Skip to main content
Log in

A phase-field model for liquid–gas mixtures: mathematical modelling and discontinuous Galerkin discretization

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

To model a liquid–gas mixture, in this article we propose a phase-field approach that might also provide a description of the expansion stage of a metal foam inside a hollow mold. We conceive the mixture as a two-phase incompressible–compressible fluid governed by a Navier–Stokes–Cahn–Hilliard system of equations, and we adapt the Lowengrub–Truskinowsky model to take into account the expansion of the gaseous phase. The resulting system of equations is characterized by a velocity field that fails to be divergence-free, by a logarithmic term for the pressure that enters in the Gibbs free-energy expression and by the viscosity that degenerates in the gas phase. In the second part of the article we propose an energy-based numerical scheme that, at the discrete level, preserves the mass conservation property and the energy dissipation law of the original system. We use a discontinuous Galerkin approximation for the spatial approximation and a modified midpoint based scheme for the time approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(1), 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Elliott, C.M.: The Cahn-Hilliard Model for the Kinetics of Phase Separation. Birkhäuser, Basel (1989)

    Book  MATH  Google Scholar 

  5. Fabrizio, M., Giorgi, C., Morro, A.: A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214, 144–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Favelukis, M.: Dynamics of foam growth: bubble growth in a limited amount of liquid. Polym. Eng. Sci. 44, 1900–1906 (2004)

    Article  Google Scholar 

  7. Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giesselmann, J., Makridakis, C., Pryer, T.: Energy consistent DG methods for the Navier–Stokes–Korteweg system. Math. Comput. 83, 2071–2099 (2014)

    Article  MATH  Google Scholar 

  9. Giesselmann, J., Pryer, T.: Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. ESAIM Math. Model. Numer. Anal. 49(1), 275–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Z., Lin, P., Lowengrub, J.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-Finite element methods for advection–diffusion-reaction problems. SIAM J. Numer. Anal 39(6), 2133–2163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klassboer, E., Khoo, B.C.: A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary value integral methods. Eng. Anal. Bound. Elem. 30, 59–71 (2006)

    Article  MATH  Google Scholar 

  13. Körner, C.: Foam formation mechanisms in particle suspensions applied to metal foam foams. Mater. Sci. Eng. A 495, 227–235 (2008)

    Article  Google Scholar 

  14. Körner, C., Arnold, M., Singer, R.: Metal foam stabilization by oxide network particles. Mat. Sci. Eng. A 396, 28–40 (2005)

    Article  Google Scholar 

  15. Körner, C., Thies, M., Hofmann, T., Thürey, N., Rüde, U.: Lattice Boltzmann model for free surface flow for modeling foaming. J. Stat. Phys. 121, 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Körner, C., Thies, M., Singer, R.: Modeling of metal foaming with lattice Boltzmann automata. Adv. Eng. Mater. 4, 765–769 (2002)

    Article  Google Scholar 

  17. Lowengrub, J., Truskinowsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morro, A.: Phase-field models for fluid mixtures. Math. Comput. Model. 45, 1042–1052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morro, A.: A phase-field approach to non-isothermal transitions. Math. Comput. Model. 48, 621–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Naber, A., Liu, C., Feng, J.: The nucleation and growth of gas bubbles in a Newtonian fluid: an energetic variational phase field approach. Contemp. Math. 466, 95–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Patel, R.: Bubble growth in a viscous newtonian fluid. Chem. Eng. Sci. 35, 2352–2356 (1980)

    Article  Google Scholar 

  22. Reichl, L.E.: A Modern Course in Statistical Mechanics. University of Texas Press, Austin (1980)

    MATH  Google Scholar 

  23. Repossi, E.: On the mathematical modeling of a metal foam expansion process. Ph.D. thesis, Ph.D. Course in Mathematical Models and Methods in Engineering, XXV cycle, Dipartimento di Matematica, Politecnico di Milano. http://hdl.handle.net/10589/108605 (2015)

  24. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  25. Scriven, L.E.: On the dynamics of phase growth. Chem. Eng. Sci. 10, 3907–3915 (1959)

    Article  Google Scholar 

  26. Sun, Y., Beckermann, C.: Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Physica D 198, 281–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Y., Beckermann, C.: Phase-field modeling of bubble growth and flow in a Hele–Shaw cell. Int. J. Mass Transf. 53, 2969–2978 (2010)

    Article  MATH  Google Scholar 

  28. Teshukov, V.M., Gavrilyuk, S.L.: Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B Fluids 21, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thies, M.: Lattice boltzmann modeling with free surface applied to in-situ gas generated foam formation. Ph.D. thesis, University of Erlangen-Nürnberg (2005)

  30. Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22(2), 269–289 (2015)

  31. Venerus, D.C.: Diffusion-induced bubble growth in viscous liquids of finte and infinite extent. Polym. Eng. Sci. 41, 1390–1398 (2001)

    Article  Google Scholar 

  32. Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75(255), 1087–1102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to MUSP laboratory (www.musp.it) and its director Michele Monno for having partially supported this research activity and to the MUSP researchers (Bruno Chiné, Valerio Mussi and Daniela Negri) for the useful discussions on the mathematical modeling of metal foams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Repossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repossi, E., Rosso, R. & Verani, M. A phase-field model for liquid–gas mixtures: mathematical modelling and discontinuous Galerkin discretization. Calcolo 54, 1339–1377 (2017). https://doi.org/10.1007/s10092-017-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-017-0233-4

Keywords

Mathematics Subject Classification

Navigation