments, we only make

use of measured fluxes, i.e., no gapfilling has been applied and gaps in the half-hourly flux data have simply been ignored. As

predictor variables, we use the ones selected by Tramontana et al. (2016, Table 2) in the RS+METEO setup that they use for

estimating fluxes at daily resolution. Besides the plant functional type (PFT), these are variables containing remote sensing data15

from MODIS satellites and meteorological data either in situ measured at the flux tower locations or from long-term time series

of the ERA-Interim data set at daily resolution. It should be noted that only the mean seasonal cycles (and derived properties

like amplitude, minimum, mean, and maximum) are taken into account for the vegetation indices (normalized difference

vegetation index - NDVI, enhanced vegetation index - EVI) as well as for the normalized difference water index (NDWI),

the fraction of absorbed photosynthetically active radiation (fAPAR), and the land surface temperature (LST). In contrast,20

the actual values of air temperature, global radiation, potential radiation, relative humidity and of different water availability

indices have been used. For detailed descriptions, we refer to the corresponding sections in the paper of Tramontana et al.

(2016, Sect. 2.1.3 and 2.1.4 as well as Table 2).

2.2 Global forcing data

In order to compute the global flux products at half-hourly resolution via upscaling, we require the predictor variables men-25

tioned in the previous section at global scale, i.e., the variables of the RS+METEO setup from Tramontana et al. (2016, Table 2).

Concerning the remote sensing variables, MODIS observations are used to compute mean values for each PFT and each day ag-

gregated to 0.5◦ spatial resolution. The distributions of each PFT stem from the MODIS collection 5 global land cover product

of Friedl et al. (2010). Climatic data for the meteorological variables have been obtained from CRUNCEPv63, which denotes

a merged data product of monthly observation-based climate variables at 0.5◦ spatial resolution from the Climate Research30

Unit (CRU) and 6-hourly reanalysis data from the National Centers for Environmental Prediction (NCEP).

3http://esgf.extra.cea.fr/thredds/catalog/store/p529viov/cruncep/V6_1901_2014/catalog.html
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3 Methodological background: random forest regression

Ensemble methods are powerful machine learning tools that combine the outputs of many individual prediction models to

obtain more accurate estimations for a target variable. The random forest approach (Breiman, 2001) denotes a typical example,

which consists of a set of randomized decision trees. Decision trees in general can be built for classification or regression

purposes and they are therefore also called classification trees or regression trees. Multiple decision trees form a decision forest5

and learning their decision rules typically involves some randomization, which leads to the name randomized decision forest

or short random forest. In the following, the concepts of learning and testing randomized decision trees for regression tasks

are briefly summarized, because they denote the essential parts of random forest regression. The reader who is familiar with

the technical details of random forest regression can skip this section and may directly continue with the proposed upscaling

approaches in Sect. 4.10

3.1 Randomized decision tree

Given a training set X =
{
x(i) ∈ IRD : i = 1,2, . . . ,N

}
of N samples with each sample x being a vector consisting of D

predictor variables x1,x2, . . . ,xD and a corresponding real-valued target variable y ∈ IR with observations y1,y2, . . . ,yN ∈ IR

for the N training samples, the goal is to find a set of rules that allow for predicting y based on x. In case of a decision tree,

these rules are binary tests for individual predictor variables with simple thresholds. A hierarchical tree structure is built as15

shown in Fig. 1 by selecting at each node i a predictor variable di ∈ {1,2, . . . ,D} and a threshold ti ∈ IR. The estimate of a

node i is the average value ȳi of the observations computed from training samples that reach this node. The first node of a

decision tree called root node contains all training samples and hence, the overall mean value ȳ1 = 1
N

∑N
n=1 yn of observations

yn from all N training samples is an extremely coarse approximation that needs to be refined depending on the constellation

of the input variables x.20

Starting at node 1 in Fig. 1, the set of training samples is partitioned into two subsets, represented by nodes 2 and 3, based

on the result of the binary test xd1 ≤ t1. Both nodes, node 2 and node 3, have associated predicted outputs ȳ2 and ȳ3 that

are computed as the average observation of samples that reach the corresponding node. The split parameters d1 and t1 are

optimized such that the mean squared error for the training samples is minimized given the respective predictions from node

2 or node 3. Such splits are then computed for nodes 2 and 3 as well as for further derived nodes until a stopping criterion25

is fulfilled. Typical stopping criteria are: (i) a split would create nodes with less than Nmin samples, (ii) the variance of the

observations from samples in a node is smaller than some threshold σ2
min, or (iii) a maximum depth dmax of the tree is reached.

The depth of a tree is defined as the largest distance of a node to the root of the tree. Values of the parameters Nmin, σ2
min, and

dmax can be changed to obtain either smaller or larger trees, which allows for controlling the runtime of the algorithm and the

trade-off concerning generalization and overfitting.30

It is usually the case that multiple stopping criteria are tested and if one of them is fulfilled, the current node is not split

but becomes a leaf node that stores a final output prediction. Learning a decision tree therefore consists of computing split
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Figure 1. General structure of a decision tree for regression: binary splits with thresholds for individual predictor variables will be used to

navigate a sample x to a leaf node that stores a continuous estimate for the target variable.

parameters until only leaf nodes remain that are not split any further (Fig. 1). Hence, one distinguishes between split nodes as

the inner nodes of a tree and leaf nodes, each of which contains the estimated output for any sample that reaches this node.

To reduce overfitting to the training set, the learning process is carried out in a stochastic manner by introducing several

types of randomization. Whenever split parameters need to be identified, only a random subset of the D predictor variables is

taken into account. Furthermore, only a fixed amount of randomly chosen thresholds is tested. Both randomization techniques5

also lead to reduced computation costs compared to exhaustive search. To predict the output y∗ of a test sample x∗, it is passed

through the tree according to the evaluation of the split functions at the inner nodes starting at the root node. This is done until

a leaf node ℓ is reached, whose precomputed output ȳℓ is assigned to x. However, more accurate predictions can be achieved

by considering an ensemble of randomized decision trees.

3.2 Random forest as an ensemble of randomized decision trees10

In his work about random forests, Breiman (2001) makes use of a technique called bagging that he has introduced be-

fore (Breiman, 1996). Bagging is an acronym for bootstrap aggregating (Breiman, 1996) and stands for aggregating predictions

of individual models that have been learned based on different sample sets built from the original training dataset. More pre-

cisely, individual sample sets are constructed by random sampling with replacement from the original training set, which is

commonly referred to as bootstrapping. If the training set contains N samples, it is possible that each of the sampled sets15

either contains also N samples (which produces different sets with individual instances occurring several times due to random

sampling with replacement) or only a fraction ν of the N samples. In both cases, the random subset selections introduced by

bagging additionally prevent overfitting to the training set. For bagging, predictions from an ensemble of individual models are

utilized and an ensemble of randomized decision trees is called random forest, randomized decision forest, or short RDF. Each

6
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. . .

. . .

. . .

Tree 1 Tree 2 Tree T

Test sample x∗ = (x∗1 ,x∗2 , . . . ,x∗D)

y∗1 y∗2 y∗T

Predicted output y∗ = 1
T

T∑

t=1
y∗t

Figure 2. Predicting the output y∗ of a sample x
∗ with a randomized decision forest is carried out by averaging the individual predictions

obtained from the T decision trees in the ensemble.

tree in the ensemble is learned separately and independent from the other trees. Due to the involved randomization techniques

during learning of a single tree described before, different trees contain different binary tests and provide different estimates for

a single input sample x. The individual predictions of each tree are then aggregated to obtain a final result, which is typically

carried out by simple averaging as shown in Fig. 2. However, the number of trees Ntree is a hyperparameter whose value needs

to be chosen in advance but good assignments depend on various aspects. Since Breiman (1996) pointed out that bagging leads5

to predictions which are more stable compared to a single model, especially if the decision function of the single model is

highly instable with respect to the training set, a larger number of trees is in favor of higher stability. On the other hand, more

trees are causing higher computational costs during both learning and testing. In addition, a saturation effect for the predic-

tion accuracy can typically be observed for an increasing number of trees. Hence, accuracies obtained by cross-validation for

different numbers of trees can help to identify this saturation and a proper value for Ntree.10

4 Methods for upscaling diurnal cycles

The problem of upscaling diurnal cycles of carbon and energy fluxes can be formulated as a large-scale regression task, i.e.,

estimating half-hourly fluxes for every grid cell of the globe based on a set of predictor variables. These predictor variables

typically encode climate conditions or Earth observations obtained from remote sensing at the corresponding spatial positions.

However, the temporal resolutions of variables can be different, not only between the target flux (half-hourly) and a predictor15

variable (e.g., daily), but also among different predictor variables (e.g., daily and half-hourly). Therefore, two prediction ap-

proaches for upscaling diurnal cycles are presented in Sect. 4.1 and Sect. 4.2, respectively, which account for this mismatch of

temporal resolutions. Although both approaches can be equipped with any regression algorithm, we have decided to use the
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Daily predictors (constant for each half hour of the day) 
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+ + + + + 

Figure 3. Visualization of the first prediction approach: an individual RDF regression model is learned for each half hour of a day, which

allows for predicting diurnal cycles only based on predictors with daily resolution. However, predictors with half-hourly resolution can also

be incorporated.

random decision forest (RDF) as a nonlinear method, which has been summarized in the previous section. The main reasons

for this choice are the fast learning and testing algorithms, because the upscaling tasks involve a huge number of samples such

that learning nonlinear kernel methods for regression like Gaussian processes (Rasmussen and Williams, 2006) are impractical

due to both memory demand and computation time. Furthermore, Tramontana et al. (2016) have shown in their cross-validation

experiments that the accuracies for estimating fluxes vary only slightly among different machine learning methods.5

4.1 First prediction approach: an individual regression model for every half hour of the day

Recall from the beginning of Sect. 4 that the two main challenges for upscaling diurnal cycles to global scale are the huge

amount of data which needs to be handled as well as the mismatch of temporal resolutions between predictor variables and the

target fluxes. The first approach for predicting diurnal cycles has the advantage that it allows for using only predictors of daily

temporal resolution. This is very important, because daily (average) values are often more accurate with respect to measurement10

noise and the availability of daily values is much higher compared to half-hourly values, especially when considering global

products with values for every grid cell. Furthermore, variables derived from remote sensing are often limited to daily temporal

resolution. Therefore, the first prediction approach involves learning an individual regression model for each half hour of the

day and as indicated at the beginning of Sect. 4, RDF regression models are utilized for handling large-scale data. A schematic

overview for a single day and a diurnal cycle of GPP is shown in Fig. 3.15

Even if one uses only predictor variables of daily temporal resolution which can be treated as constant for the whole day,

different values of the target flux for different half hours of the day can be estimated. The reason is that the 48 different

RDF models are learned with different values for the target output variable y, although the same values for the predictor

variables x are used. For example, an RDF model that is learned for a half hour during night only covers the rather small

8
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Daily predictors (constant for each half hour of the day) 
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+ + + + + 

Figure 4. Visualization of the second prediction approach: a single RDF regression model is able to predict the flux at every half hour of the

day if at least one predictor variable has a half-hourly temporal resolution (such as the potential radiation Rpot).

range of observations y that can be observed at this time, while the range of observations around noon is typically much larger,

especially during the growing season. Hence, the 48 RDF models and their estimated outputs differ only because of different

observations y that are provided during learning together with the same set of samples X . Of course, it is also possible to

incorporate predictor variables at half-hourly temporal resolution, which would directly fit to the resolution of the target flux.

Such predictor variables could further enhance the distinction of individual half hours of a day and could lead to more accurate5

estimations. However, they are optional and not required for this prediction approach as indicated in Fig. 3.

4.2 Second prediction approach: a single regression model suitable for all half hours of the day

In contrast to the first prediction approach, the second approach only uses a single regression model that is able to estimate

different values for different half hours of the same day. It is then necessary that the distinction between these half hours

is somehow encoded in the predictor variables, which is not the case if only predictors of daily resolution are incorporated.10

Therefore, this approach requires at least one predictor variable at half-hourly temporal resolution. Fortunately, the potential

radiation (Rpot) can be calculated globally at half-hourly resolution, because it only depends on the time as well as the solar

angle that is defined given the spatial position via latitude and longitude. Thus, the second approach with a single model, as

visualized in Fig. 4, is therefore also applicable for upscaling diurnal cycles to global scale. Again, we make use of an RDF

regression model due to its large-scale capabilities.15

In addition, besides the potential radiation also its first-order temporal derivative can be incorporated as an additional half-

hourly predictor, which helps for distinguishing between morning and afternoon. For all our computations, we have always

included this derivative in case we also used Rpot. The nice property of this approach is that information about the physical

relationships between the predictor variables and the fluxes can be shared among different half hours during learning of the

single regression model, which is not the case for individual models as mentioned in the previous section. This second pre-20
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diction approach therefore seems to be more plausible from a physical perspective, because the distinction between different

half hours of the day is made based on the data, e.g., (potential) radiation, and not enforced by learning independent regression

models for each half hour.

Although meteorological variables such as air temperature or vapor pressure deficit (VPD) as well as incoming radiation

are also potential candidates for predictors that encode subdaily variations of the fluxes, they are currently only available with5

a half-hourly resolution at individual sites, e.g., also measured at eddy covariance towers. Due to the missing half-hourly

meteorological data products at global scale, it is not possible to use these information for the global upscaling. However, since

we are interested in whether such data products could be beneficial for upscaling diurnal cycles, we use the corresponding

site-level data in our cross-validation analysis to get further insights. Hence, meteorological variables measured at the eddy

covariance towers of FLUXNET can still be used for validating the upscaling approaches and evaluations of cross-validation10

experiments are presented in the next section.

5 Assessing different upscaling strategies with leave-one-site-out cross-validation

The global products presented in this paper cover diurnal cycles of four fluxes: GPP, NEE, LE, and H. For each of these fluxes,

we have consistently performed cross-validation experiments but the results presented in the following only consider GPP as

a running example. We have decided to apply RDF models for regression due to its efficient training and testing algorithms15

even in case of large-scale data as well as its good performance for upscaling daily mean values of GPP (Tramontana et al.,

2016). Each RDF was trained with 100 randomized decision trees, because we observed a saturation effect for the prediction

performance in preliminary experiments when increasing the number of decision trees. Further parameters have been set to

its default values in Matlabs TreeBagger function, e.g., a minimum leaf size of five samples, since we hardly observed any

changes in the overall performances when varying the parameter settings. Performances are measured using the Nash-Sutcliffe20

modeling efficiency (Nash and Sutcliffe, 1970) based on a leave-one-site-out cross-validation scheme.

The motivation for the leave-one-site-out evaluation as a special case of cross-validation is twofold. First, we want to evaluate

regression models that have been learned from as many observations as possible and based on training sets that are most

similar to the training set that will be used to compute the global products, which will incorporate all the available data from

all FLUXNET sites. Second, we intend to mimic a realistic scenario most similar to the upscaling task by predicting fluxes25

at locations where no training data has been taken from. As a consequence, we predict fluxes at one FLUXNET site using a

regression model learned with all observations from all the remaining FLUXNET sites. After doing this for each individual

site, we concatenate all site-specific predictions to form a long vector of predictions that can be compared to the corresponding

observations measured at the corresponding sites. This allows for a general evaluation of the prediction approaches in a site-

independent manner.30
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5.1 Overview of experiments

We start with a short overview of the experiments that have been conducted in order to clarify our ideas and motivations behind

them. In Sect. 5.2, we compare the two different prediction approaches for upscaling diurnal cycles that have been introduced in

Sect. 4. Furthermore, we focus on comparing different sets of predictor variables, e.g., the effect of meteorological variables at

half-hourly resolution on the prediction performances. Evaluations of the prediction performance for monthly average diurnal5

cycles derived from the half-hourly values are shown in Sect. 5.3. These average diurnal cycles per month nicely summarize the

fluxes over a longer time period (one month) by still keeping a half-hourly pattern that allows for monitoring subdaily variations.

In addition, averaging diurnal cycles for a specific month removes noise in the individual half-hourly measurements and reduces

the effects of day-to-day variability, e.g., caused by cloud coverage, which allows for comparing the main characteristics of the

observations and the predictions for the selected month. The evaluations of monthly average diurnal cycles play an important10

role for our provided data products, since we also prepare derived products that contain these monthly average patterns only.

With two additional experiments presented in Sect. 5.4, we want to demonstrate that the quality of our achieved predictions is

not inherently limited by the presented upscaling approaches but rather by missing site-specific information and latent driving

forces that are not encoded in the set of predictor variables that has been used. This is not a specific problem of upscaling

diurnal cycles of fluxes at half-hourly resolution, but a general challenge for all upscaling approaches that deal with carbon and15

energy fluxes, also at coarser time scales.

5.2 Improved predictions by using half-hourly meteorological data

In the following, we compare the results of our presented prediction approaches for half-hourly GPP depending on different sets

of predictor variables, which have been obtained by using the leave-one-site-out strategy explained in the beginning of Sect. 5.

As the core for all sets of predictors, we include those variables that have been used for upscaling daily mean GPP values by20

Tramontana et al. (2016). In fact, we use exactly the set of predictors that corresponds to the RS+METEO setup that has been

defined by Tramontana et al. (2016, Table 2) and we refer to this table for details about the variables. Given the explanations of

the first prediction approach in Sect. 4.1 with individual regression models for each half hour, we can directly use these predictor

variables for estimating half-hourly GPP values. However, we also added the potential incoming radiation Rpot at half-hourly

resolution to encode subdaily variations in the predictors as well as its first temporal derivative to distinguish between morning25

and afternoon. Furthermore, we have tested a third set of predictors by additionally incorporating meteorological variables with

half-hourly resolution measured at FLUXNET tower sites. The added variables are air temperature, vapor pressure deficit, and

incoming global radiation. In a nutshell, the three sets of predictor variables consist of: (i) daily predictors, (ii) daily predictors +

half-hourly Rpot, and (iii) daily predictors + half-hourly Rpot + half-hourly meteorological predictors, besides static predictors

like PFT that are used in all three cases. The second and third set are also used in the experiments for the second prediction30

approach that includes only a single regression model, because half-hourly information is encoded in some of the predictor

variables.

11

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-130

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



all-sites CA-Man DE-Hai FR-Pue IT-Cpz US-Goo US-Var
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
o
d
e
lin

g
 e

ff
ic

ie
n
c
y

Individual models, daily predictors

Individual models, daily predictors + half-hourly Rpot

Individual models, daily predictors + half-hourly Rpot + half-hourly meteorological predictors

Single model, daily predictors + half-hourly Rpot

Single model, daily predictors + half-hourly Rpot + half-hourly meteorological predictors

Gapfilling performance for comparison

Figure 5. Prediction performances for individual half-hourly values of GPP depending on different sets of predictor variables are shown. We

compare our two proposed prediction approaches (individual RDF models and single RDF model) and also include the results of a gapfilling

algorithm for comparison. Looking at the results of all sites as well as at site-specific performances, we observe that meteorological predictor

variables at half-hourly resolution clearly improve the accuracies of the estimations.

In Fig. 5, we have visualized the results for all sites as well as for selected FLUXNET towers. Only for comparison to the

leave-one-site-out experiments, we also included the modeling efficiency of a gapfilling algorithm (Reichstein et al., 2005) as a

potential upper bound for our predictions. In fact, each measured value is also estimated by a gapfilling algorithm that makes use

of flux measurements at the same site under similar climate conditions and hence provides only a theoretical baseline, because

it can not be applied for predicting fluxes at locations without any observations. First, we focus on the leftmost group of bars in5

Fig. 5, which shows the modeling efficiencies for all sites. Looking at the results for the first prediction approach with individual

models for each half hour, including half-hourly Rpot only slightly improves the average performance (0.67 compared to 0.66),

which is probably also caused by the stochastic nature of the RDF learning algorithm. However, including the meteorological

predictors at subdaily temporal resolution leads to an increase of the performance to 0.70 modeling efficiency. A similar

improvement can be observed for the second prediction approach with a single model for all half hours of the day, because the10

modeling efficiency increases from 0.67 to 0.71 when including half-hourly meteorological data. This highlights that varying

subdaily meteorological conditions have a clear impact on predicting the diurnal cycles of GPP fluxes.

On the one side, half-hourly Rpot has almost no influence on the accuracy of the predictions but on the other side, it allows

for applying the second prediction approach with only a single regression model. Hence, it may seem more natural from a

physical perspective to distinguish individual half hours of the day by the provided half-hourly Rpot rather than enforcing the15

distinction by separately learned regression models. Comparing both prediction strategies, they achieve similar performances

12

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-130

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Predictions for US-SO2 in 2004 with

daily predictors + half-hourly Rpot +

half-hourly meteorological predictors

3:00 9:00 15:00 22:00

Time of day

50

100

150

200

250

300

350

D
a
y
 o

f 
y
e
a
r

0 1 2 3 4

GPP [ mol m
-2

 s
-1

]GPP [µmol m−2 s−1]

Predictions for US-SO2 in 2004 with

daily predictors + half-hourly Rpot

3:00 9:00 15:00 22:00

Time of day

50

100

150

200

250

300

350

D
a
y
 o

f 
y
e
a
r

0 1 2 3 4

GPP [ mol m
-2

 s
-1

]GPP [µmol m−2 s−1]

Difference of the first two plots

3:00 9:00 15:00 22:00

Time of day

50

100

150

200

250

300

350

D
a
y
 o

f 
y
e
a
r

-2 -1 0 1 2

 GPP [ mol m
-2

 s
-1

]∆GPP [µmol m−2 s−1]

Figure 6. Fingerprint plots of half-hourly GPP fluxes estimated for US-SO2 in 2004 with leave-one-site-out cross-validation show that short-

term fluctuations on subdaily scales are captured better when also half-hourly meteorological predictors have been included (left) compared

to only using half-hourly Rpot (center). The difference of the first two plots (right) also emphasizes this observation.

when using the same set of predictor variables. Since it is more convenient from a technical perspective to only handle a single

regression model instead of 48 different models, the evaluations in the following sections will focus on the second prediction

approach with a single RDF model that is suitable for predicting values at every half hour of the day. It is interesting to note

that relative performance differences between the two prediction approaches and among the different sets of predictor variables

look very similar when considering single sites only. In all our cross-validation experiments, the best prediction accuracies are5

always achieved by including half-hourly meteorological variables in the set of predictors. However, absolute performance

values vary among sites. As shown in Fig. 5, the accuracies at the sites CA-Man and DE-Hai are between 0.80 and 0.90

modeling efficiency, whereas lower performances (between 0.60 and 0.80) have been achieved for predicting GPP at FR-Pue,

IT-Cpz, and US-Goo. Moreover, the fluxes at US-Var seem to be very difficult to estimate, since only modeling efficiencies

between 0.20 and 0.30 were obtained.10

To further highlight the difference in the predictions when half-hourly meteorology is encoded in the driver variables, we

visualize all half-hourly estimations over one year at a specific site using fingerprint plots. A fingerprint in this context is a plot

with 365 rows corresponding to 365 days of a year and 48 columns corresponding to 48 half hours of each day such that one

fingerprint contains all half-hourly values of a whole year and shows characteristic patterns for the selected site, e.g., length of

the growing season. In Fig. 6, the estimations of half-hourly GPP with and without half-hourly meteorological predictors are15

shown in two individual fingerprint plots and their difference is indicated in a third plot. As expected, the predictions based
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Figure 7. Some example sites with average diurnal cycles for different months comparing two prediction approaches with the observations.

on half-hourly meteorology contain much more short-term fluctuations during single days, whereas smoother estimations are

obtained when only half-hourly Rpot is used as a subdaily driver. This can also be observed from the difference of the two

fingerprints. Hence, half-hourly meteorological predictor variables are required to better capture high-frequency changes of the

fluxes on subdaily scales. In the following, we take a closer look at average diurnal cycles per month.

5.3 Analyzing average diurnal cycles per month5

For visual inspection purposes, it is useful to look at average diurnal cycles for individual months at specific sites. Example

plots are shown in Fig. 7. They show that our predictions are able to produce the typical shapes of diurnal courses which are in

line with corresponding observations. For the depicted predictions, only observations from other sites have been used to learn
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Table 1. Modeling efficiencies for the predictions of all sites obtained from the leave-one-site-out experiments are summarized and here we

differentiate between comparing all individual half-hourly values with the observations and only looking at monthly average diurnal cycles.

COMPARING ALL COMPARING MONTHLY

APPROACH HALF-HOURLY VALUES AVERAGE DIURNAL CYCLES

Individual models

daily predictors 0.66 0.78

daily predictors + half-hourly Rpot 0.67 0.78

daily predictors + half-hourly Rpot
0.70 0.80

+ half-hourly meteorological predictors

Single model

daily predictors + half-hourly Rpot 0.67 0.78

daily predictors + half-hourly Rpot
0.71 0.80

+ half-hourly meteorological predictors

Gapfilling 0.87 0.93

the regression models. It is important to note that averaging diurnal cycles within a month reduces noise in the observations as

well as in the predictions of a single day, but also smoothens high frequency short-term fluctuations, e.g., due to (partial) cloud

coverage, and yet decreases the influence of day-to-day variations. Hence, these mean diurnal courses are more stable and

an evaluation of averaged predictions with respect to averaged observations for all sites leads to larger modeling efficiencies

compared to those reported in the previous section. An overview of modeling efficiencies when comparing all half-hourly5

values versus only looking at the average diurnal cycles is given in Table 1.

In fact, modeling efficiencies for monthly average diurnal cycles increase on average across all sites to a range between

0.78 and 0.80 depending on the set of predictor variables with the best results being accomplished again by incorporating half-

hourly meteorological data. This can also be observed from Fig. 8, which is organized in the same way as Fig. 5 but contains the

achieved modeling efficiencies for comparing monthly average diurnal cycles of observations and predictions. For the monthly10

mean diurnal courses, the difference between only using half-hourly Rpot or also including half-hourly meteorology is not so

large anymore compared to the evaluations for all half-hourly values. This holds for both the overall accuracies for all sites as

well as for single selected sites. As previously mentioned, the reason is that averaging fluxes within a month reduces the effect

of short-term fluctuations on subdaily scales. Therefore, if one is only interested in monthly average diurnal cycles, the results

obtained by using daily predictors and half-hourly Rpot are only slightly worse compared to including half-hourly meteorology15

and for some sites, the prediction performances are even on the same level of accuracy. This is important to know, since we

also provide a derived product from our global half-hourly fluxes that contains the monthly average diurnal cycles globally at

the same spatial resolution (Sect. 6).
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Figure 8. Prediction performances for monthly average diurnal cycles of GPP are shown in the same way as the accuracies for all half-hourly

values in Fig. 5.

However, the average diurnal cycles can also be used to identify potential problems of the predictions. In Fig. 9, mean

diurnal courses of several months at the sites FR-Pue and IT-Cpz are shown. It can be observed for both sites that the averaged

observations are lower in the summer months compared to the corresponding predictions. In other words, the regression models

overestimate GPP during these months. We believe that this is caused by the fact that our current prediction models are not able

to cope with seasonal droughts, which is not a specific problem of the diurnal upscaling but a challenge that every upscaling5

approach for carbon and energy fluxes needs to tackle. Although the observations show decreased productivity due to drought

stress in summer, the regression models still estimate large amplitudes of the diurnal cycles, i.e., a larger productivity. One

reason for this behavior could be the insufficient characterization of water availability that is present in the set of predictor

variables. Currently, we plan to investigate this issue in further research. In the following, we show that our current sets of

predictor variables are lacking some site-specific information, probably not only with respect to water storage capacities.10

5.4 Are we missing (site-specific) information in the predictors?

In order to gain any insights whether site-specific information is currently not well represented in the predictors, we have

conducted two auxiliary experiments. During the first experiment, we additionally estimate GPP fluxes at each site in a leave-

one-month-out setup and compare the resulting predictions with those of the leave-one-site-out setup. For the leave-one-month-

out estimations, we learn and test regression models for each month at each site separately. Furthermore, each regression15

model for each month is only learned with data from the same site but measured in different months (and years). Hence,
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Figure 9. Average diurnal cycles of two sites showing the problems with seasonal droughts. The error in the prediction of the half-hourly

fluxes increases during hot and dry summers for both sites, FR-Pue and IT-Cpz.

the regression models are highly site-specific, since only correspondences between predictor variables and GPP fluxes at a

single site are used and predictions are made at the same site but in a different time period. As a result, we have observed

improved flux estimations, which is shown exemplarily in Fig. 10 for IT-Cpz. It can be clearly seen that the gaps between

averaged observations and averaged predictions are getting smaller and mostly almost disappear, i.e., the predictions match

the observations much better in the leave-one-month-out setup. In terms of modeling efficiency, the performances increase5

to a range between 0.75 and 0.79 when comparing all individual half-hourly predictions from the leave-one-month-out setup

at all sites with the observations (best performance with leave-one-site-out is 0.70). Regarding the comparison of averaged

predictions and averaged observations within each month as presented in the previous section, the leave-one-month-out setup
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Figure 10. Comparison between leave-one-site-out (top rows) and leave-one-month-out (bottom rows) at IT-Cpz. It can be observed that

site-specific training in the leave-one-month-out setup reduces the prediction errors during seasonal droughts. Thus, the drought effects only

lead to problems when training across sites and predicting fluxes in the leave-one-site-out setup or for the upscaling when fluxes are estimated

at locations where no towers exist.

leads to modeling efficiencies between 0.87 and 0.89. This is clearly larger than the results of the leave-one-site-out-experiment

(best performance: 0.80). Table 2 allows for a direct comparison of the results from the leave-one-site-out and the leave-one-

month-out experiments using both prediction approaches with the best set of predictor variables, i.e., daily predictor variables,

half-hourly Rpot, and half-hourly meteorological variables.

This table also contains the prediction performances obtained from a second experiment, in which we have used the daily5

GPP as an additional daily predictor for our regression models in the leave-one-site-out setup. Of course, this is only possible in

the cross-validation analysis where we actually have the daily averages of GPP, but the following evaluation reveals interesting
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Table 2. Comparing modeling efficiencies of the two auxiliary experiments (leave-one-month-out setup and including the daily GPP as an

additional predictor in the leave-one-site-out setup) to the best performances obtained with the leave-one-site-out experiments by using daily

predictor variables, half-hourly potential radiation, and half-hourly meteorological variables.

COMPARING ALL COMPARING MONTHLY

APPROACH HALF-HOURLY VALUES AVERAGE DIURNAL CYCLES

Individual models

Leave-one-site-out 0.70 0.80

Leave-one-month-out 0.78 0.88

Leave-one-site-out + daily GPP 0.86 0.93

Single model

Leave-one-site-out 0.70 0.80

Leave-one-month-out 0.79 0.89

Leave-one-site-out + daily GPP 0.87 0.94

Gapfilling 0.87 0.93

insights. Using the daily average GPP basically incorporates information about the amplitudes of the diurnal cycles, hence

drought effects of reduced productivity can directly be observed in this additional predictor variable. First of all, it can be

seen in Fig. 11 that using the daily GPP as an additional predictor clearly improves the predictions at FR-Pue during summer

months. Especially the decreased productivity in July 2005 and August 2005 can nicely be predicted by the regression models.

Since the daily GPP as an additional predictor constrains the size of the peak in a diurnal cycle, the predictions become much5

more powerful and the characteristic shapes of the diurnal cycles can be produced. The modeling efficiencies are even larger

than those obtained with the leave-one-month-out setup. They are in the range of 0.83 to 0.87 for all half-hourly values at all

sites, which is comparable with the performance of the gapfilling algorithm that has been included as an additional reference

in Fig. 5 as well as in Table 2. The gapfilling also achieves 0.87 modeling efficiency, i.e., the upper performance limit shown

as a green bar in the leftmost group in Fig. 5 can be obtained by including the daily GPP as an additional predictor. Regarding10

monthly averaged diurnal cycles, a modeling efficiency of up to 0.94 is obtained by the regression models that use daily GPP

as an additional predictor, while gapfilling reaches 0.93. This is also summarized in Table 2.

From this experiment, we can conclude that the problems for predicting diurnal cycles of GPP are mainly caused by the

lack of estimating the daily mean GPP properly. If the daily mean is given, predictions of half-hourly values are much more

accurate. Hence, the main problems for the upscaling of half-hourly fluxes are not related to producing the right shapes of the15

diurnal courses, but turn out to be problems of estimating the correct amplitudes. These are then the same problems as for

upscaling daily average values (or fluxes at coarser time scales) and are not introduced by the step of going to a larger temporal

resolution in terms of half hours.
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Figure 11. Improvements of the initial estimations (top rows) at FR-Pue can be observed when using daily GPP as an additional daily

predictor if it would be available a priori (bottom rows). Hence, the problems with seasonal drought effects would be greatly reduced in the

leave-one-site-out setup for every half hour of the diurnal cycle in case an accurate estimate of the daily average value is given.

5.5 Key insights from the cross-validation experiments

In this section, we want to shortly summarize the main findings from our cross-validation experiments. First, we have seen that

it does not really matter which of the two proposed prediction approaches we are using, since prediction performances hardly

differed between the single model and the individual model approach. We prefer to use the single model approach, because it

seems to be more plausible from a physical perspective to make distinctions between half hours of a day by the information5

encoded in the predictor variables and half-hourly Rpot can always be used for this purpose. Second, including half-hourly

meteorological information in the predictors clearly helps to improve the prediction performances for fluxes on the half-hourly
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Table 3. Prediction performances in terms of modeling efficiency are estimated from the leave-one-site-out cross-validation experiments

with the setup that has been used to compute the global half-hourly products for the four fluxes.

GPP NEE LE H

Modeling efficiencies related to all individual half-hourly values 0.67 0.61 0.72 0.77

Modeling efficiencies related to monthly mean diurnal cycles 0.78 0.76 0.83 0.86

scale. However, for monthly average diurnal cycles the differences are not so prominent anymore and estimations based on

half-hourly Rpot as the only predictor at half-hourly resolution may be sufficient for analyzing the monthly patterns. Third, we

have shown that the main problem for upscaling half-hourly fluxes is not the fact that we increase the temporal resolution, since

we are able to reproduce the characteristic subdaily patterns. Moreover, we are lacking additional information in the predictors

that encode site-specific characteristics as well as certain special conditions like seasonal droughts. This currently prevents us5

from getting the day-to-day variability and in the end also the interannual variability right. However, these are also problems

that need to be tackled when an upscaling of carbon and energy fluxes at coarser time scales is considered (Tramontana et al.,

2016). In the following section, we summarize the results from our cross-validation experiments for all the four fluxes (GPP,

NEE, LE, H) with the setup that has been used to compute the global half-hourly data products.

5.6 The selected approach for computing the global products10

While the previous sections validate the presented prediction approaches and point to potential problems in the estimation

of half-hourly fluxes, we also decided to produce first global products of half-hourly GPP and NEE as well as LE and H

that will be described in the next section. So far, the analyses have shown that best predictions are obtained by incorporating

meteorological variables at half-hourly resolution, but such data products are not available at a global scale. Therefore, we have

computed the global products only based on the daily predictors of the RS+METEO setup from Tramontana et al. (2016, Table15

2) as well as half-hourly values of Rpot and its first temporal derivative. The used data sources have been described in Sect. 2

and the set of daily predictors varies between carbon and energy fluxes as indicated by Tramontana et al. (2016, Table 2).

Furthermore, we have decided to use the second prediction approach (Sect. 4.2) by learning one single regression model that

is suitable for all half hours of the day. For us, it seems more natural from a physical perspective to distinguish between different

half hours of a day by (potential) radiation as an additional variable rather than enforcing the distinction with individual models20

for each half hour as it is done in the first prediction approach (Sect. 4.1).

In Table 3, we report the corresponding prediction performances from the leave-one-site-out cross-validation experiments for

this setup, i.e., for the selected set of predictor variables and the single regression model approach. The modeling efficiencies

for both individual half-hourly values and monthly mean diurnal cycles are stated. Comparing these values, we observe that

the accuracies for predicting energy fluxes are higher compared to those for the carbon fluxes. Half-hourly values of the25

sensible heat flux can be estimated best by achieving a modeling efficiency of 0.77 across all sites. On the other hand, net

ecosystem exchange has only been predicted with a modeling efficiency of 0.61. This performance is lower compared to the
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one for gross primary production (0.67), probably due to missing information in the predictor variables for the respiration

component of NEE. For all the four fluxes, the modeling efficiencies are larger when comparing monthly average diurnal

cycles of observations and predictions. The main reasons, as also mentioned in Sect. 5.3, are the reduction of noise as well as

the smoothing of short-term fluctuations at subdaily scales due to the averaging. In the following section, we present the global

half-hourly flux products that have been calculated with the upscaling approach and the setup of this section.5

6 Global flux products with half-hourly resolution

For each of the four fluxes (GPP, NEE, LE, H), we have learned a single regression model for all half hours based on all

available half-hourly values of the corresponding flux at the 222 FLUXNET sites listed in Appendix A, i.e., one regression

model for GPP, one for NEE, one for LE, and one for H. These models are then used to compute half-hourly fluxes globally

with 0.5◦ spatial resolution and continuously from 2001 (January 1st) to 2014 (December 31st) using global forcing data10

described in Sect. 2.2. As mentioned in the previous section, we have used the daily predictors of the RS+METEO setup from

Tramontana et al. (2016, Table 2) as well as half-hourly values of Rpot and its first temporal derivative. Furthermore, it should

be noted that the global products have been initially calculated such that they are tiled by PFT. The final flux for each point

in space and time has then been determined as a weighted sum depending on the percentage of each PFT to be present in the

corresponding grid cell. When looking at annual sums of the half-hourly data products, we observe that these sums are pretty15

constant among the different years for the individual fluxes. On average, we get 125.94 Pg C for GPP and −21.42 Pg C for

NEE as well as 182.22 ZJ for LE and 144.79 ZJ for H.

In addition to the provided half-hourly data, we also offer derived products containing the monthly average diurnal cycles of

the four fluxes for the 14 years that are covered by the half-hourly product. For the potential user of the data, it will be much

more convenient to directly obtain the monthly average diurnal cycles compared to downloading the much larger half-hourly20

data product and computing the monthly averages afterwards. Furthermore, the monthly average diurnal cycles are more robust,

which has also been shown by larger modeling efficiencies in the experimental evaluations, e.g., as listed in Table 1. Since only

daily predictor variables and half-hourly Rpot are used to estimate the half-hourly fluxes, short-term fluctuations on subdaily

scales due to cloud cover and other effects can not be captured by the current version of the product. Therefore, also day-

to-day variations may not be represented accordingly. However, the averaging to create monthly mean diurnal cycles reduces25

the impact of these factors and additionally smoothens errors due to observation noise. As a consequence, we recommend to

primarily use the monthly average diurnal cycles because of larger robustness and stability. In the following, we show some

characteristics of the computed global flux products at half-hourly resolution, which can only be calculated due to the subdaily

time scale.

6.1 Global maps and fingerprints30

Cutouts of the global products are visualized in Fig. 12, where we have selected June 14th, 2014 at 1:00 pm UTC in the time

domain. Global maps of GPP and NEE are shown in the top row of Fig. 12 and one can nicely distinguish daytime from
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GPP [µmol m−2 s−1] NEE [µmol m−2 s−1]

LE [W m−2] H [W m−2]

Figure 12. The global maps show estimated values for half-hourly GPP (top left), NEE (top right), LE (bottom left), and H (bottom right) on

June 14th, 2014 at 1:00 pm UTC. In addition, fingerprints for selected grid cells are used to visualize half-hourly values for each day of the

year. The dot in each fingerprint marks the value that is shown in the global map. Note that the fingerprints display different extensions of the

growing season in different regions and the global maps allow for distinguishing between daytime (e.g., in Europe and Africa) and nighttime

(e.g., in East Asia, Australia, and in the western parts of North America).
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GPP [µmol m−2 s−1] GPP [µmol m−2 s−1]

Figure 13. Maximum diurnal amplitudes of GPP within a month are shown for June 2014 (left) and December 2014 (right). Differences

between summer and winter for both the northern and the southern hemisphere as well as (almost) constant productivity in tropical regions

can be observed from both maps. Note the logarithmic color scale.

nighttime for individual regions around the world. Furthermore, selected locations are highlighted and all half-hourly values

of the year 2014 for these grid cells are summarized in fingerprint plots, which allow for identifying different characteristics at

the corresponding places due to the different patterns in these plots. The fingerprints provide a nice overview of the half-hourly

fluxes over a whole year and different lengths of the growing season as well as varying lengths of the day (time between sunrise

and sunset) can directly be observed. Corresponding maps for LE and H with fingerprint plots for the same locations are shown5

in the bottom row of Fig. 12. Larger values of LE compared to H at this specific point in time can be observed in Western,

Central, and Eastern Europe as well as in the tropical regions of Africa, whereas it is vice versa at the Iberian Peninsula as well

as in the northern and southern regions of Africa.

6.2 Maximum diurnal amplitudes within a month

Besides the fingerprint plots summarizing a whole year of half-hourly values for a specific location, it is also possible to10

compute diurnal amplitudes for each grid cell from the global products. We again picked GPP acting as an example for all

the fluxes and determined maximum diurnal amplitudes within each month. In Fig. 13, the maximum diurnal amplitudes

of GPP are visualized for June 2014 and December 2014 with a logarithmic color scale. These months have been chosen to

indicate differences between summer and winter. The biosphere at the northern hemisphere is quite active in June showing large

amplitudes, whereas maximum amplitudes are close to zero at most of the grid cells of the northern hemisphere in December.15

In the tropics, amplitudes of GPP do not vary much between June and December with values around 30 µmol m−2 s−1. As

expected, the behavior at the southern hemisphere is opposite to the northern hemisphere, i.e., the productivity at the southern

hemisphere is higher in December compared to June.
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GPP [µmol m−2 s−1] NEE [µmol m−2 s−1]

LE [W m−2] H [W m−2]

Figure 14. Maximum half-hourly values of GPP (top left), NEE (top right), LE (bottom left) and H (bottom right) during the years 2001 to

2014 are shown for each grid cell.

6.3 Maximum half-hourly fluxes

Finally, we have been interested in the maximum flux at each spatial position. These statistics have been calculated among all

the years 2001 to 2014 to produce a single map of maximum half-hourly values for each flux. The results are shown in Fig. 14.

Those maximum values denote the capabilities of each flux at each grid cell. For GPP, the hot spots with maximum capacities

are in the corn belt of the USA, in Eastern China, as well as in the tropical regions. Largest values of NEE are obtained in the5

tropics as well, especially in the Amazon. Regarding the energy fluxes, it is not so easy to identify few single hot spot regions

since large values of LE or H are widespread. However, distinct spatial patterns can be observed in all maps of the maximum

fluxes.

25

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-130

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



7 Conclusions and future work

In this paper, we have shown how to perform an upscaling of half-hourly carbon and energy fluxes from local in situ mea-

surements to global scale. We have introduced two general prediction approaches to estimate half-hourly values mainly from

predictor variables at coarser temporal resolution. Since the problem has been formulated as a large-scale regression task, we

have been working with random forest regression although other regression algorithms could be applied as well. Our pre-5

diction approaches have been validated by a set of cross-validation experiments employing a leave-one-site-out strategy for

the FLUXNET towers that provide the observations. As a result of our analyses, we have presented global flux products at

half-hourly temporal resolution for the years 2001 to 2014 covering four important variables: gross primary production, net

ecosystem exchange, latent heat, and sensible heat. Detailed descriptions of the experimental setup for the cross-validation as

well as for the computations that have led to the global products were given as well. Concerning the global data products, we10

have also shown derived statistics like maximum diurnal amplitudes of a month as well as maximum half-hourly fluxes at each

spatial position. These properties can only be computed from data products with subdaily temporal resolution showing the

benefits of our contributions.

In future work, we aim at improving the prediction performance of half-hourly fluxes in various ways. First, we plan to add

additional sources of information to the drivers by extending the set of predictor variables to cover further relevant aspects for15

the individual fluxes like water availability or soil properties. This would allow for tackling difficult scenarios like seasonal

droughts, where the current approaches have shown larger errors in the prediction. Second, we also want to incorporate the his-

tory of the predictor variables in order to account for lagged effects. So far, samples are treated independently in the prediction

but their temporal context due to the time series characteristics may provide additional knowledge that can be exploited for the

estimation of fluxes. Third, subdaily meteorology could be included in the calculations of the global products by incorporating20

new generation meteorological reanalysis data of ERA5 at hourly time scale that will be released in the near future or by

exploiting observations from geostationary satellites. Of course, the global products will be updated if these additional ideas

lead to better prediction performances. Another import aspect of future work is providing uncertainties for the flux estimations,

which could be done by quantile regression approaches (Meinshausen, 2006).

8 Data availability25

The calculated global half-hourly flux products are publicly available for free at https://doi.org/10.17871/BACI.224 under the

creative commons license CC BY 4.04. More precisely, gridded products at 0.5◦ spatial resolution and half-hourly temporal

resolution are provided covering GPP, NEE, LE, and H for the years 2001 to 2014. In addition, a derived product of monthly

average diurnal cycles globally for these four fluxes and the given range of years at the same spatial resolution has been

prepared for download as well. It is much more convenient for the potential user to just download the lightweight data of the30

monthly averages compared to getting the half-hourly data of much larger file size and then performing the averaging on the

4Please check https://creativecommons.org/licenses/by/4.0/ as well as https://creativecommons.org/licenses/by/4.0/legalcode
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local machine. As mentioned in the paper, the monthly average diurnal cycles are primarily recommended for usage, since this

derived product turned out to be more robust.

Appendix A: FLUXNET sites

In this study, we made use of data from 222 FLUXNET sites that are equipped with eddy covariance towers. We would like to

thank all the data providers of these sites for their hard work by collecting, filtering, and processing the raw data as well as for5

sharing the data with the community. In Table A1, we list the used FLUXNET sites together with corresponding references.

Table A1. This is a list of 222 FLUXNET sites from which we have used data in our study.

SITE ID NAME COUNTRY LAT LON YEARS REFERENCE

AT-Neu Neustift/Stubai Valley Austria 47.12 11.32 2002-2006 Wohlfahrt et al. (2008b)

AU-Fog Fogg Dam Australia -12.54 131.31 2006-2007 Beringer et al. (2013)

AU-How Howard Springs Australia -12.49 131.15 2001-2006 Beringer et al. (2007)

AU-Tum Tumbarumba Australia -35.66 148.15 2001-2006 Gorsel et al. (2007)

AU-Wac Wallaby Creek Australia -37.43 145.19 2005-2007 Kilinc et al. (2012)

BE-Bra Brasschaat (De Inslag Forest) Belgium 51.31 4.52 1997-2006 Gielen et al. (2010)

BE-Jal Jalhay Belgium 50.56 6.07 2006-2006 Broquet et al. (2013)

BE-Lon Lonzee Belgium 50.55 4.74 2004-2006 Moureaux et al. (2006)

BE-Vie Vielsalm Belgium 50.31 6.00 1996-2006 Aubinet et al. (2001)

BR-Ban Ecotone Bananal Island Brazil -9.82 -50.16 2003-2006 Borma et al. (2009)

BR-Cax Caxiuana Forest - Almeirim Brazil -1.72 -51.46 1999-2003 Restrepo-Coupe et al. (2013)

BR-Ji2 Rond. - Rebio Jaru Ji Parana - Tower A Brazil -10.08 -61.93 2000-2002 Restrepo-Coupe et al. (2013)

BR-Ma2 Manaus - ZF2 K34 Brazil -2.61 -60.21 1999-2006 Restrepo-Coupe et al. (2013)

BR-Sa1 Santarem - Km67 - Primary Forest Brazil -2.86 -54.96 2002-2004 Restrepo-Coupe et al. (2013)

BR-Sa2 Santarem - Km77 - Pasture Brazil -3.01 -54.54 2001-2002 Restrepo-Coupe et al. (2013)

BR-Sa3 Santarem - Km83 - Logged Forest Brazil -3.02 -54.97 2000-2003 Restrepo-Coupe et al. (2013)

BR-Sp1 Sao Paulo Cerrado Brazil -21.62 -47.65 2001-2002 Restrepo-Coupe et al. (2013)

BW-Ghg Ghanzi Grass Site Botswana -21.51 21.74 2003-2003 Williams and Albertson (2004)

BW-Ghm Ghanzi Mixed Site Botswana -21.20 21.75 2003-2003 Williams and Albertson (2004)

BW-Ma1 Maun - Mopane Woodland Botswana -19.92 23.56 1999-2001 Arneth et al. (2006)

CA-Ca1 BC - Campbell River - Mature Forest Site Canada 49.87 -125.33 1997-2005 Humphreys et al. (2006)

CA-Ca2 BC - Campbell River - Clearcut Site Canada 49.87 -125.29 2000-2005 Humphreys et al. (2006)

CA-Ca3 BC - Campbell River - Young Plantation Site Canada 49.53 -124.90 2001-2005 Humphreys et al. (2006)

CA-Gro ON - Groundhog River - Boreal Mixed Wood Canada 48.22 -82.16 2003-2005 McCaughey et al. (2006)

CA-Let AB - Lethbridge - Mixed Grass Prairie Canada 49.71 -112.94 1998-2005 Flanagan et al. (2002)
...

...
...

...
...

...
...
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SITE ID NAME COUNTRY LAT LON YEARS REFERENCE

CA-Man MB - Manitoba - Northern Old Black Spruce -

BOREAS Northern Study Area

Canada 55.88 -98.48 1994-2003 Dunn et al. (2007)

CA-Mer ON - Eastern Peatland - Mer Bleue Canada 45.41 -75.52 1998-2005 Lafleur et al. (2003)

CA-NS1 UCI - 1850 burn site Canada 55.88 -98.48 2002-2005 Goulden et al. (2006)

CA-NS2 UCI - 1930 burn site Canada 55.91 -98.52 2001-2005 Goulden et al. (2006)

CA-NS3 UCI - 1964 burn site Canada 55.91 -98.38 2001-2005 Goulden et al. (2006)

CA-NS4 UCI - 1964 burn site wet Canada 55.91 -98.38 2002-2004 Goulden et al. (2006)

CA-NS5 UCI - 1981 burn site Canada 55.86 -98.49 2001-2005 Goulden et al. (2006)

CA-NS6 UCI - 1989 burn site Canada 55.92 -98.96 2001-2005 Goulden et al. (2006)

CA-NS7 UCI - 1998 burn site Canada 56.64 -99.95 2002-2005 Goulden et al. (2006)

CA-Oas SK - SSA Old Aspen Canada 53.63 -106.20 1997-2005 Amiro et al. (2006)

CA-Obs SK - SSA Old Black Spruce Canada 53.99 -105.12 1999-2005 Amiro et al. (2006)

CA-Ojp SK - SSA Old Jack Pine Canada 53.92 -104.69 1999-2005 Amiro et al. (2006)

CA-Qcu QC - Boreal Cutover Site Canada 49.27 -74.04 2001-2006 Giasson et al. (2006)

CA-Qfo QC - Mature Boreal Forest Site Canada 49.69 -74.34 2003-2006 Bergeron et al. (2007)

CA-SF1 SK - Fire 1977 Canada 54.49 -105.82 2003-2005 Mkhabela et al. (2009)

CA-SF2 SK - Fire 1989 Canada 54.25 -105.88 2003-2005 Mkhabela et al. (2009)

CA-SF3 SK - Fire 1998 Canada 54.09 -106.00 2003-2005 Mkhabela et al. (2009)

CA-SJ1 SK - 1994 Harv. Jack Pine Canada 53.91 -104.66 2001-2005 Mkhabela et al. (2009)

CA-SJ2 SK - 2002 Harvested Jack Pine Canada 53.94 -104.65 2003-2005 Mkhabela et al. (2009)

CA-SJ3 SK - SSA 1975 Harv. Yng Jack Pine Canada 53.88 -104.64 2004-2005 Mkhabela et al. (2009)

CA-TP1 ON - Turkey Point Seedling White Pine Canada 42.66 -80.56 2004-2005 Peichl et al. (2010)

CA-TP2 ON - Turkey Point Young White Pine Canada 42.77 -80.46 2003-2005 Arain and Restrepo-Coupe (2005)

CA-TP3 ON - Turkey Point Middle-aged White Pine Canada 42.71 -80.35 2003-2005 Peichl et al. (2010)

CA-TP4 ON - Turkey Point Mature White Pine Canada 42.71 -80.36 2003-2005 Arain and Restrepo-Coupe (2005)

CA-WP1 AB - Western Peatland - LaBiche River - Black

Spruce/Larch Fen

Canada 54.95 -112.47 2003-2005 Syed et al. (2006)

CA-WP2 AB - Western Peatland - Sphagnum moss - Poor

Fen

Canada 55.54 -112.33 2004-2004 Glenn et al. (2006)

CG-Tch Tchizalamou Rep. of Congo -4.29 11.66 2006-2006 Merbold et al. (2009)

CH-Oe1 Oensingen1 grass Switzerland 47.29 7.73 2002-2006 Ammann et al. (2007)

CH-Oe2 Oensingen2 crop Switzerland 47.29 7.73 2005-2005 Kutsch et al. (2010)

CN-Bed Beijing Daxing China 39.53 116.25 2005-2006 Liu et al. (2009)

CN-Cha Changbaishan China 42.40 128.10 2003-2003 Guan et al. (2006)

CN-Do1 Dongtan 1 China 31.52 121.96 2005-2005 Yan et al. (2008)

CN-Do2 Dongtan 2 China 31.58 121.90 2005-2005 Yan et al. (2008)

CN-Do3 Dongtan 3 China 31.52 121.97 2005-2005 Yan et al. (2008)

CN-Du1 Duolun_cropland China 42.05 116.67 2005-2006 Zhang et al. (2007)

CN-Du2 Duolun_grassland China 42.05 116.28 2006-2006 Zhang et al. (2007)
...

...
...

...
...

...
...
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CN-Ku1 Kubuqi_populus forest China 40.54 108.69 2005-2006 Wilske et al. (2009)

CN-Ku2 Kubuqi_shrubland China 40.38 108.55 2006-2006 Wilske et al. (2009)

CN-Xi1 Xilinhot fenced steppe (X06) China 43.55 116.68 2006-2006 Chen et al. (2009)

CN-Xi2 Xilinhot grassland site (X03) China 43.55 116.67 2006-2006 Chen et al. (2009)

CZ-BK1 Bily Kriz - Beskidy Mountains Czech Rep. 49.50 18.54 2000-2006 Acosta et al. (2008)

CZ-BK2 Bily Kriz - grassland Czech Rep. 49.49 18.54 2004-2006 Marek et al. (2011)

CZ-wet CZECHWET - Trebon Czech Rep. 49.03 14.77 2006-2006 Marek et al. (2011)

DE-Geb Gebesee Germany 51.10 10.91 2004-2006 Anthoni et al. (2004)

DE-Gri Grillenburg - grass station Germany 50.95 13.51 2005-2006 Owen et al. (2007)

DE-Hai Hainich Germany 51.08 10.45 2000-2006 Knohl et al. (2003)

DE-Har Hartheim Germany 47.93 7.60 2005-2006 Schindler et al. (2006)

DE-Kli Klingenberg - cropland Germany 50.89 13.52 2004-2006 Owen et al. (2007)

DE-Meh Mehrstedt 1 Germany 51.28 10.66 2003-2006 Don et al. (2009)

DE-Tha Anchor Station Tharandt - old spruce Germany 50.96 13.57 1996-2006 Bernhofer et al. (2003)

DE-Wet Wetzstein Germany 50.45 11.46 2002-2006 Anthoni et al. (2004)

DK-Fou Foulum Denmark 56.48 9.59 2005-2005 Soegaard et al. (2003)

DK-Lva Lille Valby (Rimi) Denmark 55.68 12.08 2005-2006 Soussana et al. (2007)

DK-Ris Risbyholm Denmark 55.53 12.10 2004-2005 Houborg and Soegaard (2004)

DK-Sor Soroe Denmark 55.49 11.65 1996-2006 Pilegaard et al. (2001)

ES-ES1 El Saler Spain 39.35 -0.32 1999-2006 Carvalhais et al. (2008)

ES-ES2 El Saler - Sueca Spain 39.28 -0.32 2004-2006 Kutsch et al. (2010)

ES-LMa Las Majadas del Tietar Spain 39.94 -5.77 2004-2006 Perez-Priego et al. (2017)

ES-VDA Vall d’Alinya Spain 42.15 1.45 2004-2006 Gilmanov et al. (2007)

FI-Hyy Hyytiala Finland 61.85 24.29 1996-2006 Suni et al. (2003)

FI-Kaa Kaamanen wetland Finland 69.14 27.30 2000-2006 Aurela et al. (2004)

FI-Sii Siikaneva fen Finland 61.83 24.19 2004-2005 Haapanala et al. (2006)

FI-Sod Sodankyla Finland 67.36 26.64 2000-2006 Thum et al. (2007)

FR-Aur Aurade France 43.55 1.11 2005-2005 Béziat et al. (2009)

FR-Fon Fontainebleau France 48.48 2.78 2005-2006 Delpierre et al. (2016)

FR-Gri Grignon (after 6/5/2005) France 48.84 1.95 2005-2006 Loubet et al. (2011)

FR-Hes Hesse Forest - Sarrebourg France 48.67 7.06 1997-2006 Granier et al. (2000)

FR-LBr Le Bray (after 6/28/1998) France 44.72 -0.77 1996-2006 Berbigier et al. (2001)

FR-Lam Lamasquere France 43.49 1.24 2005-2005 Béziat et al. (2009)

FR-Lq1 Laqueuille France 45.64 2.74 2004-2006 Allard et al. (2007)

FR-Lq2 Laqueuille extensive France 45.64 2.74 2004-2006 Allard et al. (2007)

FR-Pue Puechabon France 43.74 3.60 2000-2006 Allard et al. (2008)

GF-Guy Guyaflux French Guyana 5.28 -52.93 2004-2006 Bonal et al. (2008)

HU-Bug Bugacpuszta Hungary 46.69 19.60 2002-2006 Nagy et al. (2007)
...

...
...

...
...

...
...

29

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-130

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 29 January 2018
c© Author(s) 2018. CC BY 4.0 License.



SITE ID NAME COUNTRY LAT LON YEARS REFERENCE

HU-Mat Matra Hungary 47.85 19.73 2004-2006 Wohlfahrt et al. (2008a)

ID-Pag Palangkaraya Indonesia -2.35 114.04 2002-2003 Hirano et al. (2007)

IE-Dri Dripsey Ireland 51.99 -8.75 2003-2005 Peichl et al. (2011)

IL-Yat Yatir Israel 31.34 35.05 2001-2006 Grünzweig et al. (2003)

IT-Amp Amplero Italy 41.90 13.61 2002-2006 Wohlfahrt et al. (2008a)

IT-BCi Borgo Cioffi Italy 40.52 14.96 2004-2006 Kutsch et al. (2010)

IT-Bon Bonis Italy 39.48 16.53 2006-2006 Balzarolo et al. (2011)

IT-Col Collelongo- Selva Piana Italy 41.85 13.59 1996-2006 Valentini et al. (1996)

IT-Cpz Castelporziano Italy 41.71 12.38 1997-2006 Garbulsky et al. (2008)

IT-LMa La Mandria Italy 45.58 7.15 2003-2006 Broquet et al. (2013)

IT-Lav Lavarone (after 3/2002) Italy 45.96 11.28 2000-2006 Cescatti and Marcolla (2004)

IT-MBo Monte Bondone Italy 46.02 11.05 2003-2006 Marcolla and Cescatti (2005)

IT-Mal Malga Arpaco Italy 46.12 11.70 2003-2006 Gilmanov et al. (2007)

IT-Noe Sardinia/Arca di Noe Italy 40.61 8.15 2004-2006 Spano et al. (2009)

IT-Non Nonantola Italy 44.69 11.09 2001-2006 Reichstein et al. (2003)

IT-PT1 Zerbolo - Parco Ticino - Canarazzo Italy 45.20 9.06 2002-2004 Migliavacca et al. (2009)

IT-Pia Island of Pianosa Italy 42.58 10.08 2002-2005 Vaccari et al. (2012)

IT-Ren Renon/Ritten (Bolzano) Italy 46.59 11.43 1999-2006 Marcolla et al. (2005)

IT-Ro1 Roccarespampani 1 Italy 42.41 11.93 2000-2006 Rey et al. (2002)

IT-Ro2 Roccarespampani 2 Italy 42.39 11.92 2002-2006 Tedeschi et al. (2006)

IT-SRo San Rossore Italy 43.73 10.28 1999-2006 Chiesi et al. (2005)

JP-Mas Mase paddy flux site - Tsukuba - Japan (MSE) Japan 36.05 140.03 2002-2003 Saito et al. (2005)

JP-Tak Takayama Japan 36.15 137.42 1999-2004 Yamamoto et al. (1999)

JP-Tom Tomakomai National Forest Japan 42.74 141.51 2001-2003 Hirano et al. (2003)

KR-Hnm Haenam Korea 34.55 126.57 2004-2006 Lee et al. (2003)

KR-Kw1 Gwangneung Coniferous Forest Korea 37.75 127.16 2004-2007 Hong et al. (2008)

NL-Ca1 Cabauw Netherlands 51.97 4.93 2003-2006 Jacobs et al. (2007)

NL-Haa Haastrecht Netherlands 52.00 4.81 2003-2004 Jacobs et al. (2007)

NL-Hor Horstermeer Netherlands 52.03 5.07 2004-2006 Hendriks et al. (2007)

NL-Lan Langerak Netherlands 51.95 4.90 2005-2006 Moors et al. (2010)

NL-Loo Loobos Netherlands 52.17 5.74 1996-2006 Dolman et al. (2002)

NL-Lut Lutjewad Netherlands 53.40 6.36 2006-2006 Moors et al. (2010)

NL-Mol Molenweg Netherlands 51.65 4.64 2005-2006 Moors et al. (2010)

PT-Esp Espirra Portugal 38.64 -8.60 2002-2006 Rodrigues et al. (2011)

PT-Mi1 Mitra (Evora) Portugal 38.54 -8.00 2003-2005 Pereira et al. (2007)

PT-Mi2 Mitra IV Tojal Portugal 38.48 -8.02 2004-2006 Pereira et al. (2007)

RU-Che Cherskii Russia 68.61 161.34 2002-2005 Corradi et al. (2005)

RU-Cok Chokurdakh Russia 70.62 147.88 2003-2005 Molen et al. (2007)
...

...
...

...
...

...
...
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RU-Fyo Fyodorovskoye wet spruce stand Russia 56.46 32.92 1998-2006 Kurbatova et al. (2008)

RU-Ha1 Ubs Nur - Hakasija - grassland Russia 54.73 90.00 2002-2004 Belelli Marchesini et al. (2007)

RU-Ha2 Ubs Nur - Hakasija - recovering grassland Russia 54.77 89.96 2002-2003 Belelli Marchesini et al. (2007)

RU-Ha3 Ubs Nur - Hakasija - Site 3 Russia 54.70 89.08 2004-2004 Belelli Marchesini et al. (2007)

RU-Zot Zotino Russia 60.80 89.35 2002-2004 Kurbatova et al. (2002)

SE-Abi Abisko Sweden 68.36 18.79 2005-2005 Christensen et al. (2007)

SE-Deg Degero Sweden 64.18 19.55 2001-2005 Sagerfors et al. (2008)

SE-Nor Norunda Sweden 60.09 17.48 1996-2005 Lagergren et al. (2008)

SE-Sk1 Skyttorp1 young Sweden 60.13 17.92 2005-2005 Launiainen et al. (2016)

SE-Sk2 Skyttorp Sweden 60.13 17.84 2004-2005 Launiainen et al. (2016)

SE-St1 Stordalen Forest- Mountain Birch Sweden 68.37 19.05 2006-2006 Christensen et al. (2012)

SK-Tat Tatra Slovak Rep. 49.12 20.16 2005-2005 Matese et al. (2008)

UK-AMo Auchencorth Moss - Scotland UK 55.79 -3.24 2005-2005 Drewer et al. (2010)

UK-EBu Easter Bush- Scotland UK 55.87 -3.21 2004-2006 Famulari et al. (2004)

UK-ESa East Saltoun UK 55.91 -2.86 2003-2005 Smallman et al. (2013)

UK-Gri Griffin - Aberfeldy - Scotland UK 56.61 -3.80 1997-2006 Sturm et al. (2005)

UK-Ham Hampshire UK 51.12 -0.86 2004-2005 Wilkinson et al. (2012)

UK-Her Hertfordshire UK 51.78 -0.48 2006-2006 Broquet et al. (2013)

UK-Tad Tadham Moor UK 51.21 -2.83 2001-2001 Harding and Lloyd (2008)

US-ARM OK - ARM Southern Great Plains site - Lamont USA 36.61 -97.49 2003-2006 Fischer et al. (2007)

US-Aud AZ - Audubon Research Ranch USA 31.59 -110.51 2002-2006 Krishnan et al. (2012)

US-Bar NH - Bartlett Experimental Forest USA 44.06 -71.29 2004-2005 Jenkins et al. (2007)

US-Bkg SD - Brookings USA 44.35 -96.84 2004-2006 Yang et al. (2017)

US-Blo CA - Blodgett Forest USA 38.90 -120.63 1997-2006 Goldstein et al. (2000)

US-Bn1 AK - Bonanza Creek; 1920 Burn site near Delta

Junction

USA 63.92 -145.38 2003-2003 Liu et al. (2005)

US-Bn2 AK - Bonanza Creek; 1987 Burn site near Delta

Junction

USA 63.92 -145.38 2003-2003 Liu et al. (2005)

US-Bn3 AK - Bonanza Creek; 1999 Burn site near Delta

Junction

USA 63.92 -145.74 2003-2003 Liu et al. (2005)

US-Bo1 IL - Bondville USA 40.01 -88.29 1996-2007 Meyers and Hollinger (2004)

US-Bo2 IL - Bondville (companion site) USA 40.01 -88.29 2004-2006 Meyers and Hollinger (2004)

US-Brw AK - Barrow USA 71.32 -156.63 1998-2002 Kwon et al. (2006)

US-CaV WV - Canaan Valley USA 39.06 -79.42 2004-2005 Wang et al. (2008)

US-Dk1 NC - Duke Forest - open field USA 35.97 -79.09 2001-2005 Stoy et al. (2006)

US-Dk2 NC - Duke Forest - hardwoods USA 35.97 -79.10 2003-2005 Stoy et al. (2006)

US-Dk3 NC - Duke Forest - loblolly pine USA 35.98 -79.09 2001-2005 Stoy et al. (2006)

US-FPe MT - Fort Peck USA 48.31 -105.10 2000-2006 Wang et al. (2008)
...

...
...

...
...

...
...
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US-FR2 TX - Freeman Ranch - Mesquite Juniper USA 29.95 -98.00 2004-2006 Heilman et al. (2014)

US-Fuf AZ - Flagstaff - Unmanaged Forest USA 35.09 -111.76 2005-2006 Dore et al. (2008)

US-Fwf AZ - Flagstaff - Wildfire USA 35.45 -111.77 2005-2006 Dore et al. (2008)

US-Goo MS - Goodwin Creek USA 34.25 -89.87 2002-2006 Wilson and Meyers (2007)

US-Ha1 MA - Harvard Forest EMS Tower (HFR1) USA 42.54 -72.17 1991-2006 Urbanski et al. (2007)

US-Ha2 MA - Harvard Forest Hemlock Site USA 42.54 -72.18 2004-2004 Hadley et al. (2009)

US-Ho1 ME - Howland Forest (main tower) USA 45.20 -68.74 1996-2004 Hollinger et al. (2004)

US-Ho2 ME - Howland Forest (west tower) USA 45.21 -68.75 1999-2004 Hollinger et al. (2004)

US-IB1 IL - Fermi National Accelerator Lab - Batavia

(Agricultural site)

USA 41.86 -88.22 2005-2007 Allison et al. (2007)

US-IB2 IL - Fermi National Accelerator Lab - Batavia

(Prairie site)

USA 41.84 -88.24 2004-2007 Gomez-Casanovas et al. (2012)

US-Ivo AK - Ivotuk USA 68.49 -155.75 2003-2006 Davidson et al. (2016)

US-KS1 FL - Kennedy Space Center (slash pine) USA 28.46 -80.67 2002-2002 Bracho et al. (2008)

US-KS2 FL - Kennedy Space Center (scrub oak) USA 28.61 -80.67 2000-2006 Powell et al. (2006)

US-LPH MA - Little Prospect Hill USA 42.54 -72.18 2002-2005 Hadley et al. (2008)

US-Los WI - Lost Creek USA 46.08 -89.98 2001-2005 Sulman et al. (2009)

US-MMS IN - Morgan Monroe State Forest USA 39.32 -86.41 1999-2005 Schmid et al. (2000)

US-MOz MO - Missouri Ozark Site USA 38.74 -92.20 2004-2006 Gu et al. (2006)

US-Me1 OR - Metolius - Eyerly burn USA 44.58 -121.50 2004-2005 Irvine et al. (2007)

US-Me2 OR - Metolius - intermediate aged ponderosa

pine

USA 44.45 -121.56 2003-2005 Vickers et al. (2009)

US-Me3 OR - Metolius - second young aged pine USA 44.32 -121.61 2004-2005 Vickers et al. (2009)

US-Me4 OR - Metolius - old aged ponderosa pine USA 44.50 -121.62 1996-2000 Law et al. (2001)

US-NC1 NC - NC_Clearcut USA 35.81 -76.71 2005-2006 Noormets et al. (2012)

US-NC2 NC - NC_Loblolly Plantation USA 35.80 -76.67 2005-2006 Noormets et al. (2012)

US-NR1 CO - Niwot Ridge Forest (LTER NWT1) USA 40.03 -105.55 1999-2003 Monson et al. (2002)

US-Ne1 NE - Mead - irrigated continuous maize site USA 41.17 -96.48 2001-2005 Verma et al. (2005)

US-Ne2 NE - Mead - irrigated maize-soybean rotation site USA 41.16 -96.47 2001-2005 Verma et al. (2005)

US-Ne3 NE - Mead - rainfed maize-soybean rotation site USA 41.18 -96.44 2001-2005 Verma et al. (2005)

US-PFa WI - Park Falls/WLEF USA 45.95 -90.27 1996-2003 Desai et al. (2015)

US-SO2 CA - Sky Oaks - Old Stand USA 33.37 -116.62 1997-2006 Lipson et al. (2005)

US-SO3 CA - Sky Oaks - Young Stand USA 33.38 -116.62 1997-2006 Lipson et al. (2005)

US-SO4 CA - Sky Oaks - New Stand USA 33.38 -116.64 2004-2006 Lipson et al. (2005)

US-SP1 FL - Slashpine - Austin Cary - 65yrs nat regen USA 29.74 -82.22 2000-2005 Powell et al. (2008)

US-SP2 FL - Slashpine - Mize-clearcut - 3yrs regen USA 29.76 -82.24 1998-2004 Bracho et al. (2012)

US-SP3 FL - Slashpine - Donaldson-mid-rot - 12yrs USA 29.75 -82.16 1999-2004 Bracho et al. (2012)

US-SRM AZ - Santa Rita Mesquite USA 31.82 -110.87 2004-2006 Scott et al. (2009)
...

...
...

...
...

...
...
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US-Syv MI - Sylvania Wilderness Area USA 46.24 -89.35 2002-2006 Desai et al. (2005)

US-Ton CA - Tonzi Ranch USA 38.43 -120.97 2001-2006 Ma et al. (2007)

US-UMB MI - Univ. of Mich. Biological Station USA 45.56 -84.71 1999-2003 Gough et al. (2008)

US-Var CA - Vaira Ranch- Ione USA 38.41 -120.95 2001-2006 Ma et al. (2007)

US-WCr WI - Willow Creek USA 45.81 -90.08 1999-2006 Cook et al. (2004)

US-Wi0 WI - Young red pine (YRP) USA 46.62 -91.08 2002-2002 Desai et al. (2008)

US-Wi1 WI - Intermediate hardwood (IHW) USA 46.73 -91.23 2003-2003 Desai et al. (2008)

US-Wi4 WI - Mature red pine (MRP) USA 46.74 -91.17 2002-2005 Desai et al. (2008)

US-Wi5 WI - Mixed young jack pine (MYJP) USA 46.65 -91.09 2004-2004 Desai et al. (2008)

US-Wi6 WI - Pine barrens #1 (PB1) USA 46.62 -91.30 2002-2002 Desai et al. (2008)

US-Wi8 WI - Young hardwood clearcut (YHW) USA 46.72 -91.25 2002-2002 Desai et al. (2008)

US-Wkg AZ - Walnut Gulch Kendall Grasslands USA 31.74 -109.94 2004-2006 Scott et al. (2010)

US-Wrc WA - Wind River Crane Site USA 45.82 -121.95 1998-2006 Falk et al. (2008)

VU-Coc CocoFlux Vanuatu -15.44 167.19 2001-2004 Roupsard et al. (2006)

ZA-Kru Skukuza - Kruger National Park South Africa -25.02 31.50 2001-2003 Scholes et al. (2001)
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