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                                                         ABSTRACT

ESTIMATING THE EFFECT OF KRILL ON THE SOUTHERN OCEAN
ECOSYSTEM FUNCTIONING

                                                      Onur Karakuş 

M.Sc., Department of Oceanography

Supervisor: Assoc. Prof. Dr. Bettina Fach Salihoğlu

Co-Supervisor: Assoc. Prof. Dr. Barış Salihoğlu

                                               October 2018, 85 pages

In this study, a three dimensional, coupled ocean ecosystem model (FESOM-

REcoM2) is used to investigate the impact of krill on the ecosystem dynamics

of  the  Southern  Ocean  in  modeling  studies.  A  new,  second  zooplankton

group  defined  to  be  Antarctic  krill  is  added  to  an  already  existing  and

validated setup of the modelling system. This species was chosen because it

is  a  key organisms in  the Southern Ocean.  The effect  of  grazing on net

primary production and export production due to the addition of Antarctic krill

was investigated.  It  was hypothesized that  inclusion of  macrozooplankton

(Antarctic krill) as a second zooplankton group in the model would improve

the  capability  of  the  model  to  better  represent  relevant  biogeochemical

processes. 

After the implementation and parameterization of the new zooplankton group

in the FESOM-RecoM2 model, two separate model runs over the duration of

25 years (with and without krill) were conducted, and the effect of Antarctic

krill  on  nutrient  distribution,  total  production,  export  production  and  the

seasonal  cycle  of  chlorophyll  concentrations  was  analysed.  Incorporating

Antarctic  krill  in  the  model  increased  simulated  nutrient  concentrations

(nitrate,  silicate  and  iron)  due  to  enhanced  nutrient  recycling.  Also,  the

simulated spatial distribution and seasonal variation of primary production in

the Southern Ocean were affected. The total net primary production did not

show major differences between the simulations with and without  the krill
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parametrization.  However,  export  production  decreased  slightly  after  the

implementation of krill. The seasonal cycle of nanophytoplankton chlorophyll

concentrations as well as its concentration increased. However, the diatom

chlorophyll  concentrations  did  not  show  the  similar  change.  After  the

implementation  of  the  second  zooplankton  group,  total   chlorophyll

concentrations did not show major changes. The krill  simulation produced

more  zooplankton  in  the  Southern  Ocean  compared  to  a  previous  study

using REcoM2 in the Southern Ocean, which is considered as a major model

improvement.

  Keywords: Antarctic krill; Ecosystem modeling; The Southern Ocean; Carbon cycle
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                                                                 ÖZ

     Antarktik Krilinin Güney Okyanusu Ekosistemi Üzerine Olan Etkileri

Onur Karakuş 

Yüksek Lisans, Oşinografi Bölümü

Tez Yöneticisi: Doç. Dr. Bettina Fach Salihoğlu

Ekim 2018, 85 sayfa

Bu  çalışmada,  üç  boyutlu  FESOM-REcoM2  okyanus  ekosistemi  modeli

kullanılarak  Güney  Okyanusu  ekosistemi  anlaşılmaya  çalışılmıştır.  Hali

hazırda kullanılan okyanus ekosistem modeline yeni bir zooplankton grubu

eklenmiştir. Bu yeni grup Güney Okyanusu ekosisteminde önemli role sahip

olan  Antarktik  krili  olarak  parametrize  edilmiştir.  Bu yapılan  değişimin  net

birincil üretime ve karbon döngüsüne olan etkisi araştırılmıştır. Kril gibi Güney

Okyanusu’nda  kritik  bir  öneme sahip  makrozooplankton  türünün  FESOM-

REcoM2 okyanus ekosistem modelinde temsilinin modelin biyojeokimyasal

özelliklerini etkilemesi beklenmiştir.

Yeni  zooplankton  grubu  eklendikten  sonra  değişimi  görmek  maksadıyla

modelin  orijinal  hali  ve  yeni  hali  ile  iki  simulasyon  yapılmış  ve  sonuçlar

karşılaştırılmıştır. Antarktik krilinin toplam üretim, karbon transferi, mevsimsel

klorofil  değişimleri  üstüne  etkisi  analiz  edilmiştir.  Aynı  zamanda  iki  farklı

zooplankton özellikleri araştırılmıştır. 

Yeni zooplankton grubu eklendikten sonra Güney Okyanusu ortalama besin

tuzu değerlerinde artış gözükmüştür. Bu aynı zamanda hem alansal hem de

mevsimsel  olarak  birincil  üretimi  etkilemiştir.  Net  birincil  üretimde  değişim

gözlenmemiş  ancak  derine  tranfer  olan  karbon  miktarında  azalış

gözlemlenmiştir.  Nanofitoplankton  grubunda  kış  ve  bahar  ayları  ortalama

klorofil değişimlerinde azalma görülmüştür. Benzer değişim  yeni zooplankton

grubu eklenmesi ile diatom grubunda görülmemiştir.

Anahtar Kelimeler: Kril; Güney Okyanusu; Karbon döngüsü; Ekosistem modellemesi
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                                                 CHAPTER 1

                                               INTRODUCTION

The Southern Ocean, which is the southernmost waters of the World Ocean,

plays a major role in global biogeochemical cycles and the ocean circulation

system (Frölicher et al., 2015, Khatiwala et al., 2009, Sarmiento et al., 2004,

Langlais  et  al.,  2017).  Sea  ice  dynamics,  endemic  species  within  its

ecosystem and the related hydrodynamics make the Southern Ocean one of

the most unique of the global oceanic systems (Turner et al., 2009).

Numerical  ocean  biogeochemical  models  coupled  to  ocean  circulation

models are powerful tools to estimate future changes in marine ecosystems .

With such models the current status of ecosystems as well as their response

to future scenarios can be explored. However, some of the current models

disclude important processes that are needed to capture main ecosystem

features to make robust  projections. Therefore, the choice of how many and

which species or functional types should be in the ocean ecosystem models

has great importance. The effect of implementing a macro-zooplankton group

in a global model was investigated by Moriarty (2009) and improvement in

the representations of other functional groups was seen. Processes such as

grazing and aggregation should be well  defined in  the ecosystem model.

Since grazing has a direct impact on primary production and carbon export, it

is important to describe zooplankton groups in the models well. For example,

comparisons of different ocean biogeochemistry models with respect to net

primary  production  and  export  production  showed  that  their  outputs  may

differ  due  to  the  representation  of  zooplankton  groups  and  phytodetritus

(Laufkötter et al., 2016).  

A  range  of  numerical  ocean-ecosystem models  with  varying  complexities

have been developed to better understand the Southern Ocean ecosystem.
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Hense  et  al.  (2003)  studied  phytoplankton  dynamics  in  the  Antarctic

Circumpolar  Current  (ACC)  with  a  three  dimensional  coupled  ocean-

ecosystem model. A regional model was set up for the Ross Sea nutrient and

plankton dynamics (Arrigo et al., 2003). Moreover, ecosystem dynamics of

the Atlantic sector of Southern Ocean have been modelled by Lancelot et al.

(2000). These models focus on biogeochemical and microbial components of

the ecosystem and they do not  include larger  zooplankton groups.  Other

global  biogeochemistry  and  ecosystem  models  were  used  to  study  the

Southern  Ocean biogeochemistry  (Lovenduski  et  al.,  2007,  Lenton  et  al.,

2007, Hauck et al.,  2015, Leung et al.,  2015). The biogeochemical model

used in this study, RecoM2, was previously used for studies of the Southern

Ocean iron and carbon cycles by Schourup-Kristensen et al. (2014), Hauck

et al. (2013, 2015) and Hauck and Völker (2015). REcoM2 is used to forecast

future changes of global marine export production (Laufkötter et al., 2016).

The analyses showed that REcoM2 produces a much lower flux from grazing

to particulate organic carbon in the Southern Ocean than the simulated flux

by other models. However, observations to validate these rates are sparse.

Additionally, the role of zooplankton dynamics in the Southern Ocean has

been  studied  with  dynamic  green  ocean  models  with  different  plankton

functional types (Le Quere et al., 2016). 

One of the key organisms in the Southern Ocean is Antarctic krill which is

known to be highly abundant in the Southern Ocean (Atkinson, 2008). Krill

occurs in large swarms and plays an important role for nutrient dynamics,

primary production and global net export (Hamner et al.,1983).  Because of

this,  a  better  understanding of  the  Southern  Ocean ecosystem dynamics

requires  a  better  representation  of  the  Antarctic  krill  in  ocean  ecosystem

models.  Transport  and  distribution  models  have  been  developed  to

understand  advection  of  krill  by  the  ocean  currents  (Webb  et  al.,  1991,

Hoffmann et  al.,  1998,  Fach et  al.,  2002).  It  was found that  open ocean

concentrations of phytoplankton are unlikely to provide sufficient food for the

krill to travel from the Antarctic Peninsula to South Georgia. Modelling studies
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showed that sea ice algae could provide an additional important food source

for krill (Fach et al., 2002). Therefore, a new zooplankton group representing

Antarctic krill was implemented into the RecoM2 model and the effects of this

representation  on the  biogeochemistry  and lower trophic dynamics  of  the

Southern Ocean was explored.  

1.1 Southern Ocean

The Southern Ocean is the region south of 60°S, defined as the southern

portions of the Pacific, Atlantic, and Indian oceans (IHO, 2000). The Southern

Ocean is the fourth largest ocean in the world with a total  area of about

20,327 million km2 (IHO, 2000). The Antarctic continent forms the southern

boundary of the Southern Ocean.  However,  the northern boundary varies

between  30°S  and  60°S.  The  definition  varies  with  some  oceanographic

features such as the Subtropical Front (SF) and the Antarctic Circumpolar

Current (ACC; Talley et al., 2011). For example, with the variations in the

location of the SF, the effective area of the Southern Ocean can exceed 77

million km2 (Tomczak, 2005). The Southern Ocean encircles the extreme and

isolated continent  Antarctica entirely.  The Amundsen Sea,  Bellingshausen

Sea, part of the Drake Passage, Ross Sea, a small part of the Scotia Sea,

Weddell Sea, and other tributary water bodies are the regional seas in the

Southern Ocean (Figure 1a). 

The  Antarctic  continental  shelf  is  very  steep  and  deeper  than  most

continental shelf areas, with an average depth of 100 m (Meredith, 2017).

The depth range is between 0-6000 m in the Southern Ocean (Figure 1b).

There are 3 major  basins:  (i)  the Pacific-Antarctic  basin that  includes the

Amundsen, Bellingshausen and Ross Seas; (ii) the Australian-Antarctic basin

located in the Indian Sector bounded in the west by the Kerguelen Plateau;

and (iii) the Atlantic-Antarctic basin which includes the Enderby Abyssal Plain

and the Weddell Gyre.

3



Figure 1.  a) Map of Antarctica and the Southern Ocean. b) Bathymetry and
topography of the Southern Ocean and Antarctica. Important gyres (Weddell
and Ross gyres) and the locations of fronts associated with the ACC are
shown (modified from Meredith and Brandon, 2017).

1.1.1 Oceanographic Setting of Southern Ocean

The Southern Ocean plays an important role in the global climate and water

exchange among major ocean basins. The ACC is the strongest current in

the world ocean and connects these major basins, transferring salt, heat and

other dissolved and particulate quantities such as nutrients (Turner et  al.,

2009).  Moreover,  the  ACC  has  an  important  role  in  the  global  ocean

conveyor belt,  transporting water masses all  around the planet (Tomczak,

2005).

With unrestricted circumpolar circulation, the ACC is conceptually similar to

atmospheric circulation in the Southern Hemisphere. The eastward flowing

ACC is mainly driven by the Westerlies, the wind system located between

45°S  and  55°S  (Trenberth,  1990).  This  wind  pattern  allows  the  ACC an

annual mean water flux of about 130 Sv at the Drake Passage (Cunningham

et.  al.,  2003).  Three main frontal  features are considered in the Southern

Ocean:  Subantarctic  Front  (SAF),  the  Antarctic  Polar  Front  (PF)  and  the

Southern ACC front (SACCF; Orsi et. al.,1995). Of these three fronts, the PF

4



and  the  SAF  feature  the  highest  speed  jets  and  also  the  steepest

temperature  and  density  gradients.  The  SACCF  is  only  observed  in  the

Drake Passage (Figure 2a).

In the Southern Ocean, another important feature is the deep mixed layer. In

polar regions, differences of seawater temperature between the surface and

deeper parts of the ocean are relatively small (Figure 2b, blue line).  Since

the  density  variations  with  depth  are  relatively  small,  currents  can  easily

penetrate the deeper parts of the ocean. For example, observations in Drake

Passage showed that at 2500 m depth, the mean current speed is 10-30% of

the current at 500 m depth (Tomczak and Godfrey, 2001).

Figure 2. a) Map of the Southern Ocean showing the mean positions of SAF
and PF. Green arrows indicate direction and speed of the currents at the
surface (reproduced from Marshall and Speer, 2012). b) Temperature profiles
of different  regions on 150°W a-tropical,  b-subtropical,  c-subpolar,  d-polar
(reproduced from Tomczak and Godfrey, 2005).

1.1.2 Southern Ocean Ecosystem and Its Role on Global Scale

With its dynamical features and isolated location, the Southern Ocean hosts

a  unique  ecosystem.  There  are  many  species  endemic  to  the  Southern

Ocean  with  high  biomass (Clarke  and  Johnston,  2003).  There  is  a  large
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consumption of some zooplankton species (such as the Antarctic krill) and

finfish commercially (Clarke and Johnston, 2003).

In general, it can be said that the Southern Ocean has high concentrations of

nutrients such as nitrate and silicate and low concentrations of iron (Pollard

et al., 2009). Zooplankton species such as krill play an important role as a

link between the lower and higher trophic levels (Murphy et al., 2012). Many

special  and  unique  mammals  and  birds  are  also  part  of  this  unique

ecosystem (Constable et al., 2014).

As the Southern Ocean is important for the global ocean circulation, it is also

important  for  the  global  biogeochemical  cycles  of  nutrients  and  carbon

(Arrigo et al., 2008). It can affect the distribution of nutrients on a global scale

(Pollard et al., 2009). Moreover, it is important also for carbon sequestration

(Le Quéré et. al., 2007; Khatiwala et al., 2009; Gruber et al., 2009). It takes

up 25% of the atmospheric CO2 even though its surface area is only 10% of

that of the global ocean (Takahashi et. al., 2002). Besides physical factors

affecting CO2 uptake, biological activity is an important factor (Arrigo et. al.,

2008).

Even  though  there  is  a  high  concentration  of  macro-nutrients  due  to

upwelling  in  the  Southern  Ocean  (Pollard  et.  al.,  2006),  these  nutrients

cannot be fully utilized by primary producers because of iron limitation (Martin

et al., 1990; Smetacek, 2012). The Southern Ocean is therefore one of the

High Nutrient Low Chlorophyll  (HNLC) areas, like the north Pacific.  Other

hypothesis  about  why the  Southern  Ocean is  an  HNLC include the  high

grazing  rates  and  light  limitation  (Morel  et.  al.,1991;  Sunda  and

Huntsman,1997).

1.1.3 Antarctic Krill as a Key Species

The Euphausid crustacean Antarctic krill reaches a maximum size of 65 mm

and has a lifespan of 5-7 years (Siegel, 2016). Many of the vertebrate and

invertebrate predators graze on krill,  especially mammals. The krill  inturn,
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grazes  on  autotrophs  (Everson,  1977;  Laws,  1984).  Because  of  this,

Antarctic krill has a key role in the Southern Ocean ecosystem enabling a

short pathway of trophic transfer, meaning primary production is transferred

to the higher trophic levels efficiently (Figure 3a). With this role, krill shapes

the structure of the marine ecosystem in the Southern Ocean (Meyer, 2011).

Spatial biomass distribution of krill depends on food availability, sea ice cover

and  circulation  (Meyer,  2011).  In  the  Atlantic-Antarctic  basin,  especially

around the Antarctic Peninsula, a high number of krill is observed (Atkinson,

2004; Figure 3b). Previous studies showed that 58-71% of the krill biomass is

located in  the  southwest  Atlantic  (Siegel  2016;  Atkinson et.  al.  2004).  In

contrast, in the Indian-Antarctic and the Pacific-Antarctic basins krill density is

relatively small.

Krill feeds on different food types such as zooplankton, phytoplankton, sea

ice  algae  and  detritus  (Meyer,  2011).  It  feeds  on  phytoplankton  by  filter

feeding and it generally prefers diatoms over other phytoplankton (Atkinson,

2016). Also, it feeds on zooplankton such as copepods. There are two ways

of  feeding  on  copepods:  small  copepods  are  grazed  by  filter  feeding,

whereas larger ones are grazed via complex detection and attack strategies

(Schmidt and Atkinson, 2016). Another food source for krill is the benthos.

After they dive and resuspend a small  volume of sediment,  krill  feeds on

phyto-detritus and other  food sources via  filter  feeding (Clarke and Tyler,

2008).  This  behaviour  can be  observed  in  the  500-3500 m depth  range.

Furthermore, another important food source for krill is sea ice algae. Feeding

on sea ice algae is reported to be an important source of food especially in

spring (Meyer, 2011).    
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 Figure 3. a) Trophic transfer pathways in Southern Ocean food web (from 
Murphy et. al., 2012).  b) Number of Krill  per m2 (from Atkinson, 2004)    

Overwintering strategies of krill are important in the extreme conditions of the

Southern Ocean. Use of food sources other than phytoplankton, shrinkage of

the body, presence of sea ice and surviving inside the rafting ice refuges are

some of these strategies (Fach et al.,  2008; Meyer,  2011).  Krill  feeds on

various sources of food as mentioned above due to lack of phytoplankton in

mid-winter.  Body  shrinkage  is  observed  in  winter  when  conditions  are

unfavourable  in  terms  of  low  chl  A  concentrations  (Atkinson,  2006).

Moreover, the presence of sea ice drives aggregation of small zooplankton

under sea ice in winter and production of sea ice algae in spring. Because of

this, sea ice provides additional food sources which are important for  krill

survival (Kohlbach et al., 2017).

1.2 Biological Carbon Pump

Atmospheric CO2 concentration increased from 277 ppm in 1750 (Joos and

Spahni, 2008) to 409.56 ppm in July 2018 (Keeling et al., 2001). Over the last

6 decades, an almost 30% increase in CO2 concentrations in the atmosphere
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due to anthropogenic activities has been recorded (Keeling et al., 2001). This

increase  and  the  accompanying  global  warming  does  not  only  affect  the

atmosphere  but  also  the  oceans.  Sea  level  rise,  increased  seawater

temperature and ocean acidification are some of the observed effects (IPCC,

2013).

The oceans play  an important  role  in  the  global  carbon cycle.  Uptake of

atmospheric CO2 by the ocean is estimated to be 2.9 ± 0.5 Gt C per year (Le

Quéré  et al, 2015). It is almost 30% of the total emissions originating from

fossil  fuels  and  industry.  Due  to  the  increase  in  atmospheric  CO2

concentration, the uptake rate of the ocean increased from 1.1 ± 0.5 Gt C per

year (during the 1960s) to 2.6 ± 0.5 Gt C per year (during 2005-2014) (Le

Quéré  et al., 2015). Storage of carbon in the deep ocean occurs via physical

processes (carbon solubility pump) and the biological carbon pump (BCP).

Both  of  the  pathways  are  vehicles  to  transfer  the  surface  ocean  carbon

content to the deep ocean reservoir. The physical process occurs because of

the high solubility of the gases in cold high latitudes waters (Zeebe and Wolf-

Gladrow, 2001). Sinking intermediate and deep water formed at the surface

carries carbon to the deep ocean reservoir (Khatiwala et al., 2009). 

The BCP is driven by the living organisms in the ocean (Volk and Hoffert,

1985). It is important for the transfer of carbon to deep waters and sediments

and for  converting the carbon species  to  new carbon compounds.  In  the

oceans,  some  of  the  dissolved  inorganic  carbon  is  converted  to  organic

matter  via  photosynthesis.  Although  primary  production  happens  in  the

surface  oceans where  the  sunlight  can reach,  remineralization  processes

occur  in  the  whole  water  column.  Particulate  organic  matter  (POM)  is

exported  via  sinking,  vertical  mixing,  advection,  and  vertical  migration  of

zooplankton to deeper layers (Figure 4a). In the deeper layers of the ocean it

accumulates or is respired by other biological activities.

The  biological  carbon  pump  in  the  Southern  Ocean  is  not  very  efficient

because  of  the  limitation  of  primary  production  due  to  a  lack  of  micro-
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nutrients such as iron (Fe; Boyd et al.,1999). However as it is mentioned in

previous studies  (e.g.  Smith  and Nelson 1985;  Smetacek 1985;  Beaulieu

2002), under some conditions such as mass-sinking events of diatoms, the

effect of marginal ice zones or enhanced iron supply, high export rates and

high productive times can be observed. Therefore, it can be said that BCP

also plays a significant role in the Southern Ocean (Figure 4b).

Figure 4. a) Schematic representation of biological carbon pump (adopted
from Passow and Carlson, 2012) b) Representation of nutrient cycling and
biological carbon pump of Southern Ocean and subtropical regions (adopted
from Sigman and Hain, 2012)

1.3 The Role of Macrozooplankton in the Carbon Cycle

Plankton  are  autotrophic  or  heterotrophic  organisms  which  drift  and  are

transported by ocean currents.  Heterotrophic  components  of  the plankton

community  are  zooplankton.  According  to  their  size  fractions  zooplankton

classify as nano (2-20 µm), micro (20-200 µm), meso (0.2-20 mm), macro (2-

20 cm) and mega (20-200 cm) zooplankton after Sieburth et al. (1987). 

Zooplankton play  an important  role  in  the  global  carbon cycle.  Their  key

place between the lower trophic and the higher trophic levels, such as fish, is

important for the carbon transfer between trophic levels. Also, they transfer

carbon to the deep ocean reservoir via fecal pellet production and export of

dead tissue. Carbon which is not assimilated is egested as fecal pellets and

these  fecal  pellets  transform to  dissolved  organic  carbon  (Steinberg  and

10



Landry,  2017).  Since zooplankton grazes on many different  food sources

such as autotrophic, heterotrophic and detritus, they repackage this carbon

source in the ocean. The carbon taken by grazing is transferred to the higher

trophic level by predation (Figure 5). 

Figure 5. Schematic representation of the role of zooplankton in the global
carbon cycle (adapted from Steinberg and Landry, 2017)

Macro-zooplankton differ among zooplankton classes in terms of fecal pellet

production and their sinking rate to the deep ocean (Moriarty, 2009). Fecal

pellet production by macro-zooplankton is higher than by smaller zooplankton

types and the sinking rate of them is higher, even faster than marine snow

(Turner,  2002).  This  fast  sinking  rate  of  fecal  pellets  prevent  microbial

degradation in  the euphotic  zone and leads to  direct  sinking to  the deep

ocean (Turner, 2002). 

1.4 Study Objectives

The principal objectives of this study were:

• To include krill in a validated Southern Ocean ecosystem model and

investigate  the  effect  of  this  new  group  on  the  ecosystem  of  the

Southern Ocean.
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Modelling  of  krill  biomass  in  the  Southern  Ocean  was  done  via

implementation of the new zooplankton group to ecosystem model REcoM2

and parametrization of the new group as Antarctic krill.

Within the scope of these broad objectives, the following aims were identified

for particular attention:

• To compare two different model runs and to estimate the effect of the 

new group on simulated nutrient fields.

• To calculate the effect of krill on primary producer fields for different 

regions.

• To identify the grazing fluxes from different phytoplankton groups to 

zooplankton groups.

• To estimate particulate organic carbon (POC) production  of 

zooplankton and phytoplankton groups.                                                 

12



CHAPTER 2 

 MATERIAL AND METHODS

In this chapter, the three dimensional ocean circulation model FESOM (Finite

Element Sea Ice Ocean Model) coupled with the ocean ecosystem model

REcoM2 (Regulated Ecosystem Model) used in this study are described. The

details of the implementation of the new zooplankton group into REcoM2 are

provided. Also, the datasets which were used for the comparison of model

results with observations are introduced.

2.1 Physical Model FESOM 

Ocean general circulation models differ from each other in terms of numerical

techniques which are used for solving primitive equations. Some of the ocean

models use finite difference methods while others use finite element or finite

volume methods. In this study, FESOM (Wang et al., 2008) was used as the

physical component of the coupled ocean-ecosystem model. FESOM uses

the  finite  element  method  for  solving  the  primitive  equations,  with  an

unstructured mesh which allows calculations with higher resolutions in more

dynamical areas and coarser resolution in others.  FESOM was developed by

a  team  at  the  Alfred  Wegener  Institute,  Helmholtz  Centre  for  Polar  and

Marine  Research.  Further  information  is  provided  at  the  website

http://www.fesom.de. In this study, the CORE2 mesh was used (Figure 6). In

the CORE2 mesh, there are 126859 2D nodes. The time step is 15 minutes.

Output of the model was saved monthly.

As it can be seen in the map of spatial resolution (Figure 6), the resolution is

higher in the equatorial and the polar regions than in the subtropical areas. It

increases  the  capability  of  the  model  to  simulate  the  processes  more

realistically in the ocean in higher latitudes and equatorial regions. This study

focuses on the Southern Ocean south of 50°S.
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Figure 6: FESOM CORE2 mesh spatial resolution in the surface ocean

2.2 Biogeochemical Model REcoM2

The aim of REcoM2 (Hauck et al., 2013; 2016; Schourup-Kristensen et al.,

2014) is describing the ocean ecosystem and biogeochemistry with a model.

In  the  model  there  are  5  different  compartments:  dissolved  inorganic

nutrients,  dissolved  organic  nutrients,  detritus,  zooplankton  and

phytoplankton (Figure 7).  There are 21 tracers in total. The phytoplankton

compartment  has  2  functional  types  which  are  parameterized  as  nano-

phytoplankton  and  diatoms.  In  the  model,  phytoplankton  stoichiometry  is

allowed  to  vary  with  environmental  conditions  (variable  N:C:Chl:Si   for

diatoms and N:C:Chl for nanophytoplankton).

The  model  solves  the  following  mass  balance  equation  to  calculate

volumetric concentration of each tracer:

∂ A
∂ t

=−(U+w)▽A+ ▽(k▽A) + S(A)                                                              (1)
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A is the volumetric concentration of a tracer (Equation 1).  U is the three-

dimensional advection velocity and k is the diffusivity.  U and k are supplied

by the physical circulation model FESOM. The term w is the sinking velocity

of particles which is positive downwards. S(A) refers to the source and sinks

of the tracer in the biogeochemical model.

 

Figure 7: Schematic description of REcoM-2. The 21 tracers can be grouped
into primary producers diatoms (DiaN, DiaC, DiaSi, DiaChl) and non-diatoms
(PhyN,  PhyC,  PhyCaCO3,  PhyChl),  zooplankton  (ZooC,  ZooN),  detritus
(DetC,  DetN,  DetSi,  DetCaCO3),  dissolved  nutrient  (DIC,  DIN,  DFe,  DSi,
ALK) and dissolved organic material (DOC, DON). There is exchange of CO2

with the atmosphere and a source of  Fe by atmospheric dust deposition.
Detritus sinks to deeper layers with a prescribed sinking velocity. All sources
and sinks are identified with the direction of the arrows. For example grazing
is  a  source  for  zooplankton  compartment  but  respiration,  excretion  and
mortality are sinks for it.

The relationships between the compartments are indicated in Figure 7 with

arrows. The arrows which go out from a compartment indicate a sink for this

compartment. Respiration, mortality, excretion, remineralization, degradation,

nutrient  uptake,  grazing  and  aggregation  are  the  main  processes  which

describe relations among compartments. 
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Phytoplankton compartment: For this compartment, the main source is the

nutrient uptake. There is a growth due to photosynthesis. Grazing, excretion,

respiration and aggregation are the reasons for loss in this compartment.

Zooplankton compartment:   For the zooplankton compartment,  grazing on

diatoms and nano-phytoplankton groups is the main source. Loss is due to

the mortality, excretion and respiration processes.

Detritus compartment: For this compartment, sources are aggregation of the

phytoplankton and mortality/fecal pellet production by zooplankton. The loss

from  this  compartment  is  due  to  the  degradation  and  SiO2 /  CaCO3

dissolution. Also sinking through the sediment is another reason for the loss.

Dissolved organic nutrient compartment: The excretion and degradation are

the main sources for this compartment. This flow comes from zooplankton

and  phytoplankton  compartments.  The  loss  occurs  because  of  the

remineralization.

Dissolved  inorganic  nutrient  compartment: The  reason  for  loss  of  this

compartment  is  nutrient  uptake  by  primary  producers.  Respiration  in  the

living compartments (phytoplankton and zooplankton) is a source for DIC.

Moreover,  remineralization  of  the  dissolved  organic  nutrients  and  SiO2  /

CaCO3 dissolution  are  other  sources.  In  the  dissolved  inorganic  nutrient

compartment  of  the  model,  carbonate  chemistry  is  also  defined.  CO2

exchange between atmosphere and ocean surface was taken into account.

Fe-input through dust deposition is also a source for the compartment.

2.2.1 State Equations for Zooplankton Compartment

One of the main focus of this study is to understand the effect of grazing in

the  Southern  Ocean.  How  the  zooplankton  group  is  represented  in  the

original model is described here. The zooplankton group in the model has

two pools, nitrogen and carbon pools, respectively. The main processes such
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as  grazing,  respiration,  mortality,  and  excretion  are  described  with  the

following equations (Hauck et al., 2013; Schourup-Kristensen et al., 2014).

Nitrogen pool: The main source for the nitrogen pool of the first zooplankton

group is grazing. Excretion and mortality are the loss terms. These relation

can be followed in Equation 2.

S(N zoo1)=G zoo1 . γ1−mzoo1 . N zoo 1
2

−ϵ zoo1
N .N zoo1                                     (2)

Mortality is defined with a quadratic term (mzoo 1. N zoo1
2 )  and a daily mortality

rate (mzoo 1) is used. How much of the grazing will  become biomass of the

nitrogen  pool  is  defined  by  the  grazing  efficiency  (γ1)  term.  The  grazing

efficiency  term  is  also  used  for  the  sloppy  feeding.  Transfer  of  first

zooplankton  nitrogen  pool  to  DON pool  is  calculated  by  multiplication  of

excretion rate and first zooplankton nitrogen pool (ϵ zoo1
N .N zoo1).

Total grazing of the first zooplankton group (Gzoo1) is represented as: 

G zoo1=ε .
(N phy

'
+Ndia

'
)

2

φ+(N phy
'

+Ndia
'

)
2 . f T .N zoo 1

❑

                                                        (3)

In the Equation 3, ε  is the maximum grazing rate, φ is half saturation constant

and  f T (Equation 10) is the temperature function. The total grazing rate is

calculated as the constant grazing rate multiplied with the nutritional intake.

Ndia
'  and N phy

'  are the preference terms for the grazing on diatoms and nano-

phytoplankton. The equation for these terms can be found below.

Ndia
'

=τ1 .
Ndia

2

φ1+N dia
' . Ndia      (4)                     N phy

'
=τ1 .

N phy
2

φ2+N phy
' . N phy  (5)
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In the Equation 4,  φ1 is the half saturation constant for grazing on diatoms.

The term τ1 is food preference on diatom. The grazing preference varies with

the diatom biomass. However, if  φ1 is set to 0, it means there is a constant

preference. This is the same for the nano-phytoplankton and it is shown in

Equation 5.

In  the  model,  the  relative  contributions  of  grazing  on  each  functional

phytoplankton  group  (Gzoo1phy,  G zoo1dia)   is  calculated  by  the  following

equations.

G zoo1 phy=Gzoo 1 .
N phy

'

N phy
'

+Ndia
'     (6)                 G zoo1dia=Gzoo 1 .

Ndia
'

N phy
'

+Ndia
'    (7)

In Equations 6 and 7, the total grazing of the first zooplankton group (G zoo1) is

multiplied  with  nano-phytoplankton or  diatom food source (N phy
' ,  Ndia

' )  and

divided by the total food source (N phy
' +Ndia

' ) to identify grazing flux from each

food source.               

Carbon pool:  Mortality, carbon excretion and respiration are the loss terms

for the carbon pool of the zooplankton group. Grazing is the source term. In

Equation 8, the description of these processes in the model can be found.

S(C zoo 1)=(
1

qphy

.Gzoo 1 phy+
1

qdia

.Gzoo 1dia) . γ 1−
1

qzoo1

.mzoo 1 . N zoo1
2

−ϵ zoo1
C .C zoo1−r zoo1 .C zoo1                                                         (8)

As mentioned before, the grazing flux is calculated in the nitrogen pool. For

the carbon pool the same grazing flux is used. The only difference is the

multiplication of the grazing flux by the respective intercellular N:C ratios 
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(
1

qphy
,

1
qdia

,
1

qzoo1
). The reason for this multiplication is the conversion of nitrogen

biomass to carbon biomass. Respiration for the zooplankton group is defined

to drive the nitrogen and carbon pools back towards the Redfield ratio. When

the C:N ratio exceeds the Redfield ratio, respiration (rhet)  drives this ratio to

the Redfield ratio with a time scale Khet :

                     (9)

Growth as most metabolic processes is faster at higher temperatures. This is

parameterized with multiplication of maximum grazing rate by the Arrhenius

function, fT (Equation 10) with reference temperature Tref  = 288.15 K, for the

first zooplankton group.

f T=exp(−4500(
1
T

−
1

T ref

))                                                                                  (10)

2.3 Implementation of Antarctic Krill as a Second Zooplankton Group to

REcoM2

The  aim  of  this  study  is  to  investigate  the  effect  of  one  of  the

macrozooplankton species, Antarctic Krill, on the Southern Ocean ecosystem

functioning and carbon export. For this reason, a new zooplankton group is

implemented in REcoM2 and it is parameterized as Antarctic Krill. 
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Figure  8:  Schematic  description  of  REcoM-2  with  second  zooplankton
compartment. The 21 tracers can be grouped into primary producers diatoms
(DiaN,  DiaC,  DiaSi,  DiaChl)  and  non-diatoms  (PhyN,  PhyC,  PhyCaCO3,
PhyChl), zooplankton (ZooC, ZooN), second zooplankton (Zoo2C, Zoo2N),
detritus (DetC, DetN, DetSi, DetCaCO3), dissolved nutrients (DIC, DIN, DFe,
DSi, ALK) and dissolved organic material (DOC, DON). There is exchange of
CO2 with the atmosphere and a source of Fe by atmospheric dust deposition.
Detritus sinks to deeper layers with a prescribed sinking velocity. Arrows are
the same as in the previous figure of REcoM2.

2.3.1 State Equations for the New Zooplankton Group Krill

Nitrogen Pool:  The source and sink processes for the nitrogen pool of the

second zooplankton group are described in Equation 11. Quadratic mortality

(mzoo 2 .N zoo2
2 ) and excretion (ϵ zoo2

N .N zoo 2)  is a sink and grazing (G zoo2 . γ2) is  a

source term. It is similar to the first zooplankton group.

S(N zoo2)=G zoo2 . γ2−mzoo 2 . N zoo 2
2

−ϵ zoo2
N .N zoo 2                                      (11)

Grazing is defined with the same method. However, for each type of food

sources (diatoms, nano-phytoplankton and first zooplankton group) grazing

preference options were implemented. The total grazing flux of the second

zooplankton group is presented in Equation 12. Equations 13, 14 and 15 are
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used  for  food  preferences.  The  temperature  function,  which  is  used  in

Equation 12, for krill, can be found in Equation 23.

G zoo2=ε2 .
(N phy

'
+ Ndia

'
+N zoo1

'
)

2

φ3 +(N phy
'

+ Ndia
'

+N zoo1
'

)
2 . f T krill

. N zoo 2                                         (12)

Ndia
'

=τ3 .
N dia

2

φ4+N dia
' . Ndia       (13)               N phy

'
=τ 4.

N phy
2

φ5+N phy
' .N phy            (14)   

N zoo1
'

=τ5.
N zoo 1

2

φ6+N zoo1
' . N zoo1   (15)

The  relative  contributions  of  each  group  (G zoo2 phy,  G zoo2dia,  G zoo2 zoo 1)  to  the

grazing are calculated similarly to the first zooplankton group.

G zoo2 phy=Gzoo 2 .
N phy

'

N phy
'

+Ndia
'

+N zoo 1
'                                                                      (16)

G zoo2dia=Gzoo 2.
N dia

'

N phy
'

+Ndia
'

+N zoo 1
'                                                                      (17)

G zoo2 zoo 1=G zoo2 .
N zoo1

'

N phy
'

+N dia
'

+N zoo1
'                                                                    (18)

Carbon pool: The source and sink equation of the carbon pool of the second

zooplankton is in Equation 19. Grazing is a source term. On the other hand

mortality, excretion and respiration are the loss terms. 

S(C zoo 2)=(
1

qphy

.Gzoo 2 phy+
1

qdia

.Gzoo 2dia+
1

qzoo1

.G zoo2 zoo 1) . γ 2−
1

qzoo2

.mzoo 2 . N zoo2
2

−ϵ zoo 2
C .C zoo2

                −r zoo2 .C zoo 2 )                                                                            (19)
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The important difference between the second zooplankton group and the first

zooplankton group is how the respiration is defined. In this study, respiration

is  implemented  into  the  model  from  one  previous  study  (Hoffman  and

Lascara,  2000).  Respiration  of  krill  has  three  components;  standard

respiration (Rs), respiration activity factor (Ra) and feeding activity term (Rf). It

is defined in Equation 20. 

R=R s(1+R f +Ra)         (Hoffmann and Lascara, 2000)                          (20)

Ra is the function of Julian days and it is used for calculating the respiration

activity. Ra has a seasonal dependence. Ra is set to -0.5 from Julian Day 150

through 250 (winter) based on reduced winter respiration rates of krill (Ikeda

and  Dixon,  1982,  Hofmann  and  Lascara,  2000).  The  total  metabolism is

reduced by 50% in winter. In transition periods between winter and summer,

a linear  decrease and increase is  defined for  Ra (Hofmann and Lascara,

2000). Rf  is the function of the daily ration ingested by krill.  It  is used for

including metabolic cost of feeding activity of krill (Ikeda and Dixon, 1984). R f

increases linearly from 0 to 1 up to a daily ration of 10% of the body weight

and remains constant for higher daily rations (Hofmann and Lascara, 2000).

The R f and Ra implementation to the model is illustrated in Figure 9. R s is the

standard respiration rate and the combination of these 3 terms as in Equation

20 is the total respiration of krill in our model.
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Figure 9: Implemented respiration functions for krill, a) Feeding activity and b)
respiration activity terms.

2.3.2 Parameterization of the Second Zooplankton Group Krill

After implementation of the second zooplankton group, it was needed to find

parameters from the literature for this group of zooplankton. For this purpose,

previous studies were examined and parameters were found with additional

calculations.  

Maximum grazing rate and half saturation constant: The maximum grazing

rate for the krill was chosen as 0.1 (Hofmann and Lascara, 2000). The half

saturation constant for Antarctic krill (0.16 μg Chl/L) was taken from Meyer

(2009) and was converted to (mmol N m-3)2. After conversions of Chl to C and

C to N, the half saturation constant was calculated to be 0.01 (mmol N m -3)2.

Conversion factors of C:Chl, C:N, μmol to  mmol and liter to m-3  are 60, 106,

10-3 and 10-3, respectively.
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Grazing  Efficiency: Assimilation  efficiency  values  from the  literature  were

used to determine grazing efficiency. Assimilation efficiency varies in a range

between 72% - 94% (Hoffman and Lascara, 2000). Here it is set to 80% and

is  used  for  grazing  efficiency.  The  same  value  is  also  used  in  previous

bioenergetic modelling of krill studies (Fach et al., 2002).

Standard respiration rate:  Equation 21 (Hofmann and Lascara, 2000) was

used to calculate the standard respiration rate Rs.  In this study, it is assumed

that dry weight (DW) of krill is 200 mg. 

Rs = 0.847  *DW 0.850   μl  h−1                                                                      (21)

Finally, Equation 22 (ICES Zooplankton Methodology Manual) was used to

convert O2 respiration to carbon units per day.

ml O2 (individual h)-1 * 0.97  * 12 / 22.4 = mg C (individual h)-1                    (22)

Lastly, conversion from μl to ml and from  h−1 to  d−1 was done and  R s was

calculated to be 0.01 d−1.

N and C excretion rates:  C and N excretion rates are set to the same values.

Literature values vary between 0.1% and 6% (Atkinson, 2000). For this study,

it was chosen as 2% (Atkinson, 2000).

Grazing  preference for  different  foods: There  is  no  quantified  information

about grazing preference for the different food sources. However, it is known

that diatoms are their staple food (Atkinson, 2016). In this study, the grazing

preference is taken as 1, 0.5 and 0.8 for diatoms, small phytoplankton and

heterotrophs, respectively.
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Mortality rate: The mortality rate was chosen from literature as 0.3% (Fach et

al., 2002).

Half  saturation  constants  for  different  types  of  foods: Half  saturation

constants for different types of food were not considered. Therefore, they

were set to 0 in this step of the research.

Temperature  function  for  krill: It  is  needed  to  define  an  exponential

temperature function for the second zooplankton group krill. Information on

temperature dependence of daily growth rate (mm d-1) of krill is used for the

formulation of the new temperature function (Atkinson et al., 2006). As it is

mentioned in the study, maximum growth of krill occurs at 0.5°C. Below 1°C,

temperature function varies between 0.6 and 1.  However,  above 1°C the

temperature function decreases to  zero.  The new temperature function is

derived from Butzin and Pörtner (2016) and rearranged for krill group in the

model. The Equation 23 gives the temperature function. 

(23)

 

In  the  Equation  23,  the  optimum  temperature  T r=  272.5  K,  inhibitive

processes starting  temperature  T h= 274.15 K,  Arrhenius  temperatures  for

uninhibited and inhibited reaction kinetics  Qa= 28145 K and  Qh= 105234 K

were chosen.  The plot  of  the  new temperature  function  can  be found in

Figure 10.
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Figure 10:  Implemented temperature function for the second zooplankton
group krill

This temperature function (Figure 10), gives a similar growth pattern as in the

description of the growth rate derived from body length of krill from literature

(Atkinson, 2006).

REcoM2 was already used with one zooplankton group in several studies.

Therefore  we  have  already  a  set  of  parameters  for  the  first  zooplankton

group.  The  list  of  parameters  of  first  zooplankton  group  (copepod)  and

second zooplankton group (krill) can be found in Table 1.
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Table 1. Model coefficients and their values for zooplankton groups

The main differences between two zooplankton groups are grazing efficiency

and maximum grazing rate. The maximum grazing rate of krill is set to 0.1

which is lower than in the copepod group. Also the grazing efficiency of krill is

higher  than  in  the  copepod  group.  It  is  also  consistent  with  the

parameterization  in  other  modelling  studies  that  mention  grazing  rate  of

macro zooplankton is lower than that of microzooplankton groups (Moriarty,

2009). The mortality rate of krill is lower than for copepods. Excretion rates

and respiration rates of the two groups are the same. Moreover, one of the

biggest differences is in the food preference term. The food preference term

of krill for diatoms is higher than for nano-phytoplankton. However, copepod

prefers to graze on nano-phytoplankton rather than on diatoms (Table1). 

2.4 Model Experiments

Two  experiments  were  done  with  the  FESOM-REcoM2  biogeochemical-

ocean general  circulation model.  In  the first  experiment  (CTRL),  REcoM2

with one zooplankton group was used. The second experiment was done

after the implementation of the second zooplankton group (krill). The tracers
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for DIN and DSi were initialized with the values from the World Ocean Atlas

climatology of 2013 (Garcia,  2014).  Dissolved inorganic carbon (DIC) and

total  alkalinity (TA) tracers were initialized with values from Global Ocean

Data Analysis Project (GLODAP) data set (Olsen et al., 2016 and Key et al.,

2015).  The  DFe  field  was  initialized  with  an  output  from  the  Pelagic

Interaction  Scheme for  Carbon  and  Ecosystem Studies  (PISCES)  model,

which has been modified with observed profiles from Tagliabue (2012). All

other tracers were initialized with arbitrary values. The FESOM sea ice-ocean

model was forced with the interannualy varying (CORE-II) atmospheric states

(Large  and  Yeager,  2004,  2009).  Years  between  1950  and  1975  were

analysed. The first ten years of the runs were considered as a spin-up and

the last three years of the runs were analysed.

The  changes  in  the  nutrient  and  primary  producers  fields  with  the

implementation of the new group were analysed. Differences in the export

production  and  net  primary  production  between  two  simulations  were

investigated. Effects of the implementation of the new zooplankton group on

the seasonal cycle of the first zooplankton group are shown.

2.5 Datasets for the Model Results Comparison

2.5.1 Krill Dataset

The global  macrozooplankton  dataset  that  was used  for  comparison  with

model  results  was  “Global  distributions  of  epipelagic  macrozooplankton

abundance  and  biomass  -  Gridded  data  product  -  Contribution  to  the

MAREDAT  World  Ocean  Atlas  of  Plankton  Functional  Types”  (Moriarty,

2012). The data was downloaded from the AWI PANGAEA dataset repository

(doi:10.1594/PANGAEA.777398). In the dataset global carbon biomass and

abundance  of  macrozooplankton  is  available.  The  whole  dataset  is  a

collection  of  four  different  datasets.  Over  387700  macro  zooplankton

abundance and 1330 carbon biomass data form this dataset. In Figure 11,

the spatial distribution of krill  data can be found. Most of the observations

28



were done around the Antarctic Peninsula. Available data can be reached

from https://doi.pangaea.de/10.1594/PANGAEA.777398.

Figure 11:  Spatial distribution of Krillbase data base

2.5.2 Satellite Chlorophyll Data 

Data from ESA OC-CCI (Ocean Colour Climate Change Initiative dataset,

Version [3.1]) was used. The data was downloaded for the years 2012-2015.

The dataset is a composition of monthly means of chl a (mg m-3). The data

has a 4 km spatial resolution. Monthly data is used to create a climatology of

the 3 years.
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  CHAPTER 3 

 RESULTS

In  this  chapter,  results  of  two  different  model  runs  and  comparisons  of

simulations are presented. Each model simulation was run for 25 years. The

last 3 years of the runs (years 23-25) are used to analyse the results. The

first 10 years thought as a spin-up. The results of the standard model with

one  zooplankton  group  (CTRL)  are  shown  for  the  global  and  Southern

Ocean. Afterwards, the results of the model run with the implementation of

krill are presented for the Southern Ocean.

3.1 Model Results of REcoM2 with one Zooplankton Group

In this section, the simulated global fields of nutrients, net primary production

(NPP),  total  chlorophyll  concentration  and  zooplankton  distribution  are

examined. Additionally, since the aim of the thesis is to see the effect of krill

on the Southern Ocean ecosystem, the spatial distribution of nutrients and

primary producers in the Southern Ocean are analyzed in more detail.  

3.1.1 Global Nutrient Fields  

Macro-nutrients  in  the biogeochemical  model  REcoM2 are DIN (dissolved

inorganic  nitrogen)  and  DSi  (dissolved  inorganic  silicate).  Simulated  DIN

concentrations  vary  between  0  to  30  mmol  N  m-3  (Figure  12).  High

concentrations of DIN are found in the Southern Ocean. Also in the Arctic

Ocean  DIN  presence  can  be  seen.  However,  concentrations  in  the

subtropical gyres are lower. Chile- Peru and Namibia upwelling systems act

as a nutrient supply to the surface that can be seen also in the model result

(Figure  12).  The  spatial  distribution  compares  well  to  the  expected

distribution from the World Ocean Atlas 2013 (Garcia et  al.,  2014, Figure

13a). There is a distinct difference in the equatorial Pacific, that has too low

DIN concentration in the model. 

30



 

Figure 12: Three-year average of surface dissolved inorganic nitrogen (DIN)
concentrations from the model run with one zooplankton group (CTRL)

 

Figure13:  a)  Surface annual  mean nitrate concentrations from WOA13 b)
Residual  plot  of  nitrate  concentration:  modelled  values  minus  observed
values.
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The difference plot between modelled DIN and data shows that modeled DIN

concentrations have a negative bias in the Southern Ocean (Figure 13b),

while modeled DIN concentrations have a positive bias in the Arctic Ocean

and Chile-Peru upwelling region. Moreover, a negative bias can be seen in

the Equatorial Pacific when the spatial distributions of DIN in model and data

are compared. These negative biases can be the result of either too weak

upwelling or too strong productivity in the Southern Ocean.

DSi  is  another  important  macro-nutrient  in  the  oceans.   Modelled  DSi

concentrations are higher in the Southern Ocean than in other parts of the

oceans  (Figure  14).  Concentrations  vary  between  0  and  60  mmol  m -3.

However, global DSi concentrations from World Ocean Atlas 2013 (Garcia et

al.,  2014,  Figure  15a)  vary  between  0  and  90  mmol  m-3.  The  spatial

distribution compares well to the expected distribution from the World Ocean

Atlas 2013 silicate concentrations (Garcia et al., 2014, Figure 13a). There is

a difference in the polar regions and Equatorial Pacific. 

Figure  14.  Three-year  average  surface  DSi  concentrations  from  CTRL
simulation. 
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When modeled and observed values are compared, it can be seen that there

is a negative bias in the Southern Ocean DSi concentration. The similar kind

of negative bias is present in the Equatorial Pacific and in the North Pacific

(Figure  15b).  However,  the  model  results  showed  a  positive  bias  in  the

Southern Ocean in a previous study using this model in a different resolution

(Schourup-Kristensen  et  al.,  2014).  This  discrepancy  between  model

simulations may be the result of different parameterizations of variables in

the model. In this study an updated version of FESOM was used. Moreover,

the runs were done for the different years. 

Figure 15. a) Surface annual mean silicate concentrations from WOA13 b)
Residual  plot  of  silicate  concentration:  modelled  values  minus  observed
values.
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Figure 16. Three-year average surface iron concentration from CTRL.

Micro-nutrients such as iron play an important role for primary production.

The model simulates high iron concentrations in the North Atlantic and in the

Arctic Ocean. In contrast, it simulates low iron concentrations in the Southern

Ocean and equatorial Pacific. The iron concentration varies between 0 - 3

µmol m-3 (Figure 16). When the results from the model are compared with the

observed values from the literature, overestimated iron concentrations can be

seen in the Tropical Atlantic (Tagliabue et al., 2014).

3.1.2 Global Primary Production Features

Primary  production  varies  greatly  over  different  parts  of  the  oceans.  It  is

highly related to available nutrient concentrations and physical parameters. In

this  part  of  the  results  section,  mean  chlorophyll  concentrations  and  net

primary production (NPP) values of the last three years of the model run are

presented. The contribution of the two different phytoplankton groups to the

mean chl concentration and mean NPP is also shown.
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Figure 17. Three-year average chl concentrations from CTRL simulation.

Figure 18. Three-year average of chl concentration of different groups of 
primary producers from CTRL simulation.  a) Contribution of diatoms b) 
Contribution of nanophytoplankton.
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The modeled mean chl concentrations in the global ocean vary between 0

and 3 mg chl m-3. While the subtropical gyres have low concentrations of chl,

high concentrations can be seen in the most productive areas of the global

oceans, such as upwelling areas and the high latitudes. This result is similar

to the previous study which was done with REcoM2 (Schourup-Kristensen et

al., 2014).

When the simulated contribution of different phytoplankton groups to the chl

concentration is examined, the dominance of diatoms can be seen in high

latitudes  and  equatorial  regions.  In  contrast,  the  contribution  of

nanophytoplankton is seen in other places such as upwelling regions and

around subtropical gyres with low concentrations (Figure 18 a,b).

The simulated net primary production distribution is similar to the spatial map

of chl concentrations (Figure 19). Low net primary production is simulated in

the center of the subtropical gyres. In contrast, there is high production in

upwelling  regions  and  intermediate  production  in  the  high  latitudes.  The

mean NPP varies between 0 to 1000 mg C m-2 per day (Figure 19). NPP

shows similar large scale patterns as the observations and previous model

results (Schourup-Kristensen, 2014). 

Figure 19. Three-year average of NPP from CTRL simulation.
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Figure  20.  Three-year  average  of  NPP  from  different  groups  of  primary
producers  in  CTRL.  a)  The  contribution  from  diatom  group  b)  The
contribution from nano-phytoplankton group.

Diatom based production dominates in the high latitudes and the equatorial

upwelling. In the other regions, mainly nano-phytoplankton are dominant or

both groups co-occur (Figure 20 a,b).

In  addition,  the  total  global  net  primary  production  and  global  export

production (EP) were calculated for each year of the model run. Global NPP

and EP of  the 25 years long model  run with  one zooplankton group are

shown in Figure 21. The mean global total  NPP and EP of the last three

years of the run is 31.2 Pg C per year and 6.6 Pg C per year, respectively.

The mean of last three years contribution of the diatom group to the total

NPP is 19.2 Pg C per year. Contribution of the nanophytoplankton group is

12 Pg C per year.
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Figure 21: Time series of global total NPP and EP of the last 15 years of the 
model run with one zooplankton group. a) Global total NPP,  b) Global total 
EP. 
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3.1.3 Southern Ocean Nutrient Fields  

The simulated macro nutrients DIN and DSi concentrations can be seen in

Figure 22. In the model results, there are higher nutrient concentrations in the

Atlantic and Indian sectors of the Southern Ocean rather than in the Pacific

sector  of  the  Southern  Ocean.  The concentration  range of  the  simulated

macro-nutrients in the Southern Ocean is similar to the range in the global

distribution of these nutrients. 

Figure 22. Three-year average of macronutrients in the Southern Ocean. a)
DIN b) DSi 

In contrast, low simulated iron concentrations can be seen in Figure 23. They

vary between 0-0.6 µmol m-3. The values are relatively low when compared

to other parts of the oceans such as the North Atlantic and Arctic Ocean. In

these  parts  of  the  ocean,  iron  concentrations  reach  up  to  3  µmol  m -3.

Simulated iron concentrations in  the Southern Ocean are in  the range of

observations by Tagliabue et al. (2012). The mean concentrations calculated

by Tagliabue et al. (2012) are 0.39, 0.33 ad 0.15 µmol m-3 for the Atlantic,

Indian and Pacific sectors, respectively.
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The simulated spatial distribution of nutrient concentrations shows that the

model reproduces the HNLC conditions that are observed in the Southern

Ocean (Falkowski et al., 1998).

Figure 23. Three-year average of iron in the Southern Ocean in the CTRL
simulation.

3.1.4 Southern Ocean Primary Producers Fields  

In  this  section,  the spatial  distribution of  chl  and NPP are analysed.  The

surface mean distribution of chl concentration shows a similar pattern as the

iron concentrations. It  varies between high concentrations of 2 mg chl m -3

and low concentrations 0.02 mg chl m-3. The tip of the South America has

highest  chl  concentrations  (Figure  24).  Moreover,  the  mean  chl

concentrations are lower south of 70°S, since there is sea ice coverage in
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this part of the Southern Ocean (Figure 25). The three years average of sea

ice thickness varies between 0.1 to 4 meters. Sea ice can extend to north of

60°S in the Atlantic sector of the Southern Ocean (Figure 25). 

Figure 24. Three-year average of chl concentration in the Southern Ocean of
model run with one zooplankton group.
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Figure 25. Three-year average of sea ice thickness in the Southern Ocean of
model run with one zooplankton group

Figure 26. Three-year average of a) Diatom chl and b) Nano-phytoplankton
chl concentrations of model run with one zooplankton group.
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Figure 27: Time series of annual average of surface chl (total chl-blue runs, 
diatom chl-red line, nanophytoplankton chl-green line) during the last 15 
years of control run with one zooplankton group. 

Diatoms  are  dominant  in  the  modelled  Southern  Ocean.  Contribution  of

nano-phytoplankton group to the chl concentration is lower (Figure 26 a,b).

The  mean  surface  chl  concentration  of  the  last  three  years  of

nanophytoplankton and diatom groups are 0.05 and 0.36 mg chl m -3 in the

whole  Southern  Ocean,  respectively  (Figure  27).  However,  nano-

phytoplankton mainly contribute to total chl north of 70° S.

Also the NPP spatial  distribution shows a similar  pattern as chl.  Diatoms

clearly dominate over nanophytoplankton (Figure 29). The three years mean

of  NPP from diatoms is  170 mg C m-2 in  the whole  Southern  Ocean.  In

contrast, mean of the NPP from nanophytoplankton is 32.5 mg C m -2 in the

whole Southern Ocean. The mean total NPP for Southern Ocean is 3.3 Pg C

per year.  The contribution of diatoms to this NPP is 2.8 Pg C per year which

is almost 80% of total NPP (Figure 30).
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Figure 28. Three-year average of NPP in the Southern Ocean of model run
with one zooplankton group.

Figure 29. Three-year average of a) NPP from diatoms and b) NPP from
nano-phytoplankton  in  the  Southern  Ocean  of  model  run  with  one
zooplankton group.
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Figure 30. Total NPP in the Southern Ocean during the last 15 years of the 

control run

3.2 Southern Ocean Analysis of Krill simulation

In  this  section,  changes  in  the  simulated  Southern  Ocean  with  the

implementation of krill in the biogeochemical model REcoM2 are presented.

Residual plots of nutrient fields and primary producers are shown to visualize

the changes in the krill  simulation.  The spatial  distribution of  zooplankton

groups  are  shown.  Moreover,  dissolved  organic  carbon  (DOC)  and

particulate organic carbon (POC) production by different groups, as well as

respiration and grazing features of zooplankton groups are presented. Also,

changes on the seasonal cycle of chl concentration in the Southern Ocean

are investigated. 

3.2.1 Changes in Southern Ocean Nutrient Fields in Krill Simulation

The general spatial pattern of nutrients did not change in the krill simulation.

The simulated concentrations of nutrients DIN, DSi and DFe increased. The

maximum increase and decrease in nutrient concentrations are around 7% of
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the  nutrient  concentrations  in  the  one  zooplankton  simulation  nutrient

concentrations.

Surface DIN concentrations increase almost throughout the whole Southern

Ocean  with  the  new  zooplankton  implementation,  but  especially  in  the

Atlantic  and  Indian  sectors.  The  three  years  mean  of  the  surface  DIN

concentrations  increased  by  2.6%  after  the  implementation  of  krill  while

surface  DIN concentrations  decreased  in  the  northern  part  of  the  Pacific

sector of the Southern Ocean (Figure 31a).

Southern Ocean surface DSi concentrations in surface of the whole Southern

Ocean increased by 10.6% in the krill  simulation. The highest increase in

surface DSi occurs in the Indian sector of the Southern Ocean. In contrast,

mean DSi concentrations decrease in the Weddell Sea (Figure 31b). 

The  micro-nutrient  iron  shows  a  10.6%  increase  in  the  whole  Southern

Ocean in the krill simulation. The highest increase showed up in the Pacific

sector  of  the  Southern  Ocean  (Figure  32).  The  mean  iron  concentration

increased by 0.11 to 0.13 µmol m-3 in the Southern Ocean.

Figure 31. Residual plots (krill  simulation - one zooplankton simulation) of
three years average of macro-nutrients a) DIN and b) DSi. 

46



Figure 32. Residual plots (krill  simulation - one zooplankton simulation) of
three years average of iron

In both simulations, DIN concentrations are underestimated south of 40°S

and partly overestimated south of 60°S (Figure 33a, b). When compared to

the difference plots of simulations for DIN (Figure 31a), the krill simulation

gives DIN concentrations closer to the observations south of 60°S and in the

whole Pacific sector of the Southern Ocean. DIN concentrations get closer to

the observational concentrations by about 2 mmol DIN m-3 (Figure 31a). In

contrast,  the  model  underestimated  results  in  the  Indian  sector  of  the

Southern Ocean, especially north of 60°S. This underestimation is centered

in areas with 2 mmol DIN m-3 (Figure 31a).

Also, simulated DSi concentrations are lower than observed concentrations

in both simulations (Figure 34a, b). The simulated DSi concentrations in the

krill  simulation  is  closer  to  the  observational  values.  The underestimation

increases slightly only in the Weddell Sea by around 1 mmol DSi m-3 (Figure

31b). 
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Figure 33. Residual plots (model result - observation (WOA13)) three years
average of DIN a) CTRL simulation b) Krill simulation. 

Figure 34. Residual plots (model result - observation (WOA13)) three years
average of DSi a) CTRL simulation b) Krill simulation.
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3.2.2  Changes  in  Southern  Ocean  Primary  Producers  Fields  in  Krill

Simulation

The implementation  of  the  new zooplankton group krill  did  not  affect  the

general  spatial  distribution  of  the  primary  producers  considerably.  Even

though the food preference term for the second zooplankton group is set to

the highest value for diatoms, diatoms are still the dominant contributors to

the simulated chl concentrations and NPP. Also, the range of simulated NPP

concentrations did not show major changes in the spatial distribution.

Chl  concentrations  and  NPP  decreased  between  20°W  and  60°W.  The

average NPP increase was 7 mg C m-2 day-1. The highest increase in chl and

NPP was seen in the Indian sector of the Southern Ocean. It is about 7 mg C

m-2  per day and 0.02 mg chl m-3 (Figure 35 a, b).

Figure 35.  Residual plots (krill simulation - one zooplankton simulation) three
years average of primary production fields a) Chl concentrations and b) NPP.
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3.2.3 Features of  Different Zooplankton Groups in Krill Simulation

In  this  section,  the  spatial  distribution  of  zooplankton  groups  and  their

grazing, respiration, POC and DOC production rates in the Southern Ocean

is shown. 

3.2.3.1 Spatial Distribution and Grazing Patterns of Zooplankton Groups

The  first  zooplankton  is  mainly  distributed  in  north  of  60°S.  The  highest

carbon concentrations of the first zooplankton group appears close to the tip

of  South  America.  However,  the  second  zooplankton  group  is  mainly

distributed between 50°S-60°S. The second zooplankton concentrations are

higher in the Atlantic and Indian sectors of the Southern Ocean. The second

zooplankton group can grow further north in these two sectors as opposed to

the Pacific sector of the Southern Ocean (Figure 36).

Figure  36.  Three-year  average  surface  spatial  distribution  of  a)  First
zooplankton group carbon pool b) Second zooplankton carbon pool in krill
simulation.
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Figure  37.  Spatial  distribution  of  Antarctic  Krill:  a)  Data  from krillbase  b)
Three-year  average  second  zooplankton  carbon  pool  with  the  data  from
krillbase overlaid.

Figure 38. Three-year average percentage distribution of krill biomass in data
(red bars) and in the model result (blue bars) for 3 regions a) Between 0°W
and 140°E b) Between 140°E and 60°W and c) 60°W and 0°W
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Simulated krill  biomass is between 0-1 mg m-3  in almost 80% of the data

points for each region (Figure 38a, b, c). In all regions, data points between

20-40 mg m-3  and higher  than 40 mg m-3  can be seen.  Especially  in  the

regions  between  0°W-140°E  and  0°W-60°W,  these  high  concentrations

consist of 4% and 6.9% of data points, respectively (Figure 38a, b). In the

region  between 140°E and 60°W, these high concentrations are 0.6% of

data points (Figure 38c).  In contrast,  model  results  of  krill  biomass range

mostly  between  2-20  mg  C m-3 in  all  three  regions  (Figure  38  a,  b,  c).

Modelled krill biomass which are in the 2-20 mg C m-3 range contribute more

than 70% of  the modelled biomass for  the  regions 0°W-140°E and 0°W-

60°W. More than 50% of modelled krill biomass is in the range 2-20 mg m -3

between 140°E and 60°W. Modelled krill biomass does not reach the high

concentrations seen in the data.

High krill biomass is observed around the Antarctic Peninsula (Figure 37a). In

the Pacific sector of the Southern Ocean there is only a small amount of data

available, which shows that krill biomass is lower in this area than in other

areas of the Southern Ocean (Figure 37a). When observations and model

results  are  plotted  on  top  of  each  other,  it  can  be  seen  that  the  spatial

distribution pattern is similar, especially in the latitudinal distribution (Figure

36b; Figure 37a, b). There is a good agreement between model and data in

the Pacific sector of the Southern Ocean. However, the simulated biomass of

krill  is  relatively  low  compared  to  the  observational  data  (Figure  37b).

Modelled krill biomass is lower than observed especially around the Antarctic

Peninsula . In this region, the observed biomass reaches 40 mg C m -3. In

contrast, in the same region, the maximum modeled biomass is 19 mg C m-3.

Also, simulated grazing patterns of the zooplankton groups differ from each

other. The first zooplankton group mainly grazes in the northern parts of the

Southern Ocean. As it is expected from the spatial distribution of this group,

the  highest  grazing  activity  is  at  the  tip  of  South  America  (Figure  39a).

However,  the second zooplankton group grazes mainly between 50-70°S.
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The grazing activity of this group is higher in the Atlantic and Indian sectors

of the Southern Ocean (Figure 39b). 

Figure 39.  Three-year average total  grazing patterns of each zooplankton
group at  surface a)  Total  grazing of  first  zooplankton b)  Total  grazing of
second zooplankton group.

Figure 40. Three-year average grazing on different phytoplankton groups of
first  zooplankton  group  at  surface  a)  Grazing  on  nano-phytoplankton  b)
Grazing on diatoms.
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The first zooplankton group mainly grazes on the nano-phytoplankton group

(54% of total grazing) and grazing on diatoms amounts to 46%. It  grazes

more on diatoms in the Atlantic sector rather than in the Pacific and Indian

sectors (Figure 40 a,b).

The  second  zooplankton  group  grazes  on  the  first  zooplankton  group

additionally. The new group mainly grazes on diatoms rather than other food

sources.  Grazing  on  diatoms  consists  76%  while  grazing  on

nanophytoplankton and the first zooplankton group are 21% and 3% of total

grazing, respectively.  Diatoms are mainly grazed in south of 50°S (Figure

41).  Also,  the  amount  of  grazing  on  nanophytoplankton  and  on  the  first

zooplankton group is lower. The highest grazing activity is in the Atlantic and

Indian sectors of the Southern Ocean (Figure 42a, b). Since the abundance

of the  first zooplankton is low, the average grazing on this group is low. It

reaches a maximum of 0.1 mmol N m-3 d-1.

Figure 41. Three-year average grazing on diatoms of second zooplankton
group at surface (krill)
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Figure 42. Three-year average grazing on different phytoplankton groups of
second zooplankton group at surface a) Grazing on nano-phytoplankton b)
Grazing on first zooplankton group.

3.2.3.2 Respiration and DOC Production by Zooplankton Groups 

Respiration  and  DOC  production  by  different  zooplankton  groups  are

between 0-2 mmol  C m-3   and 0-0.6  mmol  C m-3,  respectively.  Since the

biomass distribution of the two groups are different, there is a difference in

the spatial distribution of respiration 

and DOC production rates. DOC production of the first zooplankton group is

considerably higher than of the second zooplankton group (Figure 43a, b).

First  zooplankton  group  contributes  68.4%  of  total  DOC  production  of

zooplankton  groups  in  the  model.  The  other  31.6%  is  from  the  second

zooplankton group. This difference stems from the different excretion rates of

the zooplankton groups. The excretion rates were 0.15 and 0.02 for the first

and second zooplankton groups, respectively (Table 1).

The respiration rates of the two zooplankton groups are in the same range.

However, 11% of total respiration is from the first zooplankton group in the

whole  Southern  Ocean.  The  other  89%  is  from  the  second  zooplankton
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group. As it is expected, the distribution of respiration follows the biomass

distribution of each group (Figure 44 a, b).

Figure  43.  Three-year  average  DOC  production  of  different  zooplankton
groups at  surface  a)  DOC production  of  first  zooplankton group b)  DOC
production of second zooplankton group.

Figure  44.  Three-year  average  respiration  rates  of  different  zooplankton
groups at surface a) Respiration of first zooplankton group b) Respiration of
second zooplankton group. 
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3.2.3.3 POC production by Zooplankton Groups 

POC production  of  the  two zooplankton groups was calculated  using  the

rates of the mortality and sloppy feeding rate. The first zooplankton group’s

POC production is the sum of mortality of the group and sloppy feeding of

krill on the first zooplankton group. In contrast, POC production of the second

zooplankton  group  is  just  a  result  of  mortality.  As  it  is  seen,  the  POC

production  of  the  first  zooplankton  group  is  higher  than  the  second

zooplankton group (Figure 45 a, b).  The contribution of the first zooplankton

group to total POC production is around 0.6%. The contribution of the second

zooplankton group is 0.4%.

Figure  45.  Three-year  average  POC  production  of  different  zooplankton
groups at surface a) POC production of first zooplankton b) POC production
of second zooplankton. 

3.2.3.4 Seasonal Cycles of Zooplankton Groups

Nutrients and primary producers have strong seasonal  cycles because of

environmental conditions such as light and temperature. Since zooplankton

groups graze on primary producers they display similar seasonal cycles. The

first zooplankton group biomass starts to increase in October, austral spring.
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In January, during austral summer, it reaches the highest concentrations of

0.14 mmol C m-3.  In austral winter concentrations of the first zooplankton

carbon biomass are around 0.01 mmol C m-3 (Figure 46).

The carbon concentration of the second zooplankton is higher than the first

zooplankton group as  expected.  The biomass of  the  second zooplankton

group decreases in winter. It reaches the highest values in April (0.3 mmol C

m-3) and then declines until October. In contrast, the first zooplankton group

reaches the peak concentrations in December and January. Concentrations

in austral winter are really low, but slightly higher than the first zooplankton

group (Figure 46).  The minimum concentration of the second zooplankton

group is around 0.05 mmol C m-3 in September.

Figure 46. Three-year average seasonal cycle of zooplankton groups in the
surface of the Southern Ocean. Error bars shows the standard deviation in
last three years  of model result. 
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3.3.3 Changes in NPP and Seasonal Cycles of Chl in Krill Simulation

The mean total NPP in the Southern Ocean for the last 3 years of the 25

years simulation with one zooplankton group is 3.3 Pg C per year. With the

implementation of the new zooplankton group this value remains unchanged

at ~3.4 Pg C per year. However, there are slight differences in the 25 years

time series of the simulations (Figure 47). 

In  both  model  runs,  diatoms  contribute  more  to  total  NPP  than  nano-

phytoplankton in the Southern Ocean. There is a minor increase of about

0.02 Pg C per year in the contribution of nano-phytoplankton to total NPP

after the implementation of krill. Also, there is a proportional decrease in the

contribution of diatoms to total NPP.

Figure 47. Time series of total NPP in the Southern Ocean during the last 5
years  of  the  simulations  (black  line  and  dots  -  model  run  with  two
zooplankton groups, blue line and squares - model run with one zooplankton
group).
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Figure 48. Time series of total EP in the Southern Ocean during the last 5
years  of  the  simulations  (black  line  and  dots  -  model  run  with  two
zooplankton  groups,  magenta  line  and  squares  -  model  run  with  one
zooplankton group).

Total EP decreases with the implementation of the new zooplankton group

into the model. In the control run with one zooplankton, the mean EP over the

last three years amounts to 2.8 Pg C per year. With the implementation of

krill, EP decreases slightly to 2.7 Pg C per year (Figure 48).

The seasonal pattern of chl is similar to satellite data results (Figure 49).

However,  the  simulated  chl  concentrations  are  lower  compared  to  the

satellite data from January to September. In contrast, especially in October

and  December,  there  is  a  good  agreement  between  model  results  and

satellite data (Figure 49).  In November, the model markedly overestimates

the chl concentration.
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Figure 49.  Three-year average seasonal  cycle of  chl  concentration at  the
surface of  the Southern  Ocean (blue line and dots  -  model  run with  two
zooplankton groups, purple line and dots - model run with one zooplankton
group, green dots - Satellite data chl concentrations). Error bars shows the
standard deviation in last three years  of model result.

The chl concentrations of the nanophytoplankton group starts to increase in

October  and  reaches  the  highest  concentrations  of  0.06  mg  chl  m-3 in

February. Between June and September the chl concentration of this group

approaches  to  0.  When  the  seasonal  pattern  of  nano-phytoplankton  is

analysed,  a less steep biomass increase during the spring bloom can be

seen  with  the  implementation  of  krill  (Figure  50,  month  11).  This  is  an

expected  result  because  of  the  new  grazing  pressure.  Surface  chl

concentration  of  the  nano-phytoplankton  group  increases  in  spring  and

summer  but  decreases  in  autumn.  The  seasonal  pattern  of  diatom  chl

concentration did change little with the implementation of krill. It reaches the

peak concentration  in  October.  In  winter  there  is  only  little  chl  from both

groups (Figures 50, and 51: months 6-8). In contrast, the presence of chl can

be observed in summer and spring (Figures 50, and 51).
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Figure  50.  Three-year  average  seasonal  cycle  of  nano-phytoplankton  chl
concentration at  the surface of  the Southern Ocean (black line and dots-
model run with two zooplankton group, red line and dots - model run with one
zooplankton group).  Error bars shows the standard deviation in last  three
years  of model result.

Figure 51. Three-year average seasonal cycle of diatom chl concentration at
the surface of the Southern Ocean (black line and dots - model run with two
zooplankton groups,  red  line  and dots  -  model  run  with  one zooplankton
group). Error bars shows the standard deviation in last three years  of model
result.
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The seasonal cycle of the first zooplankton changed when Antarctic krill is

incorporated into the model. In summer and spring, the concentration of the

first zooplankton group increased from 0.08 to 0.12 mmol C m -3. In winter and

autumn, the concentrations are very low in both simulations and they are

around  0.01  mmol  C  m-3 (Figure  52).  The  concentration  of  the  first

zooplankton group starts to increase in October and continues until January.

The annual mean increased by 50%, from 0.04 to 0.06 mmol C m-3.

Figure 52. Three-year average seasonal cycle of the first zooplankton carbon
pool at the surface of the Southern Ocean (black line and dots- model run
with  two  zooplankton  groups,  blue  line  and  dots  -  model  run  with  one
zooplankton group).  Error bars shows the standard deviation in last  three
years  of model result.

Besides  the  seasonal  cycle  of  the  first  zooplankton  group,  the  spatial

distribution  of  this  group  was changed.  North  of  60°S the  concentrations

slightly increased by ~0.2 mmol C m-3. South of 60°S some small increases

and decreases around 0.05 mmol C m-3, can be seen (Figure 53).
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Figure  53.  Three-year  average  residual  plots  (krill  simulation  -  one
zooplankton  simulation)  of  first  zooplankton  group  surface  carbon  pool
concentration. 

3.3 Model Simulations and Observation Comparisons

In  an  effort  to  assess  the  skill  of  the  modeling  system  to  reproduce

observations apart from visual comparisons as were undertaken above, the

correlation between observation and both simulations, as well as  the root

mean square error (RMSE) were calculated for DIN, DSi and chl. Also, the

spatial  standard deviation of the simulations and observation values were

calculated  and  all  of  these parameters  are  shown together  in  the  Taylor

diagrams (Figure 54). Three-year averages were used for the comparisons.

Correlations between the control simulation and observations for DIN, DSi

and chl are 0.62, 0.59 and 0.59 in the Southern Ocean, respectively. RMSE,

which shows the absolute differences between the model and observations,

are 4.51 mmol DIN m-3, 20.11 mmol DSi m-3 and 0.35 mg chl m-3 for DIN, DSi

and  chl.  When  the  krill  simulation  and  observations  were  compared,

correlations  are  0.63,  0.59  and  0.58  for  DIN,  DSi  and  chl  respectively.

RMSEs are 4.52 mmol DIN m-3, 20.12 mmol DSi m-3, 0.37  mg chl m-3 for the
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same fields. The standard deviations of the simulated DIN and chl are higher

than  in  the  observations,  indicating  that  the  model  overestimates  the

gradient. In contrast, the standard deviation for the simulated DSi is lower

than in the observations which means that  the model  underestimates the

gradient. The RMSE is rather high for DSi and DIN compared to previous

simulations with the same model in different configurations. This is consistent

with the mismatch of nutrients in the residual plots (Figure 33, and 34) and

the reported too strong stratification of this set-up (Downes et al., 2015; and

2018). 

Figure 54. Taylor diagrams for three-year means of simulated DIN, DSi and
chl.  Black dot  and K stands for krill  simulation,  red dot  and S stands for
control simulation and magenta dot and Obs. stands for observation. Black
circle  lines:  standard  deviation,  green  circle  lines:  RMSE,  blue  lines:
correlation.  
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                               CHAPTER 4 

 DISCUSSION

This study describes the implementation of  krill  into  the 3D global  ocean

ecosystem model FESOM-REcoM2 and the effects of this implementation on

the simulated Southern Ocean ecosystem and nutrient dynamics. This goes

beyond  the  study  of  LeQuéré  et  al.  (2016)  by  parameterizing  the

macrozooplankton  group  specifically  as  Antarctic  krill  and  implementing

temperature  and  respiration  functions  accordingly.  In  the  following

discussion,  current  strengths and weaknesses of  the model  and potential

further improvements are discussed.

4.1 Control FESOM-REcoM2 Simulation

The 25  years  simulation  of  the  control  FESOM-REcoM2 set-up  with  one

zooplankton  group  gives  a  generally  reasonable  spatial  distribution  of

nutrients in the global oceans. However, the model has a negative bias for

both macro nutrient fields (Figure 13b, 15b). Low concentrations of nutrients

can be the result of too strong stratification and weak upwelling in the ocean

circulation model FESOM on the CORE-II mesh (Downes et al., 2015; 2108).

Simulated  iron  concentrations  in  the  Southern  Ocean  are  lower  than

observations as mentioned in the results section. Strong stratification, weak

upwelling (Downes et al., 2015; 2018) and lack of a sedimentary source of

iron in the biogeochemical model can be reasons for this underestimation.

One of the effect of this underestimation of nutrient concentrations is lower

simulated  total  chlorophyll  than  observed  satellite-derived  concentrations

(Figure 49). The simulated 3.4 PgC yr-1 is in the range of estimates based on

satellite observations ranging from 1.1 - 4.9 Pg C per year (Carr et al, 2006)

and similar to the value of 3.1 Pg C yr-1 that was obtained with a previous
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version of the same model (Schroup-Kristensen, 2014). Results of the control

run  show a diatom dominated Southern Ocean ecosystem. The contribution

of   diatoms to  chl  and NPP is  higher  than  the  contribution  of  the  nano-

phytoplankton group (Figure 26 a, b; Figure 29 a, b). This is consistent with

previous simulations of the Southern Ocean ecosystem with other versions of

the  same  biogeochemical  model  (Laufkötter  et  al.,  2016;   Schroup-

Kristensen, 2014).

4.2 Effect of Antarctic Krill on the Simulated Ecosystem

The  results  of  this  study  showed  that  the  implementation  of  a  new

zooplankton group parameterized as Antarctic krill affects simulated nutrient

and primary producer fields. The simulation including the second zooplankton

gives results closer to observed nutrient concentrations (Figure 33; 34). In

the whole Southern Ocean simulated DIN, DSi and DFe increased by 2.6%,

10.6% and 10.6%, respectively (Table 2). Also, these numbers are consistent

across all three regions of the Southern Ocean (Table 2). These increases

could  be  the  effect  of  increased  nutrient  cycling  in  the  surface  ocean.

Changes in the fields of DIN, DSi and chl are three year averages for the

whole Southern Ocean and their subregions (Table 2). When these changes

are interpreted with Taylor diagrams of the fields of DIN, DSi and chl (Figure

54), it can be seen that there are only minor differences between control and

krill simulations.

The simulated NPP in the whole Southern Ocean and in the region between

0°W  -  140°E  increases  by  0.84%  and  3.72%,  respectively.  However,  it

decreases by 0.5% between 140°E - 60°W and by 1.07% between 0°W -

60°W. NPP from the diatom group decreases 2.5% in the whole Southern

Ocean (Table 2). This decrease in diatom-NPP is a result of the increased

grazing pressure in the model.

The simulated total NPP showed a change only +0.02 Pg C per year after the

implementation of the second zooplankton group (Figure 47). In contrast, the
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total  EP  of  the  Southern  Ocean  decreased  by  0.1  Pg  C  yr -1 in  the  krill

simulation. The modelled total EP in the Southern Ocean in both simulations 

is higher than the simulated export production in the Southern Ocean (1-1.1

Pg C per year) in previous studies  (Schlitzer, 2002; Schourup-Kristensen,

2014). 

Table 2. Change in three year average nutrients and primary producer fields
(control simulation vs krill simulation) after the implementation of the krill for
the whole Southern Ocean, and for the regions between 0°W - 140°E,  140°E
- 60°W and 0°W - 60°W. Red color is used for the increase and blue color is
used for the decrease.

Whole Southern
Ocean

 Between 
0°W - 140°E 

 Between
140°E - 60°W 

 Between 
0°W - 60°W 

DIN 
mmol m-3

16.7 to 17.1
+2.6%

19.5 to 20
+2.6%

13.4 to 13.7
+2.5%

19.6 to 20.1
+2.5%

DSi
mmol m-3

9 to 9.9
+10.6%

10.96to 12.68
+15.7%

 5.37 to 5.75
+7.1%

14.3 to 15.3
+6.7%

DFe
µmol m-3

0.11 to 0.13
+10.6%

0.1 to 0.12
+22.4%

 0.12 to 0.13
+9.3%

0.12 to 0.14
+14.76%

Total NPP
mg C m-2

194.4 to 201.1
+0.84%

192.8 to 199.9
+3.72%

 205.2 to 204.3
-0.5%

197.4 to
195.3

-1.07%

NPP by 
diatom
mg C m-2

166.9 to 162.8
-2.5%

174.7to 172.5
-1.28%

 159.5 to 156.6
-2.1%

169.9 to
160.2

-5.72%

NPP by 
nanophyto.
mg C m-2

32.5 to 38.3
+17.9%

18.1 to 27.5
+52%

 45.2 to 47.6
+5.4%

27.5 to 35.1
+27.6%

Total Chl
mg Chl m-3

0.361to 0.366
+1.19%

0.34 to 0.36
+5.39%

 0.362 to 0.36
-0.6%

0..40 to 0.39
-1.41%

Diatom Chl
mmol m-3

0.316 to 0.312
-1.2%

0.311 to 0.314
+1.18%

0.302 to 0.298
-1.37%

0.36 to 0.34
-4.75%

Nanophyto. 
Chl
mmol m-3

0.046 to 0.054
+17.7%

0.028 to 0.043
+51%

0.060 to 0.062
+3.3%

0.043 to
0.054

+26.6%
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The  other  effect  of  the  second  zooplankton  class  is  that  through  more

nutrient  availability  a  17.7%  increase  in  nanophytoplankton  chl

concentrations occurs. In contrast, diatom Chl concentrations decreased by

1.2% in the whole Southern Ocean  (Table2) and total  chl concentrations

increased by 1.19%  in the krill simulation. This is the result of the increase in

nutrient concentrations  by faster nutrient cycling in the upper ocean.

Since total NPP and EP are calculated by yearly summation of the Southern

Ocean of these fields, the spatial changes (Figure 35) cannot be seen in the

yearly total NPP and EP time series (Figure 49; 50).  

Figure 55. Diagrammatic representation of the ecosystem structure and the
particle formation mechanisms in the Southern Ocean a) control simulation,
b)  krill  simulation.  The  green  boxes  show  diatom  (Dia)  and
nanophytoplankton (Nano). Yellow boxes show the first zooplankton group
(Zoo1) and the second zooplankton group (Zoo2). The numbers in the boxes
are the percentage of the related compartment to all living compartments in
the Southern Ocean. The pink box shows particulate organic carbon (POC).
The black arrows show the contribution of each living compartment to the
POC production (percentage of total POC production). The red arrows show
the grazing  of  the  zooplankton groups  on diatom and  nanophytoplankton
groups (percentage of total grazing on all groups). 

After  the  implementation  of  krill,  the  contributions  of  diatom,

nanophytoplankton, the first and the second zooplankton groups to the total
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biomass are 71.6%, 15.3%, 3.8% and 9.3%, respectively (Figure 55b). In the

control run, the contributions of diatom, nanophytoplankton and zooplankton

groups  to  the  total  biomass  were  83.1%,  14.5%  and  2.4%,  respectively

(Figure 55a). These changes in nutrient and primary producers fields cause

an increase in the first zooplankton biomass by 42%. In the krill simulation,

the second zooplankton group grazed mainly on the diatom group. Grazing

on diatoms is  76% of  total  grazing of  this  group.  In  contrast,  grazing  on

nanophytoplankton and on the first zooplankton group are 21% and 3% of

the total grazing respectively. One of the differences between the control and

krill simulations is the grazing pattern of the first zooplankton group. In the

krill  simulation  54% of  total  grazing  of  the  first  zooplankton  group  is  on

diatoms while in the control run it is 35% of total grazing. This may be the

result of the increased first zooplankton biomass south of 60°S (Figure 53).

Since the region south of 60°S is dominated by diatoms, the increase of the

first  zooplankton group in  this  region increased the portion  of  grazing on

diatoms in the krill simulation.

The REcoM2 ocean ecosystem model was used in previous studies to do

research on the Southern Ocean ecosystem. The MITgcm – RecoM2 version

was  used  to  understand  ecosystem  structure  and  export  production

(Laufkötter et al., 2016). The krill simulation produces more zooplankton in

the Southern Ocean compared to a previous study which was carried out

using REcoM2 in the Southern Ocean (Laufkötter et al., 2016), which is a

considerable  improvement.  Diatoms  were  the  dominant  group  for  total

biomass. One of the main differences between the model simulations with

and without krill is the increase in the contribution of zooplankton groups to

the total biomass. It is 13.1% and the second zooplankton group contributes

9.3%. In a previous study, the MITgcm-REcoM2 version was used and the

contribution of the zooplankton group to the total biomass was only 0.2% and

diatoms  were  responsible  for  94%  of  the  total  biomass  in  the  Southern

Ocean  (Laufkötter  et  al.,  2016).  These  differences  can  be  the  result  of

different physical models, spatial resolution and length of runs.
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4.3 Particulate Organic Carbon production 

Aggregation of  diatoms and sloppy feeding of  the zooplankton groups on

diatoms was calculated as POC production of the diatom group. 83% of POC

is  produced  by  diatoms  in  the  krill  simulation  (Figure  55b).  Similarly,

aggregation  of  nanophytoplankton  and  sloppy  feeding  on  this  group  was

calculated as POC production from this group. 16% of POC is produced by

nanophytoplankton (Figure 54b). The general pattern of the contribution by

different  groups to  POC production  are  similar  to  the  results  of  MITgcm-

REcoM2 and BEC models (Laufkötter  et  al.,  2016).   Mortality  and sloppy

feeding of the second zooplankton group on the first zooplankton group is

another  source  for  POC.  It  amounts  to  0.6% of  total  POC production  of

different groups. Mortality of the second zooplankton group contributes 0.4%

to the total POC production. In total the contribution of zooplankton groups to

POC  is  1%.  However,  in  the  control  simulation  contribution  of  the

zooplankton group was 0.4% (Figure 55a). Furthermore, the sloppy feeding

which  is  counted  here  for  POC  production  by  diatoms  and

nanophytoplankton would not occur without zooplankton. These values are

lower compared to the results of the BEC and PISCES models (Laufkötter et

al., 2016). In these models, zooplankton groups form 30% and 40% of the

total biomass in the Southern Ocean, respectively.

4.4 Simulated Antarctic krill biomass and distribution

The simulated carbon biomass of the second zooplankton group, Antarctic

krill, is lower than the observed values (Figure 32). Biomass calculations by

Atkinson et al. (2009) show that 70% of the entire circumpolar population is

concentrated in the South West Atlantic. However the modelled biomass of

krill does not show this distribution. The highest accumulation of simulated

krill biomass is east of the Prime Meridian.  The mismatch of the hotspots of

krill biomass can be the result of a lack of sea ice algae in the model, an

important component of krill diet in winter. The abundant sea ice simulated
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around the Antarctic Peninsula is a suitable habitat for sea ice algae and

inclusion  of  sea  ice  algae  in  the  model  could  improve  krill  biomass

representation in the Atlantic Sector. Moreover, the underestimation of iron

input from sediments and from sea ice around the Antarctic Peninsula may

cause the mismatch of high biomass of krill in the region since the iron cycle

is closely related to sea ice dynamics in high latitudes (Wang et al., 2014).   

Similarly,  high  krill  abundance  is  observed  in  offshore  waters  in  summer

(Atkinson,  2009)  and an increase of  krill  density  in  the  shelf  and coastal

areas in winter (Siegel,1988), which is not reproduced by the current model.

In addition, a seasonal cycle of krill biomass can be observed because of a

change  in  body  composition  of  krill  (Meyer,  2011).  However,  the  model

results  show  an  80%  difference  between  winter  and  peak  biomass

concentration, which is much higher than the estimated seasonality of krill

biomass.

These differences in biomass distribution and seasonal cycle may also be a

result of uncertainties such as stratification and upwelling processes in the

ocean circulation model. Low concentrations of nutrients due to too strong

stratification and/or too weak upwelling (Downes et al., 2015; 2018) could be

a reason for the shift in biomass distribution. In ocean ecosystem models,

chlorophyll  concentrations tend to approach zero in winter because of light

limitation  and  low temperatures.  This  could  be  the  reason for  the  strong

seasonal cycle of krill biomass. Also, the currently implemented temperature

function  for  krill  could  affect  this  distribution,  as  has  been  seen  in  other

REcoM2  simulations  that  were  undertaken  during  this  study  but  are  not

shown here. However, the longitudinal distribution of Antarctic krill depends

mostly on the available food for the second zooplankton group. In the current

model  set  up,  anywhere  there  is  sea  ice,  there  is  no  phytoplankton

production and hence no food for Antarctic krill in this setting of the model.

However, sea ice algae grow under the ice and have been found to be an

important food source for krill along with small zooplankton that live under the
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ice feeding on this algae (Meyer,  2011, Kohlbach et al.,  2017).  Therefore

implementing  sea  ice  algae  can  be  a  solution  for  the  strong  seasonal

variation and generally low biomass of the new zooplankton group.

The increase in  chlorophyll  concentration of  the nanophytoplankton group

during the spring bloom is less steep in the krill run than in the reference run.

However, still the biomass increase is rather steep. A similar decrease in the

steepness of the diatom chlorophyll cannot be seen after the implementation

of krill. When the seasonal cycle of the zooplankton groups (Figure 46) are

examined, their biomass decreases close to zero. Since there is a lack of

light as well as the occurrence of sea ice in winter in the Southern Ocean,

food sources for  the zooplankton groups are very low in  the winter.  This

situation  prevents  high  winter  biomass  of  the  second  zooplankton  group

which could control the steep increase of the diatom chlorophyll. Therefore,

the steep increase in the diatom chlorophyll still can be seen.

In the parameterization of krill respiration, the respiration activity factor was

implemented  as  a  function  of  Julian  days.  This  parameterization  was

developed  for  the  Southern  Ocean  based  on  a  study  of  Hoffmann  and

Lascara  (2000).  If  the  second  zooplankton  group  is  parameterized  as  a

general macrozooplankton group that occurs in the northern and southern

high latitudes, it should be included as a function of light instead of Julian

days  in  order  to  simulate  the  correct  seasonal  cycle  in  the  Northern

Hemisphere as well.
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                                                        CHAPTER 5 

                                                       CONCLUSION

This study provides an analysis of the Southern Ocean ecosystem with an

ocean-ecosystem model. The implementation of a new zooplankton group

into the REcoM2 ecosystem model enables us to see the effect of this new

group on simulated nutrient distribution and primary production. Since the

new zooplankton group was parameterized as Antarctic krill, one of the key

species in the Southern Ocean was included into the model.  The grazing

pressure on phytoplankton was thereby increased in the model. 

There were no significant changes in the primary producer fields of the model

between simulations.  Total  NPP in  the  global  and  Southern  Ocean were

similar  in  both  simulations.  Chlorophyll  concentrations  changed  with  the

implementation  of  the  new  group.  The  implementation  of  krill  enhanced

nutrient recycling in the upper ocean. Therefore, the nutrient distributions of

DIN, DSi and DFe changed. The krill runs showed a smaller bias in surface

spatial distributions of the simulated fields  than the control run. 

More importantly, the structure of the ecosystem model changed. Proportions

of  the  different  compartments  in  total  biomass  showed  differences  when

compared with  the control  run of  the model.  The relative contributions of

diatoms in  the simulated ecosystem decreased because of  the increased

grazing  activity  in  the  model,  while  the  relative  contribution  of  the

nanophytoplankton  group  increased.  Furthermore,  the  inclusion  of  the

second zooplankton group also led to an increase in the biomass of the first

zooplankton group. 
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Ecosystem models provide a very good tool to assess the actual status in

ecosystems and to make future projections. Because of this, it is important to

continue to improve the capability of these models. Including sea ice algae in

the model can improve the capability of the existing model to better resolve

the trophic processes in the Southern Ocean
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