Skip to main content
Log in

How to prepare a pollen calendar for forecasting daily pollen concentrations of Ambrosia, Betula and Poaceae?

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Forecasting daily airborne pollen concentrations is of great importance for management of seasonal allergies. This paper explores the performance of the pollen calendar as the most basic observation-oriented model for predicting daily concentrations of airborne Ambrosia, Betula and Poaceae pollen. Pollen calendars were calculated as the mean or median value of pollen concentrations on the same date in previous years of the available historic dataset, as well as the mean or median value of pollen concentrations of the smoothed dataset, pre-processed using moving mean and moving median. The performance of the models was evaluated by comparing forecasted to measured pollen concentrations at both daily and 10-day-average resolutions. This research demonstrates that the interpolation of missing data and pre-processing of the calibration dataset yields lower prediction errors. The increase in the number of calibration years corresponds to an improvement in the performance of the calendars in predicting daily pollen concentrations. However, the most significant improvement was obtained using four calibration years. The calendar models correspond well to the shape of the pollen curve. It was also found that daily resolution instead of 10-day averages adds to their value by emphasising variability in pollen exposure, which is important for personal assessment of dose-response for pollen-sensitive individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altiparmak, F., Dengiz, B., & Smith, A. E. (2009). A general neural network model for estimating telecommunications network reliability. IEEE Transactions on Reliability, 58, 2–9.

    Article  Google Scholar 

  • Astray, G., Rodríguez-Rajo, F. J., Ferreiro-Lage, J. A., Fernández-González, M., Jato, V., & Mejuto, J. C. (2010). The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. Journal of Environmental Monitoring, 12, 2145–2152.

    Article  CAS  Google Scholar 

  • Barnes, C., Pacheco, F., Landuyt, J., Hu, F., & Portnoy, J. (2001). The effect of temperature, relative humidity and rainfall on airborne ragweed pollen concentrations. Aerobiologia, 17, 61–68.

    Article  Google Scholar 

  • Bornn, L., & Zidek, J. V. (2012). Efficient stabilization of crop yield prediction in the Canadian Prairies. Agricultural and Forest Meteorology, 152, 223–232.

    Article  Google Scholar 

  • Bousquet, P.-J., Chinn, S., Janson, C., Kogevinas, M., Burney, P., & Jarvis, D. (2007). Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community Respiratory Health Survey I. Allergy, 62, 301–309.

    Article  Google Scholar 

  • Cadman, A. (1990). Airspora of Johannesburg and Pretoria, South Africa, 1987/88: I. Pollen calendars. Grana, 29, 311–317.

    Article  Google Scholar 

  • Calderón-Ezquerro, M. C., Guerrero-Guerra, C., Martínez-López, B., Martínez-Arroyo, A., & Trigo-Pérez, M. M. (2016). First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia, 32, 225–244.

    Article  Google Scholar 

  • Castellano-Méndez, M., Aira, M. J., Iglesias, I., Jato, V., & González-Manteiga, W. (2005). Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. International Journal of Biometeorology, 49, 310–316.

    Article  Google Scholar 

  • Chai, T., Carmichael, G. R., Tang, Y., Sandu, A., Heckel, A., Richter, A., et al. (2009). Regional NOx emission inversion through a four-dimensional variational approach using SCIAMACHY tropospheric NO2 column observations. Atmospheric Environment, 43, 5046–5055.

    Article  CAS  Google Scholar 

  • Csépe, Z., Makra, L., Voukantsis, D., Matyasovszky, I., Tusnády, G., Karatzas, K., et al. (2014). Predicting daily ragweed pollen concentrations using computational intelligence techniques over two heavily polluted areas in Europe. Science of the Total Environment, 476–477, 542–552.

    Article  Google Scholar 

  • Dahl, A., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & C.-K. Bergman (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 29–70). Berlin: Springer.

    Chapter  Google Scholar 

  • de Weger, L. A., Bergman, C.-K., Rantio-Lehtimaki, A., Dahl, A., Buters, J., Dechamp, C., et al. (2013). Impact of pollen. In M. Sofiev & C.-K. Bergman (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 161–215). Berlin: Springer.

    Chapter  Google Scholar 

  • El-Ghazaly, G., & Fawzy, M. (1988). Short communications pollen calendar of alexandria (Egypt), 1981–1982. Grana, 27, 85–87.

    Article  Google Scholar 

  • Emberlin, J., Mullins, J., Corden, J., Millington, W., Broke, M., Savage, M., et al. (1997). The trend to earlier Birch pollen season in the UK: A biotic response to changes in weather conditions? Grana, 36, 29–33.

    Article  Google Scholar 

  • Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.

    Article  Google Scholar 

  • Hilaire, D., Rotach, M. W., & Clot, B. (2012). Building models for daily pollen concentrations. The example of 16 pollen taxa in 14 Swiss monitoring stations. Aerobiologia, 28, 499–513.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Howard, L. E., & Levetin, E. (2014). Ambrosia pollen in Tulsa, Oklahoma: Aerobiology, trends, and forecasting model development. Annals of Allergy, Asthma and Immunology, 113, 641–646.

    Article  Google Scholar 

  • Inatsu, M., Kobayashi, S., Takeuchi, S., & Ohmori, A. (2014). Statistical analysis on daily variations of birch pollen amount with climatic variables in Sapporo. Sola, 10, 172–175.

    Article  Google Scholar 

  • Jae-Won, O., Ha-Baik, L., Im-Joo, K., Seong-Won, K., Kang-Seo, P., Myung-Hee, K., et al. (2012). The revised edition of korean calendar for allergenic pollens. Allergy Asthma Immunology Research, 4, 5–11.

    Article  Google Scholar 

  • Kasprzyk, I. (2009). Forecasting the start of Quercus pollen season using several methods–the evaluation of their efficiency. International Journal of Biometeorology, 53, 345–353.

    Article  Google Scholar 

  • Kaya, Z., & Aras, A. (2014). Airborne pollen calendar of Bartin, Turkey. Aerobiologia, 20, 63–67.

    Article  Google Scholar 

  • Kok Ong, E., Bir Singh, M., & Bruce Knox, R. (1995). Seasonal distribution of pollen in the atmosphere of Melbourne: An airborne pollen calendar. Aerobiologia, 11, 51–55.

    Article  Google Scholar 

  • Lake, I. R., Jones, N. R., Agnew, M., Goodess, C. M., Giorgi, F., Hamaoui-Laguel, L., et al. (2017). Climate change and future pollen allergy in Europe. Environmental Health Perspectives, 125(3), 385.

    Article  Google Scholar 

  • Lalic, B., Mihailovic, D. T., & Podrascanin, Z. (2011). Future state of climate in Vojvodina and expected effects on crop production (in Serbian with abstract in English). Field and Vegetable Crop Research, 48, 403–418.

    Google Scholar 

  • Makra, L., & Matyasovszky, I. (2011). Assessment of the daily ragweed pollen concentration with previous-day meteorological variables using regression and quantile regression analysis for Szeged, Hungary. Aerobiologia, 27, 247–259.

    Article  Google Scholar 

  • Makra, L., Matyasovszky, I., Thibaudon, M., & Bonini, M. (2011). Forecasting ragweed pollen characteristics with nonparametric regression methods over the most polluted areas in Europe. International Journal of Biometeorolgy, 55, 361–371.

    Article  Google Scholar 

  • Marko, O., Brdar, S., Panic, M., Lugonja, P., & Crnojevic, V. (2016). Soybean varieties portfolio optimisation based on yield prediction. Computers and Electronics in Agriculture, 127, 467–474.

    Article  Google Scholar 

  • Martínez-Bracero, M., Alcázar, P., Díaz de la Guardia, C., Gonzalez-Minero, J., Ruiz, L., Trigo Pérez, M. M., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia, 31, 549–557.

    Article  Google Scholar 

  • Matyasovszky, I., & Makra, L. (2011). Autoregressive modelling of daily ragweed pollen concentrations for Szeged in Hungary. Theoretical and Applied Climatology, 104, 277–283.

    Article  Google Scholar 

  • McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E.-Y., et al. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research, 110, 1–16.

    Article  Google Scholar 

  • Melgar, M., Trigo, M. M., Recio, M., Docampo, S., Garcıa-Sanchez, G., & Cabezudo, B. (2012). Atmospheric pollen dynamics in Munster, north-western Germany: A three-year study (2004–2006). Aerobiologia, 28, 423–434.

    Article  Google Scholar 

  • Myking, T. (1999). Winter dormancy release and budburst in Betula pendula Roth. and B. pubescens Ehrh. ecotypes. Phyton, 39, 139–146.

    Google Scholar 

  • Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentration. Grana, 34, 182–188.

    Article  Google Scholar 

  • O’Rourke, M. K. (1990). Comparative pollen calendars from Tucson, Arizona: Durham vs. Burkard samplers. Aerobiologia, 6, 136–140.

    Article  Google Scholar 

  • Pathirane, L. (1975). Graphical determination of the main pollen season. Pollen and Spores, 17, 609–610.

    Google Scholar 

  • Pauling, A., Rotach, M., Gehrig, R., & Clot, B. (2012). A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. International Journal of Biometeorology, 56, 949–958.

    Article  CAS  Google Scholar 

  • Peden, D., & Reed, C. E. (2010). Environmental and occupational allergies. Journal of Allergy and Clinical Immunology, 125, S150–S160.

    Article  Google Scholar 

  • Piotrowska-Weryszko, K., & Weryszko-Chmielewska, E. (2014). The airborne pollen calendar for Lublin, central eastern Poland. Annals of Agricultural and Environmental Medicine, 21, 541–545.

    Article  Google Scholar 

  • Prank, M., Chapman, D. S., Bullock, J. M., Soler, J. B., Berger, U., Dahl, A., et al. (2013). An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricultural and Forest Meteorology, 182, 43–53.

    Article  Google Scholar 

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.

  • Radišić, P. (2013) Polen kao pokazatelj kvaliteta životne sredine. PhD Thesis. University of Novi Sad, Faculty of Sciences.

  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2, 21–33.

    Google Scholar 

  • Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., & Genikhovich, E. (2016). Statistical modelling of non-stationary processes of atmospheric pollution from natural sources: Example of birch pollen. Agricultural and Forest Meteorology, 226–227, 96–107.

    Article  Google Scholar 

  • Rodríguez-Rajo, F. J., Astray, G., Ferreiro-Lage, J. A., Aira, M. J., Jato-Rodriguez, M. V., & Mejuto, J. C. (2010). Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Networks, 23, 419–425.

    Article  Google Scholar 

  • Rodriguez-Rajo, F. J., Jato, V., & Aira, M. J. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225.

    Article  Google Scholar 

  • Rojo, J., Rivero, R., Romero-Morte, J., Fernández-González, F., & Pérez-Badia, R. (2016). Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. International Journal of Biometeorology. https://doi.org/10.1007/s00484-016-1215-y.

    Article  Google Scholar 

  • Sanchez-Mesa, J. A., Galan, C., Martinez-Heras, J. A., & Hervas-Martinez, C. (2002). The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: The southern part of the Iberian Penisula. Clinical and Experimental Allergy, 32, 1606–1612.

    Article  CAS  Google Scholar 

  • Scheifinger, H., Belmonte, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-Mozo, H., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & C.-K. Bergman (Eds.), Allergenic pollen: A Review of the production, release, distribution and health impacts (pp. 71–126). Berlin: Springer.

    Chapter  Google Scholar 

  • Siljamo, P., Sofiev, M., Filatova, E., Grewling, L., Jäger, S., Khoreva, E., et al. (2012). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology, 57, 125–136.

    Article  Google Scholar 

  • Skjøth, C. A., Šikoparija, B., Jäger, S., & EAN. (2013). Pollen Sources. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen (pp. 9–27). Berlin: Springer.

    Chapter  Google Scholar 

  • Skjøth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.

    Article  Google Scholar 

  • Smith, M., Cecchi, L., Skjoth, C. A., Karrer, G., & Sikoparija, B. (2013). Common ragweed: A threat to environmental health in Europe. Environment International, 61, 115–126.

    Article  CAS  Google Scholar 

  • Sofiev, M., Belmonte, J., Gehrig, R., Izquierdo, R., Smith, M., Dahl, A., et al. (2013). Airborne pollen transport. In M. Sofiev & C.-K. Bergman (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 127–159). Berlin: Springer.

    Chapter  Google Scholar 

  • Sofiev, M., Berger, U., Prank, M., Vira, J., Arteta, J., Belmonte, J., et al. (2015). MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics, 15, 8115–8130.

    Article  CAS  Google Scholar 

  • Spieksma, F Th M, & Wahl, P. G. (1991). Allergenic significance of Artemisia (Mugwort) pollen. In G. D’Amato, F. Th, M. Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Stach, A., Smith, M., Baena, J. C. P., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.

    Article  Google Scholar 

  • Stark, P. C., Ryan, L. M., McDonald, J. L., & Burge, H. A. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13, 177–184.

    Article  Google Scholar 

  • Surhone, L. M., Tennoe, M. T., & Henssonow, S. W. (2010). Runge’s phenomenon (p. 80). Saarbrücken: Betascript publishing.

    Google Scholar 

  • Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmospheric Environment, 44, 5101–5111.

    Article  CAS  Google Scholar 

  • Zeileis, A., & Grothendieck, G. (2005). Zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software, 014(6), 1–26.

    Article  Google Scholar 

  • Zink, K., Kaufmann, P., Petitpierre, B., Broennimann, O., Guisan, A., Gentilini, E., et al. (2017). Numerical ragweed pollen forecasts using different source maps: A comparison for France. International Journal of Biometeorology, 61(1), 23–33.

    Article  Google Scholar 

  • Zink, K., Vogel, H., Vogel, B., Magyar, D., & Kottmeier, C. (2012). Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. International Journal of Biometeorology, 56, 669–680.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly financed by: Ministry of Education, Science and Technological Development of Republic of Serbia (project numbers OI173002 and III44006), IPA Cross-border Cooperation programme Croatia – Serbia 2014-2020 (RealForAll project no. 2017HR-RS151), Provincial secretariat for finances, Autonomous Province Vojvodina (contract no. 102-401-337/2017-02-4-35-8) and the Swiss National Science Foundation (SCOPES JRP no. IZ73Z0_152348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Marko.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šikoparija, B., Marko, O., Panić, M. et al. How to prepare a pollen calendar for forecasting daily pollen concentrations of Ambrosia, Betula and Poaceae?. Aerobiologia 34, 203–217 (2018). https://doi.org/10.1007/s10453-018-9507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9507-9

Keywords

Navigation