Skip to main content
Log in

A Neumann series of Bessel functions representation for solutions of Sturm–Liouville equations

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A Neumann series of Bessel functions (NSBF) representation for solutions of Sturm–Liouville equations and for their derivatives is obtained. The representation possesses an attractive feature for applications: for all real values of the spectral parameter \(\omega \) the estimate of the difference between the exact solution and the approximate one (the truncated NSBF) depends on N (the truncation parameter) and the coefficients of the equation and does not depend on \(\omega \). A similar result is valid when \(\omega \in {\mathbb {C}}\) belongs to a strip \(\left| \hbox {Im }\omega \right| <C\). This feature makes the NSBF representation especially useful for applications requiring computation of solutions for large intervals of \(\omega \). Error and decay rate estimates are obtained. An algorithm for solving initial value, boundary value or spectral problems for the Sturm–Liouville equation is developed and illustrated on a test problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  2. Baricz, A., Jankov, D., Pogány, T.K.: Neumann series of Bessel functions. Integral Transforms Spec. Funct. 23(7), 529–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnett, A.R.: The calculation of spherical Bessel and Coulomb functions. In: Bartschat, K. (ed.) Computational Atomic Physics, p. 249. Springer, Berlin (1996). ISBN 3-540-60179-1

  4. Camporesi, R., Di Scala, A.J.: A generalization of a theorem of Mammana. Colloq. Math. 122(2), 215–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  6. Everitt, W.N.: A catalogue of Sturm–Liouville differential equations. In: Theory, Sturm-Liouville (ed.) Past and Present, pp. 271–331. Birkhäuser, Basel (2005)

    Google Scholar 

  7. Gillman, E., Fiebig, H.R.: Accurate recursive generation of spherical Bessel and Neumann functions for a large range of indices. Comput. Phys. 2, 62–72 (1988)

    Article  Google Scholar 

  8. Kamke, E.: Handbook of Ordinary Differential Equations. Moscow: Nauka (1976). (Russian translation from the German original, Differentialgleichungen. Lösungsmethoden und Lösungen. Leipzig, 1959)

  9. Khmelnytskaya, K.V., Kravchenko, V.V., Rosu, H.C.: Eigenvalue problems, spectral parameter power series, and modern applications. Math. Methods Appl. Sci. 38, 1945–1969 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kravchenko, V.V.: A representation for solutions of the Sturm–Liouville equation. Complex Var. Elliptic Equ. 53, 775–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kravchenko, V.V., Morelos, S., Torba, S.M.: Liouville transformation, analytic approximation of transmutation operators and solution of spectral problems. Appl. Math. Comput. 273, 321–336 (2016)

    MathSciNet  Google Scholar 

  12. Kravchenko, V.V., Morelos, S., Tremblay, S.: Complete systems of recursive integrals and Taylor series for solutions of Sturm–Liouville equations. Math. Methods Appl. Sci. 35, 704–715 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Kravchenko, V.V., Navarro, L.J., Torba, S.M.: Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions Appl. Math. Comput. 314, 173–192 (2017)

    MathSciNet  Google Scholar 

  14. Kravchenko, V.V., Porter, R.M.: Spectral parameter power series for Sturm–Liouville problems. Math. Methods Appl. Sci. 33, 459–468 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Castillo-Pérez, R., Kravchenko, V.V., Torba, S.M.: A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations. Appl. Anal. 28 (2017). https://doi.org/10.1080/00036811.2017.1284313

  16. Kravchenko, V.V., Torba, S.M.: Modified spectral parameter power series representations for solutions of Sturm–Liouville equations and their applications. Appl. Math. Comput. 238, 82–105 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Kravchenko, V.V., Torba, S.M.: Analytic approximation of transmutation operators and applications to highly accurate solution of spectral problems. J. Comput. Appl. Math. 275, 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kravchenko, V.V., Torba, S.M.: Analytic approximation of transmutation operators and related systems of functions. Bol. Soc. Mat. Mex. 22, 379–429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levitan, B.M.: Inverse Sturm–Liouville Problems. VSP, Zeist (1987)

    MATH  Google Scholar 

  20. Marchenko, V.A.: Sturm–Liouville Operators and Applications, Revised edn. AMS Chelsea Publishing, Providence (2011)

    MATH  Google Scholar 

  21. Marchenko, V.A.: Some questions on one-dimensional linear second order differential operators. Trans. Mosc. Math. Soc. 1, 327–420 (1952)

    Google Scholar 

  22. Trimeche, K.: Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators. Harwood Academic Publishers, London (1988)

    MATH  Google Scholar 

  23. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Reprinted, 2nd edn. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  24. Wilkins, J.E.: Neumann series of Bessel functions. Trans. Am. Math. Soc. 64, 359–385 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zwillinger, D.: Handbook of Differential Equations. Academic Press, New York (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii M. Torba.

Additional information

Research was supported by CONACYT, Mexico via the Projects 166141 and 222478.

Error and decay rate estimates

Error and decay rate estimates

In this appendix some estimates for the functions \(\varepsilon _{N}\) and \(\varepsilon _{1,N}\) from Theorems 3.1 and 3.2 are presented. Also decay rate estimates and bounds near \(x=0\) for the coefficients \(\beta _{n}\) and \(\gamma _{n}\) are obtained in dependence on the smoothness of the potential Q. The estimates are from [13] with some additional improvements obtained using ideas from [15].

It is well known (see, e.g., [19,20,21,22]) that the solutions \(c(\omega ,x)\) and \(s(\omega ,x)\) of (2.3) satisfying the initial conditions (3.1) can be represented as

$$\begin{aligned} c(\omega ,x)=\cos \omega x+\int _{-x}^{x}K(x,t)\cos \omega t\,dt \end{aligned}$$

and

$$\begin{aligned} s(\omega ,x)=\sin \omega x+\int _{-x}^{x}K(x,t)\sin \omega t\,dt, \end{aligned}$$

i.e., as images of the functions \(\cos \omega t\) and \(\sin \omega t\) under the action of the so-called transmutation operator T. This operator is defined on an arbitrary integrable function by the rule

$$\begin{aligned} Tu(x)=u(x)+\int _{-x}^{x}K(x,t)u(t)\,dt. \end{aligned}$$
(A.1)

Its integral kernel K satisfies the equalities

$$\begin{aligned} K(x,x)=\frac{h}{2}+\frac{1}{2}\int _{0}^{x}Q(s)\,ds,\qquad K(x,-x)=\frac{h}{2}, \end{aligned}$$
(A.2)

and the derivative \(\partial _{x}K=:K_{1}\) satisfies the equalities (see [18])

$$\begin{aligned}&K_{1}(x,x)=\frac{Q(x)}{4}+\frac{h}{4}\int _{0}^{x}Q(s)\,ds+\frac{1}{8}\biggl (\int _{0}^{x}Q(s)\,ds\biggr )^{2},\quad \nonumber \\&K_{1}(x,-x)=\frac{1}{4}\biggl (Q(0)+h\int _{0}^{x}Q(s)\,ds\biggr ). \end{aligned}$$
(A.3)

The integral kernel K is one degree smoother than the potential Q. To be more precise, let \(Q\in W_{\infty }^{p}[0,b]\), \(p\ge 0\), i.e., the function Q possesses p derivatives, the last one belonging to \(L_{\infty }(0,b)\). In such case the integral kernel K possesses \(p+1\) derivative with respect to each variable. In particular, for each \(x>0\), \(K(x,\cdot )\in W_{\infty } ^{p+1}[-x,x]\) and the norms \(\Vert \partial ^{p+1}_{t} K(x,t)\Vert _{L_{\infty } (-x,x)}\) are bounded on [0, b].

The following result shows that the coefficients \(\beta _{n}\) and \(\gamma _{n}\) defined by (3.4) and (3.11) are the Fourier–Legendre coefficients of the integral kernel K and its derivative \(K_{1}:=\partial _{x} K\), respectively.

Theorem A.1

[13] Let \(Q\in L_{\infty }(0,b)\). The transmutation kernel K and its derivative \(K_{1}\) have the form

$$\begin{aligned} K(x,t) = \sum _{j=0}^{\infty }\frac{\beta _{j}(x)}{x} P_{j}\left( \frac{t}{x}\right) \qquad \text {and}\qquad K_{1}(x,t) = \sum _{j=0}^{\infty }\frac{\gamma _{j}(x)}{x} P_{j}\left( \frac{t}{x}\right) , \end{aligned}$$
(A.4)

here \(P_{n}\) denotes the classical Legendre polynomials. The coefficients \(\beta _{n}\) and \(\gamma _{n}\), \(n\ge 0\), can be recovered using the formulas

$$\begin{aligned} \beta _{n}(x)= & {} \frac{2n+1}{2}\int _{-x}^{x} K(x,t) P_{n}\left( \frac{t}{x}\right) \,dt\qquad \text {and} \nonumber \\ \gamma _{n}(x)= & {} \frac{2n+1}{2}\int _{-x}^{x} K_{1}(x,t) P_{n}\left( \frac{t}{x}\right) \,dt. \end{aligned}$$
(A.5)

Denote by \(K_{N}\) and \(K_{1,N}\) partial sums of the series (A.4). Let \(Q\in W_{\infty }^{p}[0,b]\), \(p\ge 0\). Define

$$\begin{aligned} M:=\sup _{0<x\le b}\Vert \partial _{t}^{p+1} K(x,\cdot )\Vert _{L_{\infty }(-x,x)}\qquad \text {and}\qquad M_{1}:=\sup _{0<x\le b}\Vert \partial _{t}^{p} K_{1}(x,\cdot )\Vert _{L_{\infty }(-x,x)}. \end{aligned}$$
(A.6)

As was mentioned earlier, both suprema exist and are finite numbers. The following convergence rate estimates hold.

Proposition A.2

Let \(Q\in W_{\infty }^{p}[0,b]\), \(p\ge 0\). Then there exist constants \(c_{p}\) and \(d_{p}\) independent of Q and N, such that for all \(x>0\) the following inequalities hold

$$\begin{aligned} \Vert K(x,\cdot )-K_{N}(x,\cdot )\Vert _{L_{2}(-x,x)}\le \frac{c_{p}Mx^{p+3/2} }{N^{p+1}},\qquad N\ge p+2, \end{aligned}$$
(A.7)

and

$$\begin{aligned} \Vert K_{1}(x,\cdot )-K_{1,N}(x,\cdot )\Vert _{L_{2}(-x,x)}\le \frac{d_{p} M_{1}x^{p+1/2}}{N^{p}},\qquad N\ge p+1. \end{aligned}$$
(A.8)

Proof

Let \(x>0\) be fixed. Consider functions \(g(z):=K(x,xz)\) and \(g_{N} (z):=K_{N}(x,xz)\) defined on \([-1,1]\). The function \(g_{N}\) is a partial sum of the Fourier–Legendre series for the function g, hence \(g_{N}\) coincides with the N-th order polynomial best \(L_{2}\) approximation of the function g. Since the integral kernel K possesses \(p+1\) derivatives with respect to the second variable with the last derivative belonging to \(L_{\infty }(-x,x)\), we have that \(g\in W_{\infty }^{p+1}[-1,1]\subset W_{2}^{p+1}[-1,1]\). Theorem 6.2 from [5] states that there exists a universal constant \(\tilde{c}_{p}\) such that for every \(N>p+1\)

$$\begin{aligned} \Vert g-g_{N}\Vert _{L_{2}(-1,1)}\le \frac{\tilde{c}_{p}}{N^{p+1}}\omega \left( g^{(p+1)},\frac{1}{N}\right) _{2}\le \frac{2\tilde{c}_{p}}{N^{p+1}}\Vert g^{(p+1)}\Vert _{L_{2}(-1,1)}, \end{aligned}$$

where \(\omega \) is the modulus of continuity.

By the definition \(g^{(p+1)}(z) = x^{p+1} \partial _{t}^{p+1}K(x,t)\big |_{t=xz} =:x^{p+1} K_{2}^{(p+1)}(x,xz)\), hence

$$\begin{aligned} \begin{aligned} \Vert K(x,\cdot )-K_{N}(x,\cdot )\Vert _{L_{2}(-x,x)}&= \sqrt{x}\Vert g-g_{N} \Vert _{L_{2}(-1,1)}\le \frac{2 \tilde{c}_{p} \sqrt{x}}{N^{p+1}} \Vert g^{(p+1)} \Vert _{L_{2}(-1,1)}\\&=\frac{2 \tilde{c}_{p} x^{p+3/2}}{N^{p+1}} \Vert K_{2}^{(p+1)}(x,x\cdot )\Vert _{L_{2}(-1,1)}\\&\le \frac{2\sqrt{2} \tilde{c}_{p} M x^{p+3/2}}{N^{p+1}}, \end{aligned} \end{aligned}$$

where we used that \(\Vert K_{2}^{(p+1)}(x,x\cdot )\Vert _{L_{2}(-1,1)}\le \sqrt{2}M\) due to (A.6).

The second estimate (A.8) can be obtained similarly. \(\square \)

Estimates (A.7) and (A.8) provide upper bounds for the error functions \(\varepsilon _{N}\) and \(\varepsilon _{1,N}\) from Theorems 3.1 and 3.2. Indeed, the approximate solutions \(c_{N}\) and \(s_{N}\) are obtained by changing K by \(K_{N}\) in (A.1). Hence by the Cauchy-Schwarz inequality we have

$$\begin{aligned} \begin{aligned} |c(\omega ,x)-c_{N}(\omega ,x)|&=\biggl |\int _{-x}^{x}\bigl (K(x,t)-K_{N} (x,t)\bigr )\cos \omega t\,dt\biggr |\\&\le \Vert K(x,\cdot )-K_{N}(x,\cdot )\Vert _{L_{2}(-x,x)}\cdot \biggl (\int _{-x}^{x}|\cos \omega t|^{2}\,dt\biggr )^{1/2}\\&\le \frac{\sqrt{2}c_{p}Mx^{p+2} }{N^{p+1}} \end{aligned} \end{aligned}$$
(A.9)

for any \(\omega \in \mathbb {R}\). The estimates for the function \(\varepsilon _{1,N}\) follows similarly by using corresponding estimates for the derivative \(K_{1}\).

The following proposition provides estimates of the decay rate of the coefficients \(\beta _{k}\) and \(\gamma _{k}\) and their behavior near \(x=0\).

Proposition A.3

Let \(Q\in W_{\infty }^{p}[0,b]\), \(p\ge 0\). There exist constants \(C_{p}\) and \(D_{p}\) (independent of N) such that

$$\begin{aligned} |\beta _{N}(x)|\le \frac{C_{p}x^{p+2}}{(N-1)^{p+1/2}},\qquad N\ge p+1 \end{aligned}$$
(A.10)

and

$$\begin{aligned} |\gamma _{N}(x)|\le \frac{D_{p}x^{p+1}}{(N-1)^{p-1/2}},\qquad N\ge p. \end{aligned}$$
(A.11)

Proof

We obtain using (A.5) and (A.7), the fact that the Legendre polynomial \(P_{n}\) is orthogonal to any polynomial of degree less than N and the Cauchy-Schwarz inequality that

$$\begin{aligned} \begin{aligned} |\beta _{N}(x)|&=\frac{2N+1}{2}\biggl |\int _{-x}^{x}K(x,t)P_{N}\left( \frac{t}{x}\right) \,dt\biggr |\\&\le \frac{2N+1}{2}\int _{-x}^{x}\left| (K(x,t)-K_{N-1}(x,t))P_{N}\left( \frac{t}{x}\right) \right| \,dt\\&\le \frac{2N+1}{2}\Vert K(x,\cdot )-K_{N-1}(x,\cdot )\Vert _{L_{2}(-x,x)} \cdot \sqrt{\frac{2x}{2N+1}}\\&\le \sqrt{\frac{2N+1}{2}}\frac{c_{p}Mx^{p+2} }{(N-1)^{p+1}}. \end{aligned} \end{aligned}$$

The proof of the second estimate (A.11) is similar. \(\square \)

The following bound for the behavior of the first coefficients near \(x=0\) is valid.

Corollary A.4

Let \(Q \in W_{\infty }^{p}[0,b]\), \(p\ge 0\). Then

$$\begin{aligned} |\beta _{n}(x)|&\le c_{n} x^{n+1}, \qquad n\le p+1, \end{aligned}$$
(A.12)
$$\begin{aligned} |\gamma _{n}(x)|&\le d_{n} x^{n+1},\qquad n\le p, \end{aligned}$$
(A.13)

where \(c_{n}\) and \(d_{n}\) are some constants dependent on Q.

Sufficient conditions for the smoothness of the transformed potential Q in terms of the coefficients p, q and r can be easily obtained from (2.4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, V.V., Torba, S.M. A Neumann series of Bessel functions representation for solutions of Sturm–Liouville equations. Calcolo 55, 11 (2018). https://doi.org/10.1007/s10092-018-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0254-7

Keywords

Mathematics Subject Classification

Navigation