Skip to main content
Log in

Computational evaluation of multi-iterative approaches for solving graph-structured large linear systems

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We analyse the practical efficiency of multi-iterative techniques for the numerical solution of graph-structured large linear systems. In particular we evaluate the effectiveness of several combinations of coarser-grid operators which preserve the graph structure of the projected matrix at the inner levels and smoothers. We also discuss and evaluate some possible strategies (inverse projection and dense projection) to connect coarser-grid operators and graph-based preconditioners. Our results show that an appropriate choice of adaptive projectors and tree-based preconditioned conjugate gradient methods result in highly effective and robust approaches, that are capable to efficiently solve large-scale, difficult systems, for which the known iterative solvers alone can be rather slow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Axelsson, O., Lindskög, G.: The rate of convergence of the preconditioned conjugate gradient method. Numer. Math. 52, 499–523 (1986)

    Article  Google Scholar 

  3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, New York (1990)

    MATH  Google Scholar 

  4. Bhatia, R.: Matrix Analysis. Springer Verlag, New York (1997)

    Book  Google Scholar 

  5. Boman,E.G., Chen, D., Hendrickson, B., Toledo, S.: Maximum-weight-basis preconditioners. Numer. Linear Algebra Appl. 11(8–9), 695–721 (2004)

  6. Boman, E.G., Hendrickson, B.: Support theory for preconditioning. SIAM J. Matrix Anal. Appl. 25(3), 694–717 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezina, M., Falgout, R.D., MacLachlan, S., Manteuffel, T.A., McCormick, S.F., Ruge, J.: Adaptive algebraic multigrid. SIAM J. Sci. Comput. 27, 1261–1286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro, J.: A specialized interior-point algorithm for multicommodity network flows. SIAM J. Opt. 10, 852–877 (2000)

    Article  MATH  Google Scholar 

  9. Cayley, A.: A theorem on trees. Quart. J. Math. 23, 376–378 (1889)

    Google Scholar 

  10. Cicone, A., Serra-Capizzano, S.: GOOGLE PageRanking problem: the model and the analysis. J. Comput. Appl. Math. 234–11, 3140–3169 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cvetkovic, D., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New York (1979)

    Google Scholar 

  12. De Sterck, H., Manteuffel, T.A., McCormick, S.F., Miller, K., Pearson, J., Ruge, J., Sanders, G.: Smoothed aggregation multigrid for Markov chains. SIAM J. Sci. Comput. 32, 40–61 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Del Corso, G., Gullí, A., Romani, F.: Fast PageRank computation via a sparse linear system. Internet Math. 3–2, 259–281 (2005)

    Google Scholar 

  14. Dell’Acqua, P.: Algorithmic variations on the theme of structured matrices, with applications to graphs and imaging. Ph.D. thesis, Università dell’Insubria (2013)

  15. Donatelli, M.: A note on grid transfer operators for multigrid methods. Manuscript (2008) arXiv:0807.2565v1

  16. Frangioni, A., Gentile, C.: New preconditioners for KKT systems of network flow problems. SIAM J. Opt. 14, 894–913 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frangioni, A., Gentile, C.: Prim-based BCT preconditioners for min-cost flow problems. Comput. Opt. Appl. 36, 271–287 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Frangioni, A., Gentile, C.: Experiments with hybrid interior point/combinatorial approaches for network flow problems optim. Methods Softw. 22–4, 573–585 (2007)

    Article  MathSciNet  Google Scholar 

  19. Frangioni, A., Serra Capizzano, S.: Spectral analysis of (sequences of) graph matrices. SIAM J. Matrix Anal. Appl. 23–2, 339–348 (2001)

    Article  MathSciNet  Google Scholar 

  20. Greenbaum, A.: Analysis of a multigrid method as an iterative technique for solving linear systems. SIAM J. Numer. Anal. 21–3, 473–485 (1984)

    Article  MathSciNet  Google Scholar 

  21. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847) (translated by J. B. O’Toole in I.R.E. Trans. Circuit Theory, CT-5, 1958, 4)

  22. Langville, A., Meyer, C.: A survey of eigenvector methods for WEB information retrieval. SIAM Rev. 47–1, 135–161 (2005)

    Article  MathSciNet  Google Scholar 

  23. Mohar, B.: Some applications of Laplace eigenvalues of graphs. Graph symmetry: algebraic methods and applications. In: Hahn, G., Sabidussi, G. (Eds.) NATO ASI Series C, vol. 497, pp. 225–275, Kluwer (1997)

  24. Monteiro, R.D.C., O’Neal, J.W., Tsuchiya, T.: Uniform boundedness of a preconditioned normal matrix used in interior-point methods. SIAM J. Opt. 15–1, 96–100 (2004)

    Article  MathSciNet  Google Scholar 

  25. Ng, M., Serra-Capizzano, S., Tablino Possio, C.: Multigrid preconditioners for symmetric Sinc systems. ANZIAM J. 45-E, 857–869 (2004)

  26. Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37, 123–146 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Notay, Y., Vassilevski, P.S.: Recursive Krylov-based multigrid cycles. Numer. Linear Algebra Appl. 15, 473–487 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-dealays. IEEE Trans. Autom. Control 49–9, 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  29. Portugal, L.F., Resende, M.G.C., Veiga, G., Jùdice, J.J.: A truncated primal-infeasible dual-feasible network interior point method. Networks 35, 91–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid Methods, vol. 3. Frontiers Applied Mathematics, pp. 73–130. SIAM, Philadelphia (1987)

  31. Serra Capizzano, S.: Multi-iterative methods. Comput. Math. Appl. 26–4, 65–87 (1993)

    Article  MathSciNet  Google Scholar 

  32. Sterck, H.D., Manteuffel, T.A., Mccormick, S.F., Nguyen, Q., Ruge, J.: Multilevel adaptive aggregation for Markov chains, with application to WEB ranking. SIAM J. Sci. Comput. 30(5), 2235–2262 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Trottenberg, U., Oosterlee, C., Schuller, A.: Multigrid. Academic Press, London (2001)

  35. Varga, R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Serra-Capizzano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Acqua, P., Frangioni, A. & Serra-Capizzano, S. Computational evaluation of multi-iterative approaches for solving graph-structured large linear systems. Calcolo 52, 425–444 (2015). https://doi.org/10.1007/s10092-014-0123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-014-0123-y

Keywords

Mathematics Subject Classification

Navigation