Skip to main content
Log in

Nonlinear Galerkin methods for a system of PDEs with Turing instabilities

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We address and discuss the application of nonlinear Galerkin methods for the model reduction and numerical solution of partial differential equations (PDE) with Turing instabilities in comparison with standard (linear) Galerkin methods. The model considered is a system of PDEs modelling the pattern formation in vegetation dynamics. In particular, by constructing the approximate inertial manifold on the basis of the spectral decomposition of the solution, we implement the so-called Euler–Galerkin method and we compare its efficiency and accuracy versus the linear Galerkin methods. We compare the efficiency of the methods by (a) the accuracy of the computed bifurcation points, and, (b) by the computation of the Hausdorff distance between the limit sets obtained by the Galerkin methods and the ones obtained with a reference finite difference scheme. The efficiency with respect to the required CPU time is also accessed. For our illustrations we used three different ODE time integrators, from the Matlab ODE suite. Our results indicate that the performance of the Euler–Galerkin method is superior compared to the linear Galerkin method when either explicit or linearly implicit time integration scheme are adopted. For the particular problem considered, we found that the dimension of approximate inertial manifold is strongly affected by the lenght of the spatial domain. Indeeed, we show that the number of modes required to accurately describe the long time Turing pattern forming solutions increases as the domain increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adrover, A., Continillo, G., Crescitelli, S., Giona, M., Russo, L.: Wavelet-like collocation method for finite-dimensional reduction of distributed systems. Comput. Chem. Eng. 24(12), 2687–2703 (2000)

    Article  Google Scholar 

  2. Adrover, A., Continillo, G., Crescitelli, S., Gionaa, M., Russo, L.: Construction of approximate inertial manifold by decimation of collocation equations of distributed parameter systems. Comput. Chem. Eng. 26(1), 113–123 (2002)

    Article  Google Scholar 

  3. Arrieta, J.M., Santamara, E.: Distance of attractors of reaction–diffusion equations in thin domains. J. Differ. Equ. 263(9), 5459–5506 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bizon, K., Continillo, G., Russo, L., Smua, J.: On POD reduced models of tubular reactor with periodic regimes. Comput. Chem. Eng. 32(6), 1305–1315 (2008)

    Article  Google Scholar 

  5. Cartenì, F., Marasco, A., Bonanomi, G., Mazzoleni, S., Rietkerk, M., Giannino, F.: Negative plant soil feedback and ring formation in clonal plants. J. Theor. Biol. 313, 153–161 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, M., Temam, R.: Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns. Numer. Math. 64, 271–294 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  8. Crawford, J.D., Knobloch, E.: On degenerate Hopf bifurcation with broken O(2) symmetry. Nonlinearity 1, 617–652 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dettori, L.: Spectral approximations of attractors of a class of semilinear parabolic equations. Galcolo 27, 139–168 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Devulder, C., Marion, M.: Class of numerical algorithms for large time integration: the nonlinear Galerkin methods. SIAM J. Num. Anal. 29(2), 462–483 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dhooge, A., Govaerts, W., Kuznetsof, Y.A.: MatCont: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubois, T., Jauberteau, F., Marion, M., Temam, R.: Subgrid modelling and the interaction of small and large wavelengths in turbulent flows. Comput. Phys. Commun. 65(1–3), 100–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73, 309–353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foias, C., Jolly, M.S., Kevrekidis, I.G., Sell, G.R., Titi, E.S.: On the computation of inertial manifolds. Phys. Lett. A 131(7), 433–437 (1988)

    Article  MathSciNet  Google Scholar 

  15. Garcia-Archilla, B.: Some practical experience with the time integration of dissipative equations. J. Comput. Phys. 122(1), 25–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garcia-Archilla, B., Frutos, J.: Time integration of the non-linear Galerkin method. IMA J. Numer. Anal. 15(2), 221–244 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., Meron, E.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93, 1–4 (2004)

    Article  Google Scholar 

  18. Goubet, O.: Construction of approximate inertial manifolds using wavelets. SIAM J. Math. Anal. 23, 1455–1481 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham, M.D., Kevrekidis, I.G.: Alternative approaches to the Karhunen–Loeve decomposition for model reduction and data analysis. Comput. Chem. Eng. 20, 495–506 (1996)

    Article  Google Scholar 

  20. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B 3B. B C. Chem. Eng. Sci. 39, 1087–1097 (1984)

    Article  Google Scholar 

  21. Grosso, M., Russo, L., Maffetone, P.L., Crescitelli, S.: Nonlinear Galerkin method for numerical approximation of the dynamics of mesophases under flow. https://doi.org/10.1109/COC.2000.874332 (2000)

  22. Haken, H.: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. von Hardenberg, J., Meron, E., Shachak, M., Zarm, I.Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101–4 (2001)

    Article  Google Scholar 

  24. Heywood, J., Rannacher, R.: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. SIAM J. Numer. Anal. 30(6), 1603–1621 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. HilleRisLambers, R., Rietkerk, M., Bosch, F.V.D., Prins, H.H.T., Kroon, H.D.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001)

    Article  Google Scholar 

  26. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  27. Hyman, J.M., Nicolaenko, B.: The Kuramoto–Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jolly, M.S., Kevrekidis, I.G., Titi, E.S.: Approximate inertial manifolds for the Kuramoto–Sivashinski equation: analysis and computations. Phys. D 44, 38–60 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jolly, M.S., Rosa, R., Temam, R.: Accurate computations on inertial manifolds. SIAM J. Sci. Comput. 22(6), 2216–2238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, D.A., Margolin, L.G., Titi, E.S.: On the effectiveness of the approximate inertial manifold a computational study. Theor. Comput. Fluid Dyn. 7, 243–260 (1995)

    Article  MATH  Google Scholar 

  31. Kan, X., Duan, J., Kevrekidis, I.G., Roberts, A.J.: Simulating stochastic inertial manifolds by a backward–forward approach. SIAM J. Appl. Dyn. Syst. 12(1), 487–514 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kirby, M.: Minimal dynamical systems from PDEs using sobolev eigenfunctions. Phys. D 57, 466–475 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–8 (1999)

    Article  Google Scholar 

  34. Lord, G.J.: Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg–Landau equation. SIAM J. Num. Anal. 34(4), 1483–1512 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lu, F., Lin, K.K., Chorin, A.J.: Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation. Phys. D 340(1), 46–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems a computational study. Evol. Equ. Control Theory 6(4), 535–557 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mach, J., Bene, M., Strachota, P.: Nonlinear Galerkin finite element method applied to the system of reaction diffusion equations in one space dimension. Comput. Math. Appl. 73(9), 2053–2065 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marasco, A., Iuorio, A., Carten, F., Bonanomi, G., Tartakovsky, D., Mazzoleni, S., Giannino, F.: Vegetation pattern formation due to interactions between water availability and toxicity in plant–soil feedback. Bull. Math. Biol. 76, 2866–2883 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Margolin, L.G., Titi, E.S., Wynne, S.: The postprocessing Galerkin and nonlinear Galerkin methods—A truncation analysis point of view. SIAM J. Num. Anal. 41(2), 695–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Marion, M., Temam, M.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26(5), 11391157 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, Cambridge (1982)

    Google Scholar 

  42. Meinhardt, H.: The Algorithmic Beauty of Sea Shells. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  43. Mengers, J.D., Powers, J.M.: One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12(2), 560–595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Meron, E., Gilad, E., von Hardenberg, J., Shachak, M., Zarmi, Y.: Vegetation patterns along a rainfall gradient. Chaos, Solitons & Fractals 19, 367–376 (2004)

    Article  MATH  Google Scholar 

  45. Nicolaenko, B., Foias, C., Temam, R.: The connection between infinite dimensional and finite dimensional dynamical systems. In: Proceedings of the AMs-IMS-SIAM Joint Summer Research Conference, Contemporary Mathematics series (1989)

  46. Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)

    Article  Google Scholar 

  47. Rietkerk, M., Boerlijst, M.C., van Langevelde, F., Hillerislambers, R., van de Koppel, J., Kumar, L., Prins, H.H.T., de Roos, A.M.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524530 (2002)

    Google Scholar 

  48. Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)

    Article  Google Scholar 

  49. Robinson, J.C.: Finite dimensional behavior in dissipative partial differential equations. Chaos 5, 330–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  51. Russo, L., Adrover, A., Continillo, G., Crescitelli, S., Giona, M.: Dynamic behavior of a reaction/diffusion system: wavelet-like collocations and approximate inertial manifolds. Proc. Int. Conf. Control Oscil. Chaos 2, 356–359 (2000)

    Google Scholar 

  52. Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)

    Google Scholar 

  53. Scheffer, M., Carpenter, S., Foley, J., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  Google Scholar 

  54. Schmidtmann, O., Fuede, F., Seehafer, N.: Non linear Galegrkin methods for 3D magneto-hydrodynamic equations. Int. J. Bifurc. Chaos 7, 1497–1507 (1997)

    Article  MATH  Google Scholar 

  55. Sembera, J., Bene, M.: Nonlinear Galerkin method for reaction diffusion systems admitting invariant regions. J. Comput. Appl. Math. 136, 163–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shen, J., Temam, R.: Nonlinear Galerkin method using Chebyshev and Legendre polynomials I. The one-dimensional case. SIAM J. Numer. Anal. 32, 215–234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007)

    Article  MATH  Google Scholar 

  59. Sirovich, L., Knight, B.W., Rodriguez, J.D.: Optimal low-dimensional dynamical approximations. Quart. Appl. Math. XLVIII, 535–548 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  60. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  61. Temam, R.: Inertial manifolds and multigrid methods. SIAM J. Math. Anal. 21, 154–178 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

K.S., F.G., S.C. were supported by the grant “Programma di finanziamento della ricerca di Ateneo 2015” of the University of Naples Federico II, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Russo.

Appendix

Appendix

1.1 Computation of the Hausdorff distance

We present a simple algorithm for parallel calculation of Hausdorff distance. The code was implemented in matlab environment with the use of a processor intel XEON E52630 [from Institute for Research on Combustion (IRC)]. Matlab(2016b) parallelization use 12 cores under the command parfor. The serial implementation of the code takes in CPU time about 86.83 sec, while the simple parallel code (with the use of parfor loop) takes in mean value 8.95 sec (almost 10 times faster as it was expected).

The Hausdorff distance is defined as

$$\begin{aligned} d_{{{\mathrm H}}}(X,Y)=\max \{\,\sup _{{x\in X}}dist(x,Y),\,\sup _{{y\in Y}}dist(y,X)\,\}{\text{, }}\! \end{aligned}$$

where \(dist(x,Y)=\inf _{{y\in Y}}d(x,y)\). The serial code takes both vector spaces XY (one from FD and the other from LGM or EGM and for each \(x\in X\), calculates the dist(xY), then determines the supremum (and repeats similar, by interchange the X and Y spaces).

figure a

We implement the algorithm 1 in a parallel code, partitioning the X space into \(N_{cores}\) samples where \(N_{cores}\) is the number of cores (i.e.\(N_{cores}=12\)). Then, for each sample (\(X_{sample}\)), calculates parallel the \(dist(x,Y),x \in X_{sample}\). The partition of X space is implemented according to algorithm 1. The reported CPU times are calculated for matrices (the X and Y vector spaces) of size dimension \(5001\times 123\) double.

1.2 The finite difference scheme

Let \( N \in \mathbb {N} \), we discretize the domain [0, L] into N equal interval i.e. \(h=L/N\) and \(x_i=i\cdot h, i=0,1,2\ldots ,N\). Also, we define \(B_i^n: = B\left( {{x_i},{t^n}} \right) \) to be the value of biomass B, in place \(x_i\) and time \(t^n\) (similar we define \(W_i^n: = W\left( {{x_i},{t^n}} \right) \) and \(T_i^n: = B\left( {{x_i},{t^n}} \right) \) ). The FD scheme for the laplacian operator is

$$\begin{aligned} {\Delta _{{h}}}u\left( {{x_i},{t^n}} \right) :&= \frac{{u\left( {{x_i} + {h_1},{t^n}} \right) - 2u\left( {{x_i},{t^n}} \right) - u\left( {{x_i} - {h_1},{t^n}} \right) }}{{h^2}} \\&=\frac{{u_{i + 1}^n - 2u_i^n + u_{i - 1}^n}}{{h^2}} \end{aligned}$$

where u represents both BWT. The mathematical model (3) for each node \(x_i\) take the form:

$$\begin{aligned} \left\{ \begin{array}{l} \vartheta _t B_{i}^{n} = {c_B}\left( {B_{i + 1}^n - 2B_i^n + B_{i - 1}^n} \right) + c{\left( {B_i^n} \right) ^2} W_i^n - \left( {d + sT_i^n} \right) B_i^n\\ \vartheta _t W_i^n= {c_W}\left( {W_{i + 1}^n - 2W_i^n + W_{i - 1}^n} \right) + p - r{{\left( {B_i^n} \right) }^2}W_i^n - lW_i^n\\ \vartheta _t T_i^n= {q\left( {d + sT_i^n} \right) {B_i^{n}} - \left( {k + wp} \right) T_i^n} \end{array} \right. \end{aligned}$$
(34)

where the constants are \(c_B=\frac{D_B}{h^2}\), \(c_W=\frac{D_W}{h^2}\) and \(i=1,2,\ldots ,N-1\)

For the boundaries points, we implement central differences. For example in the left boundary \(x=0,(i=0)\), (34) takes the form

$$\begin{aligned} \left\{ \begin{array}{l} \vartheta _t B_{0}^{n} = {c_B}\left( {2B_{1}^n - 2B_0^n} \right) + c{\left( {B_0^n} \right) ^2} W_0^n - \left( {d + sT_0^n} \right) B_0^n\\ \vartheta _t W_0^n= {c_W}\left( {2W_{1}^n - 2W_0^n} \right) + p - r{{\left( {B_0^n} \right) }^2}W_0^n - lW_0^n\\ \vartheta _t T_0^n= {q\left( {d + sT_0^n} \right) {B_0^{n}} - \left( {k + wp} \right) T_0^n} \end{array} \right. \end{aligned}$$
(35)

and similar for the right boundary \(x=L,(i=N)\)

$$\begin{aligned} \left\{ \begin{array}{l} \vartheta _t B_{N}^{n} = {c_B}\left( {2B_{N-1}^n - 2B_{N}^n} \right) + c{\left( {B_{N}^n} \right) ^2} W_{N}^n - \left( {d + sT_{N}^n} \right) B_{N}^n\\ \vartheta _t W_{N}^n= {c_W}\left( {2W_{N-1}^n - 2W_{N}^n} \right) + p - r{{\left( {B_{N}^n} \right) }^2}W_{N}^n - lW_{N}^n \\ \vartheta _t T_{N}^n= {q\left( {d + sT_{N}^n} \right) {B_{N}^{n}} - \left( {k + wp} \right) T_{N}^n} \end{array} \right. \end{aligned}$$
(36)

Equation (3436) define an ordinary differential system of the form

$$\begin{aligned} \frac{d\mathbf f }{dt}=\mathbf f (t,\mathbf u ) \end{aligned}$$
(37)

where \(\mathbf u ={[{B_0},{B_1},\ldots {B_{N }},{W_0},{W_1},\ldots {W_{N}},{T_0},{T_1},\ldots {T_{N}}]^T}\). The Jacobian of \(\mathbf f \) (the RHS) defines a square block matrix of dimension \(3N+3\).

$$\begin{aligned} J = \left( {\begin{array}{*{20}{c}} {{A_{11}}}&{}\quad {{A_{12}}}&{}\quad {{A_{13}}}\\ {{A_{21}}}&{}\quad {{A_{22}}}&{}\quad {{A_{23}}}\\ {{A_{31}}}&{}\quad {{A_{32}}}&{}\quad {{A_{33}}} \end{array}} \right) \end{aligned}$$

Each diagonal block \(i.e. A_{i,i}\) has a tridiagonal form and the others matrices \({A_{ij}},i \ne j\) are diagonal. For example: \(A_{11}\)=

$$\begin{aligned} \begin{bmatrix} {- 2{c_B} + 2{c_B}{B_0}{W_0} - \left( {d + s{T_0}} \right) }&\quad {2c_B}&\quad 0&\quad \dots&\quad 0 \\ {c_B}&\quad { - 2{c_B} + 2{C_B}{B_1}{W_1} - \left( {d + s{T_1}} \right) }&\quad c_B&\quad \dots&\quad 0 \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ 0&\quad 0&\quad 0&\quad \dots&\quad - 2{c_B} + 2{c_B}{B_{N }}{W_{N}} - {d + s{T_{N}}} \end{bmatrix} \end{aligned}$$

\({A_{12}} = diag\left( {cB_\iota ^2} \right) \) and \({A_{13}} = diag\left( {s{B_i}} \right) ,i = 0,1,\ldots ,N\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiliotis, K., Russo, L., Giannino, F. et al. Nonlinear Galerkin methods for a system of PDEs with Turing instabilities. Calcolo 55, 9 (2018). https://doi.org/10.1007/s10092-018-0245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0245-8

Keywords

Mathematics Subject Classification

Navigation