
1.  Introduction
Most of the existing climate models rely on the Elastic Viscous Plastic (EVP) approach (Hunke & Dukow-
icz, 1997) to solve the sea-ice dynamics. The EVP solvers have been the subject of several recent papers 
which proposed a modification of the original EVP approach, called mEVP further (Bouillon et al., 2013; 
Kimmritz et al., 2015; Lemieux et al., 2012). In the mEVP approach, the aspects of convergence to the Vis-
cous Plastic (VP) solution (Hibler, 1979) and numerical stability are separated, allowing stable performance 
independent of whether the solution is converged to the VP rheology. Despite the closeness between the 
EVP and mEVP there remains some vagueness on how they are related in terms of numerical stability and 
simulated dynamics. This note attempts to clarify some points by proposing a modified view on the EVP 
based on the stability argument, which puts the EVP and mEVP on an equal footing.

Our discussions in this note will be based on the stability analyses of Hunke and Dukowicz  (1997) and 
Hunke (2001). The focus is not on the development of new sea-ice solvers, but rather on how to use tra-
ditional EVP in existing climate models to reach good numerical stability while keeping a high numerical 
efficiency. We will use 1D prototype equations to explain the stability issues. The conclusions from the 
stability analysis will be complemented by simulations performed with FESOM (Danilov et al., 2017), the 
sea-ice component of which is described in Danilov et al. (2015). The simulations are done on meshes with 
high horizontal resolution, which allow numerous linear kinematic features (LKFs) to be simulated with 
the EVP approach (see e.g., Wang et al., 2016). The EVP version used in FESOM is adjusted so that all the 
components of stresses tend to the VP stresses at the same rate. This improves stability (see, e.g., Bouillon 
et al., 2013; Danilov et al., 2015; Wang et al., 2016). Full equations solved with the EVP and mEVP methods 
can be found in papers cited above. A brief summary of their implementation in FESOM is given in the 
Appendices of Koldunov, Danilov, et al. (2019).

Abstract  We propose to make the damping time scale, which governs the decay of pseudo-elastic 
waves in the Elastic Viscous Plastic (EVP) sea-ice solvers, independent of the external time step and 
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ice breaking under the forcing of a moving cyclone, the EVP method with an enlarged damping time 
scale can simulate linear kinematic features which are very similar to those from the traditional EVP 
implementation, although a much smaller number of internal time steps is used. There is more difference 
in sea-ice thickness and linear kinematic features simulated in a realistic Arctic configuration between 
using the traditional and our suggested choices of EVP damping time scales, but it is minor considering 
model uncertainties associated with choices of many other parameters in sea-ice models.

Plain Language Summary  Numerical simulations of sea ice in ocean or climate models 
most frequently rely on the Elastic Viscous Plastic (EVP) method. Computational expenses of this method 
depend on its internal time step which is limited by the requirements of numerical stability. It is shown 
that some adjustment of dissipation time scale in the EVP method allows the time scale to be increased, 
thereby reducing the numerical costs without sacrificing the results of simulations.
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2.  The Stability of EVP
2.1.  The Role of Pseudoelastic Time Scale T

Consider the following 1D prototype of the standard EVP equations (see, e.g., Hunke,  2001; Hunke & 
Dukowicz, 1997):

     
1 ( ),

2t xuT� (1)

     ,t xm u� (2)

where it is assumed that the motion is in the E x -direction and depends on time and coordinate E x ,
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�

E u is the velocity, E  the wind and ocean forcing, and E P the ice strength. Some numerical factors in these 
equations were discarded for simplicity (compare with Equation 20 in Hunke, 2001). The field ΔE  is the 1D 
version of
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of the VP rheology, depending on the deformations in ice, where  2E e  and
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are the components of the strain rate tensor, with ,E i j being the E x or E y . We intend to make the equations 
tractable analytically, and assume the worst case in terms of stability when ΔE  is capped by its minimum 
value minΔE  set to   9 12 10 sE  . We assume also that E P is constant, leading to the constant viscosity E  .

In the standard EVP, the time scale E T  is selected to be a fraction of the external time step ΔE t (see, e.g., Hun-
ke, 2001). The ΔE t can be the time step of an ocean model if the sea ice is integrated together with the ocean, 
and we assume that this is the case. If T t/  is sufficiently small, then an equilibrium will be reached within 
the external time step ΔE t and the rhs of the E  -equation will approach zero, giving the VP regime

   .xu�

Consider for a while the other balance in Equation 1:

   
1 ,

2t xu
T�

which corresponds to “E” (elastic) in the EVP. Inserting it in the time differenced momentum (Equation 2) 
and neglecting forcing E  , we get

   
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,
4 Δtt x x
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which is the wave equation with the phase speed
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For  310E T  s,    9 1Δ 2 10 sminE  ,  *E P hP  with  * 43 10E P  N/  2mE  and E m h  we get  2 6 24 10 mE c  /  2sE  
taking the ice density E   = 900 kg   3mE  (the mean thickness E h drops out). The phase speed is rather large  
( E  2,000 m/s), and limits the internal time step (substep) in the standard EVP as

c t c t N C x
EV P EV P

   / ,� (5)
leading to

N c t C x
EV P

  /( ),� (6)
where EV PE N  is the number of substeps, E C is a numerical factor on order one and ΔE x is the mesh cell size. For 
ΔE x  = 100 km the time step limit is less than 50 s, which for ΔE t  1 hr means  70EV PE N  .

However, when mesh is refined, the ratio of  t x/  does not change much (if both ΔE t and ΔE x are set by the 
ocean model), while E T  becomes smaller if we keep the ratio of T t/  fixed. This increases E c , implying an 
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increase in EVPE N  as 1/2(Δ )E t  , thus a reduction in model numerical efficiency. Therefore, it is the desire to 
damp the pseudo-elastic waves within the external time step ( T t/  1 ) that causes the standard EVP to be 
more expensive on refined meshes.

As is known, we generally fail to damp these waves to the degree that a converged solution is reached (see, 
e.g., Koldunov, Danilov, et al., 2019). The decay of pseudo-elastic waves in the EVP is only exponential, 
roughly following Δ /2t TE e  per external time step in the 1D prototype here, so E T  should be unacceptably small 
for the solution to really approach the VP dynamics within the external time step ΔE t . The mEVP approach 
behaves similarly in this respect, with  /NEVPE e  roughly defining the decay per time step, where E  is the 
stability parameter.

To develop a heuristic argument let's take an oscillating forcing     0
i t ikxE e  , where E  is the frequency of 

oscillations and E k the wavenumber. In this case the solution   0
i t ikxE u u e  of Equations 1 and 2 is

 
  




  
0 02

1 2 .
( 2 )

i Tu
i T m k�

In order to approach the VP regime we need  2 1E T  in the numerator (the E  term generally prevails in the 
denominator). If we have 3-hourly wind forcing, the largest frequency in forcing will be  / h3

1  , so  1000E T  
s will correspond to  2 0.6E T  . In reality, the local peak in high-frequency wind forcing is at the inertial fre-
quency, which in high latitudes corresponds to  / h6

1  . Depending on the forcing used, the resolution (which 
might be too coarse to see the effects) and the compromise we are ready to make, E T about 0.5 1E  hr can be 
still sufficient to get solutions that are close to VP solutions. The selection of E T becomes an experimental task.

If we fix E T  instead of varying it for different ΔE t , EV PE N  needed for stability will be fixed too, losing the depend-
ence on ΔE t and hence on the resolution if t and ΔE x are varying proportionally. The situation with EVP will 
then resemble the case with the split-explicit solvers for the sea surface elevation used in many ocean circu-
lation models. They employ small internal time steps in order to be stable with respect to fast surface waves. 
The number of internal time steps is dictated by the wave phase speed, and generally does not depend on the 
mesh resolution because ΔE x and ΔE t are varied accordingly. For a fixed E T  and an appropriate value of EV PE N  
the EVP becomes similar to the mEVP proposed by Bouillon et al. (2013), as explained in the next section.

The total number of EVP internal steps per simulation depends on the internal time step governed by the 
speed of pseudo-elastic waves (see Equation 5). Therefore, even when sea-ice models are integrated with 
external time steps larger than in ocean models, the total number of internal time steps will not change and 
the overall efficiency of the EVP solver will not be increased.

2.2.  EVP and mEVP

The pair of E  and E u equations in EVP is integrated using forward-backward time stepping as

       1 Δ
( ),

2
EV Pp p p p

x
t

u
T

�

     1 1( ) Δ ( ).p p p
EV P xm u u t�

Here E p is the index of subcycling (   0E p  corresponds to the values at the end of external time step E n , and the 
values at  EVPE p N  are those for  1E n  ).

The prototype form of mEVP is

   


    1 1 ( ),p p p p
xu�

 

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      
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x
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Here E  and E  are large parameters, and nE u  is the velocity at the end of the last external time step. The itera-
tive process can be considered as pseudo time stepping. We see that with   2T t

EV P
/  the E  -equations of 

EVP and mEVP become identical.

The E u -equations are slightly different. The difference lies in the estimate of time derivative: it is time-lo-
cal in EVP, but weighted between two estimates in mEVP. If we divide the E u -equation of mEVP over 
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 t t N
EV P EV P

 /  and then associate the time interval Δ EV PE t  with a single iteration of mEVP, ( )u u t
p p

EVP
 1

/  
is the time-local estimate of time derivative tE u . The quantity ( ) ( )u u p t

p n
EVP /   is the mean time derivative 


p

tE u  over the time interval from E n (   0E p  ) to E p . The E u -equation then becomes

  
 
      
 
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featuring an up-weighted time derivative, which leads to the response as if ice mass were larger than in re-
ality (unless  /N

EV P
 1 , which is seldom the case in practice). Accordingly, the transient response to fast 

changes in forcing will be slower. It is not the case for EVP, and in this respect the EVP is a more consistent 
option than mEVP unless EV PE N  in the latter.

We now compare stability conditions for both methods (see, e.g., Hunke, 2001, Equation 24, and Kimmritz 
et al., 2015, Equation 14). In the case of EVP, it is


2

2
Δ Δ ,

(Δ )EV P E
t tN C

T m x� (7)

and in the case of mEVP method, it is
  2

Δ .
(Δ )m

tC
m x� (8)

Here EE C  and mE C  are numerical factors determined experimentally in realistic applications. 2(Δ )E x  in both 
cases appears from an estimate of the maximum eigenvalue of 

xx
 . It misses a numerical factor which 

depends on discretization and is hidden in EE C  and mE C  . We note that Equation 7 is the same as Equation 6, 
but written differently to facilitate a comparison with the mEVP case.

As mentioned, for EVP, if ΔE t and ΔE x vary proportionally on mesh refinement, stability does not depend on 
resolution for fixed E T  . For mEVP, the product E  needs to be increased with mesh refinement if Δ ΔE t x , 
as indicated by Equation 8.

Although mEVP does not pose explicit constraints on EV PE N  , the need to approach to the VP solution implies 
that EV PE N  should be related to  ,E  . If we write   EV PE c N  and   EV PE c N  , with E c  and E c  the numerical 
factors, then the ratio T t/  in EVP plays the role of the product  E c c  in mEVP as concerns stability (up to 
a numerical factor hidden in EE C  and mE C  ). The stability is achieved by similar means in EVP and mEVP: to 
keep EVPE N  moderate, one takes large T t/  in EVP or large  E c c  in mEVP. For example, Koldunov, Danilov, 
et al. (2019) report mEVP simulations that were run with    500E  and  100EV PE N  , which should be 
similar to EVP case with T t/  25 , which corresponds to E T  about several hours.

In summary, in both cases using relatively low EV PE N  affects the formal convergence to VP solutions. Wheth-
er or not such a choice of EV PE N  is acceptable depends on the presence of high-frequency components in 
forcing, and can be evaluated through simulations for both EVP and mEVP (see, e.g., Kimmritz et al., 2017). 
On high-resolution meshes the results can be further affected by LKFs emerging in simulations, which 
remains to be seen.

The next two sections present results illustrating the consistency between the EVP and mEVP solutions in 
an idealized test case and in realistic simulations in the Arctic Ocean. Both cases develop multiple LKFs, 
and their pattern is used as one of criteria to judge on the consistency.

In practice, moderate violation of Equation 7 or 8 in, respectively, EVP or mEVP simulations does not imply 
numerical instability, but rather noise in strain rates. The noise distorts sea-ice dynamics and should be 
avoided. We therefore will continue to use the term “stability” in the sense of Equation 7 or 8.

3.  Idealized Test Case
We run the test case described in Mehlmann et al. (2021) on a triangular mesh with the triangle side of 
2 km. The sea ice occupies a rectangular box of 512 by 512 km in size. It is deformed by stresses due to a 
cyclone traveling along the diagonal toward the north-east corner. The initial ice concentration is 1, the 
initial thickness is approximately 0.3 m, with small modulation,  * 43 10E P  N/  2mE  , and    9 1Δ 2 10 sminE  . 
We compare the pattern of simulated LKFs at the end of the second day of simulations. The ice thickness is 
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relatively thin, and does not change substantially except for the northern 
and partly eastern boundaries. The simulated ice velocities in this test 
case allow the external time step ΔE t to be larger than 30 min if judged 
only by sea-ice advection. However, the external time step ΔE t is set to 
2 min in all runs, which is a value expected from an ocean model running 
on a 2 km mesh in high latitudes.

Table 1 specifies the parameters of runs presented in Figures 1 and 2. We 
keep EV PE N  low in S1, S2 and M1, and take E T  or  ,E  that ensure stability.

Figure 1 illustrates the behavior of EVP solutions with different param-
eters. Shown are the field of ice concentration and ΔE  . In S1, E T  is larger 
than needed for stability for the selected external time step ΔE t . S2 uses the 
lowest E T  that ensures stability. The difference between the results from S1 
and S2 is very minor. If E T  is further reduced for EVPE N  fixed (not shown), 

noise starts to appear in ΔE  and velocity strain rates. It is localized in the corners, where the strain rates are 
small, down to  15E T  min. Although the solutions remain very close to S2 elsewhere (not shown), larger ar-
eas might be affected in longer simulations, and such E T  are not allowed. If E T  is increased further than in S1, 
some reduction in number of LKFs is generally noticeable (not shown). As mentioned above, the question 
on admissible E T  depends on temporal scales present in forcing and possibly on spatial resolution.

Run S3 has T t/  0 125.  , to allow for a decay of pseudoelastic waves within the external time step, as intend-
ed in the traditional EVP. Note that the ratio is smaller than the commonly used value of 1/3 (Hunke, 2001) 
to ensure stronger decay. EV PE N  is 10 times larger than in S1 and S2, which is dictated by stability condition 
(Equation 7) as the consequence of strong reduction in T t/  . It can be seen that there are only very minor 
differences between the results of S3 and those of S1 and S2 in details. However, the EVP solver efficiency in 
S1 and S2 is 10 times higher than in S3. Simulation with Δ 30E t  min,  3E T  min and  4500EV PE N  carried 
out to reach small T t/  in a more economical way (not shown) results in patterns almost identical to S3, but 
are still about three times more expensive than S2.

Figure  2 compares the EVP and mEVP solutions. The parameters  ,E  and EV PE N  in M1 imply that its 
c c T t   /  of S1 and S2. While the details in the LKF pattern in S2 and M1 are not identical, the difference 
is minor. This leads us to conclude that EVP with the specified E T  behaves very similarly to mEVP, and there 
is no practical argument to prefer one over another. M2 keeps the same parameters as M1, except for 30 
times larger EV PE N  . Now EV PE N  is much larger than  ,E  , which formally should lead to a closer convergence 

Run ΔE t , min E T  min  ,E EV PE N

S1 2 60 100

S2 2 25 100

S3 2 0.25 1,000

M1 2 500 100

M2 2 500 3,000

Table 1 
The Parameters of Runs Performed With Elastic Viscous Plastic (EVP) and 
Modified EVP

Figure 1.  Ice concentration (top row) and ΔE  (bottom row) in test case runs with the Elastic Viscous Plastic method. S1 
differs from S2 by larger E T  (   1E T  hr vs.  1500E T  s), which leads to minor differences in detail. S2 and S3 differ in the 
ratio t T/  by two orders of magnitude, but simulate close patterns.
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to the VP regime. Once again, this increase in EV PE N  creates only minor differences, emphasizing the fact 
that in mEVP EV PE N  is only required to be high enough to ensure some initial error reduction in the iterative 
process. As expected from the analysis above, increasing  ,E  for fixed EV PE N  in mEVP will eventually lead 
to an effect similar to that of increasing E T  in EVP, filtering high-frequency response to forcing (not shown).

As concerns the differences between the simulated LKF patterns, we should note that the patterns depend, 
in addition to forcing and rheology, also on the details of numerical discretization. This is not surprising 
because LKFs are forming close to the grid scale, where all discretized differential operators contain numer-
ical errors. As shown in Mehlmann et al. (2021), the change in the type of discretization, for example the 
placement of velocities on triangle centers or edges, induces much larger differences in the patterns of LKFs 
than those seen in Figures 1 and 2.

4.  Arctic Simulations
Here our intention is to demonstrate that the EVP with fixed E T  also compares well with the standard EVP 
and mEVP in realistic model configurations. Simulations are carried out with FESOM2 in the global con-
figuration used in Koldunov, Danilov, et al. (2019) where the Arctic Ocean is resolved at 4.5 km in terms 
of grid triangle height. We initialize the model in the year 1978 with PHC3 climatology (Steele et al., 2001) 
and 2 m ice where surface ocean temperature is below freezing point. The model is forced by JRA55-do 
reanalysis fields (Tsujino, 2018), which have horizontal resolution of about 55 km and temporal interval of 
3 hr. This setup gives an opportunity to observe development of sea-ice fields starting from a uniform sea-ice 
distribution, but under realistic forcing and for realistic geometry.

We performed six experiments. The EVP and mEVP experiments use  100EV PE N  if not otherwise stated. 
Relying on the test case above and expression 7, we expect that  2E T  hr will lead to stable simulations in 
this case. The increase in E T  from 25 min in S2 is related to a 2.2 times higher ratio  t x/  in Arctic simula-
tions. The standard EVP run with  2E T  hr is labeled EVP2H, and the standard mEVP run with E   =  E   = 500 
is labeled mEVP500. An additional EVP experiment is run with  1E T  hr (labeled EVP1H). An additional 
mEVP experiment is run with E   =  E   = 800 (labeled mEVP800). The other two experiments use the original 
EVP implementation (with T t  /3 as in Hunke, 2001) and differ in the value of EV PE N  , with EVP0 having 

 100EV PE N  and EVP0_600 having  600EV PE N  . EVP1H and EVP0 violate Equation 7, but to a different 
extent. EVP2H and EVP0_600 are close to the stability boundary, mEVP500 has a slightly stronger stability 
than EVP2H and EVP0_600, and mEVP800 is even more stable. For convenience, the parameters are listed 
in Table 2. Since EVP0_600 uses the standard selection of E T  , it provides a baseline for comparison. The daily 

Figure 2.  Ice concentration (top row) and ΔE  (bottom row) in test case runs with Elastic Viscous Plastic (EVP) and 
modified EVP solvers. S2 and M1 have the same  100EV PE N  . While there are small differences in details, the patterns 
of linear kinematic features agree between EVP and mEVP runs. M2 differs from M1 taking  3000EV PE N  instead of 
100. The increase in N

EV P
 causes little additional changes in model results when stability is ensured.
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mean spatial distributions of ΔE  on October 27, 1980 (Figure 3) are quite 
similar for all experiments, except for EVP0. The large-scale spatial pat-
terns of LKFs in ΔE  , defined by the forcing and ability of rheology to react 
to it, show good resemblance. The parameters in these simulations are 
selected such that the standard runs are not very far from their stability 
boundary. Run EVP1H, where the parameter E T  is lower than needed, re-
produces a pattern of ΔE  that is very close to that of EVP2H. Daily averag-
ing smooths small-scale noise, which is seen in instantaneous snapshots 
in EVP1H (not shown). Although run EVP2H is similar to S2 in terms of 
stability, it was found to sporadically develop some noise in the field of 
ΔE  . This means that E T  in EVP2H should be slightly increased for optimal 
performance.

In run mEVP800 the parameters  ,E  are excessively high. Some differ-
ences between mEVP500 and mEVP800 can be seen in some of the long 
LKFs and in the position and numbers of LKFs near ice edges. Howev-
er, the differences are rather minor. Although we do not illustrate it, the 

Run ΔE t , minE T  min  ,E EV PE N 1 year run time, min

EVP2H 10 120 100 75

mEVP500 10 500 100 75

EVP0_600 10 3.3 600 110

EVP1H 10 60 100 75

mEVP800 10 800 100 75

EVP0 10 3.3 100 75

Note. EVP, Elastic Viscous Plastic.

Table 2 
The Parameters of Arctic Ocean Runs Performed on a 4.5 km Mesh, and 
Resulting Model Run Time per Year of Simulations

Figure 3.  Spatial distribution of ΔE  fields at October 27, 1980 for simulations initialized at January 1 with 2 m thick ice, 1978 and run with JRA55-do forcing.
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results from EVP and mEVP runs remain very similar when E T  (in case of EVP solver) and E  , E  (in case of 
mEVP solver) are increased in some limits beyond the values listed in Table 2.

The comparison of EVP0 and EVP0_600 (Figure 3, right column) shows that the picture of deformations 
using the original EVP implementation becomes close to those of mEVP and EVP with adjusted E T  only if 

EV PE N  is significantly increased to ensure Equation 7. This, however, increases the computational cost of the 
sea-ice model in our setup from about 20% of the ocean model in case of  100EV PE N  to about 100% in the 
case of  600EV PE N  (see also Figure 1 in Koldunov, Danilov, et al., 2019). The situation may become worse 
with an increase in the number of computational cores. Although the EVP method scales well when the 
number of cores is increasing, it saturates earlier than the ocean model because it needs inter-core com-
munications after each subcycle (Koldunov, Aizinger, et al., 2019). Simply increasing E T  to an appropriate 
higher value allows the computational cost of the EVP solver to be kept the same low as for the mEVP solver 
(   100EV PE N  ). The overly smooth pattern of ΔE  seen in EVP0 is related to noise smoothed by daily averaging. 
It leads to distorted distribution of internal stresses and different dynamics.

For a more quantitative analysis, the top panel of Figure 4 presents the probability density functions (PDF) 
for the daily mean patterns of Figure 3. The PDF is similar for    8 1Δ 5 10 sE  for all runs except EVP0. EVP 
and mEVP runs are grouping together (again, with exception of EVP0), but they are more distinct for snap-
shots (bottom panel). Interestingly, EVP1H and EVP2H differ not very substantially in the ΔE  PDF despite 
EVP1H being slightly unstable.

While the patterns of ΔE  in Figure 3 are rather close for all runs except EVP0, small differences in sea-ice dy-
namics and, hence, thermodynamics accumulate with time, and may result in noticeable differences in sea-
ice thickness regionally. The sea-ice thickness snapshot at October 27, 1980 (Figure 5) shows that the gener-
al spatial pattern of the sea-ice thickness is similar between the EVP and mEVP runs that respect numerical 
stability requirements. Sea ice thickness distribution the most similar to that in EVP0_600 is obtained in the 
run mEVP500. The sea ice simulated in EVP2H is slightly thinner, indicating that some increase in E T  above 

Figure 4.  The probability density function (PDF) of ΔE  [1/s] on October 27, 1980 based on daily mean (top) and 
instantaneous (bottom) fields. The vertical line corresponds to     9 1Δ Δ 2 10 sminE  .
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2 hr is still needed in this case, as already mentioned. Runs EVP0 and EVP1H are obvious outliers, showing 
a reduced thickness. We refrain from quantifying the differences in the number of LKFs and describing 
effects on the behavior of the sea ice and ocean properties, which is reserved for future dedicated studies.

5.  Discussions
To make the cost of the EVP sea-ice solver moderate, we selected EV PE N  around 100 and determined the time 
scale E T  (around 1–2 hr) that ensures numerical stability. The numbers given here can be used as guiding, 
but in each case the final choice is experimental. For given forcing and resolution, there generally exist a 
range of E T  where the differences between simulations are relatively small with respect to the well behaving 
case (EVP0_600 here). If such a range is identified, there is also some freedom in selecting the number of 
internal steps EV PE N  : it can be even further reduced without violating stability if higher values of E T  are taken 
(according to Equation 7, doubling E T  allows a factor of 2E  decrease in EV PE N  ). However, an increase in E T  
beyond some bound will have implications for sea-ice dynamics as discussed above.

Figure 5.  Spatial distribution of sea-ice thickness at October 27, 1980 for simulations with different EVP versions and settings (summarized in Table 2).
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If E T  needed for stability appears to be too large (e.g., for some high-resolution forcing), EV PE N  has to be in-
creased to maintain stability for an appropriate E T  . For example, in Arctic simulations above,  200EV PE N  
would allow E T  smaller than 1 hr.

The mEVP approach masks these issues because its numerical stability does not depend on EV PE N  . However, 
high ratios of  ,E  to EV PE N  needed to ensure stability and low computational cost, are similar to t T/  ratio in 
EVP and imply possible divergence from the VP regime.

Similar to the adaptive approach proposed for the mEVP solver in Kimmritz et al. (2016), the selection of 
E T  in EVP can also be done adaptively. Indeed, high values of E T  are only necessary in certain areas where 

ice strain rates are low and viscosities of the VP rheology are high. The values of E T  necessary for stability 
at a particular location can be diagnosed at the end of external time steps based on Equation 7 with exper-
imentally determined E C , and used locally at each grid cell over the next external step. We did not try this in 
FESOM yet.

6.  Conclusions
The elementary analysis and examples above can be summarized as follows.

1.	 �EVP becomes very similar to mEVP in terms of stability if E T  of EVP is taken constant and sufficiently 
large (about 1–2 hr) and if adjustments are made to ensure the same decay for all components of stress 
tensor. EV PE N  can then be kept relatively low (about 100) independent of resolution, provided that ΔE t is 
varied proportionally to ΔE x . mEVP will still require some adjustment of  ,E  to mesh refinement if ΔE t is 
varied proportionally to ΔE x .

2.	 �This leads to a conceptual change: the background pseudoelastic waves in solutions are admitted, where-
by the EVP solution becomes slightly different from the VP solution. These waves are slowed down 
through the choice of E T  in EVP or  ,E  in mEVP for stability with affordable EV PE N  .

3.	 �The reaction of ice to fast varying forcing is likely to be affected in both EVP and mEVP if E T  or  ,E  are 
high. Both cases are a compromise between the computational demand (moderate EV PE N  ) and closeness 
to VP solutions. However, the VP rheology is also an approximation.

We believe that our conclusions and illustrations are of practical interest and could guide the selection of 
sea-ice model parameters.

Data Availability Statement
The data and code to reproduce figures from this manuscript are available from Danilov et al. (2021).
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