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Abstract Variations in oxygen isotope compositions (δ18O) provide insight into modern climate and past
changes in climate and topography. In addition, in regions such as Tibet, geologic archives of isotope
ratios record climate change driven by plateau uplift and therefore also provide information about the
surface uplift history. A good understanding of modern-day controls on δ18O is crucial for interpreting
geologic δ18O in this context. We use the ECHAM5-wiso global atmospheric general circulation model to
calculate δ18O in precipitation (δ18Op) for the present-day climate. In the region of the Tibetan Plateau, spatial
variations of monthly means of δ18Op are statistically related to spatial variations of 2m air temperature
and precipitation rate, as well as to topography. The size and location of investigated regions are varied in
our study to capture regional differences in these relationships and the processes governing the modern
δ18Op. In addition to correlation analyses, a cross-validated stepwise multiple regression is carried out using
δ18Op as the predictand, and topography and atmospheric variables (temperature and precipitation amount)
as predictors. The 2m air temperature and topography yield the highest spatial correlation coefficients of
>0.9 and <�0.9, respectively, throughout most of the year. Particularly high correlation coefficients are
calculated for the region along the Himalayan orogeny and parts of western China. The predictors explain
>90% of the δ18Op spatial variance in the same regions. The 2m air temperature is the dominant predictor
and contributes 93.6% to the total explained spatial variance on average. The results demonstrate that
most of the δ18Op pattern on and around the Tibetan Plateau can be explained by variation in 2m air
temperature and altitude. Correlation of the dependent predictors indicate that in low-altitude regions
where topography does not determine temperature variability, the high correlation of temperature and
δ18Op may partially be explained by variations in precipitation rates.

1. Introduction

The Tibetan Plateau is the largest tectonically active orogen and plays a crucial role in regional and global cli-
mate. Its deformation history, the evolution of central Asian climate, and the interaction between orogen struc-
tures and climate in general remain a focus of research. This interaction takes place on different timescales. On
geological timescales, the influence of climate on tectonics can largely be attributed to erosional processes [e.g.,
Montgomery et al., 2001;Willett et al., 2006; Reiners et al., 2003], whereas on shorter timescales, mountain build-
ing can affect regional climate through the direct physical influence of topography [e.g., Takahashi and Battisti,
2007a, 2007b; Insel et al., 2009; Kutzbach et al., 1989; Kutzbach et al., 1993; Ruddiman and Kutzbach, 1989].

The Tibetan Plateau in particular heavily influences regional and global climate due to its effect as a physical
obstacle [Raymo and Ruddiman, 1992; Kutzbach et al., 1993; Thomas, 1997; Bohner, 2006; Molnar et al., 2010;
Boos and Kuang, 2010]. The impact of tectonic uplift on climate has previously been assessed from observa-
tional, geological data sets [e.g., Zhisheng et al., 2001; Dettman et al., 2003] and climate models [e.g., Kutzbach
et al., 1993; Bohner, 2006; Takahashi and Battisti, 2007a, 2007b; Ehlers and Poulsen, 2009; Insel et al., 2009].
However, only a few modeling studies investigated the effect of the Tibetan Plateau on climate [e.g.,
Kutzbach et al., 1989; Kutzbach et al., 1993; Ruddiman and Kutzbach, 1989; Boos and Kuang, 2010]. These point
out the strong sensitivity of regional and global climate to changes in topography.

The modification of temperature and precipitation patterns resulting from Tibetan Plateau uplift ought to be
reflected in records of precipitation δ18O values as a consequence of changing temperatures and the amount
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effect [Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996]. Studies of modern-day controls of the distribution of
precipitation δ18O across the Tibetan Plateau highlight the importance of precipitation rates associated with
monsoon circulation [Araguas-Araguas et al., 1998; Tian et al., 2003]. Depending on the season and region,
these can overshadow the dependence of precipitation δ18O values on temperature [Araguas-Araguas
et al., 1998; Tian et al., 2001a, 2001b, 2003; Liu et al., 2008; Yang et al., 2011].

Geological archives of δ18O values can therefore give insight into Central Asian paleoclimate and the uplift
history of the Tibetan Plateau [Dettman et al., 2003]. However, interpreting these records requires a good
understanding of the relationship between modern-day topography and climate with precipitation δ18O
and their geographic distribution. Several studies contributed to this understanding both on a more local
scale based on station measurements [e.g., Yang et al., 2011] and on a larger regional scale with the help
of atmospheric models [e.g., Yao et al., 2013]. The inverse relationship between δ18O values and elevation
is addressed in various studies [e.g., Bershaw et al., 2012, Liu et al., 2008; Yao et al., 2013] as well as the
latitudinal control on δ18O values [e.g., Liu et al., 2008]. Tian et al. [2001a] and Yao et al. [2013] also attempt
to describe and identify the spatial distribution of δ18O values and zones characterized by different climatic
controls on it.

Observational data from the GNIP (Global Network of Isotopes in Precipitation) can provide the observational
basis for studies in these regions [e.g., Araguas-Araguas et al., 1998; Tian et al., 2001a, 2001b; Tian et al., 2003].
However,more thanhalfof thestations in theGNIPdatabasedonothaveoxygen isotoperecordscoveringmore
than 1 year [International Atomic Energy Agency Water Resource Programme, 1998; Rozanski et al., 1993; Bowen
andWilkinson, 2002] and the spatial coverage of observed precipitation δ18O in the region of interest is sparse.

Atmospheric general circulation models (AGCMs) equipped with an explicit diagnostic module for stable
oxygen and hydrogen isotopes in water allow the modeling of the isotopic composition for the precipitation
calculated by the AGCM [e.g., Joussaume et al., 1984; Jouzel et al., 1987; Hoffmann et al., 1998] and produce
a homogeneous set of climate and isotope values with the resolution used for the model simulation. The
limited availability of suitable records, and the success of previous modeled results of precipitation δ18O
values [e.g., Sturm et al., 2010, and references herein], encourage a modeling approach to investigate the
influence of topography and climate on precipitation δ18O value distribution.

This study complements previous work by contributing to a better quantitative understanding of the local
climatic and topographic controls on the geographical distribution of precipitation δ18O values with the
aid of a model simulation of climate and oxygen isotopes in precipitation and a topography data set.
Furthermore, it aims to highlight possible limitations for the use of model- and observation-based analyses
investigating these controls. In particular, the following points are addressed: (1) the spatial correlation
between topography, 2m air temperature, and precipitation amount with precipitation δ18O; (2) the relation-
ship of 2m air temperature with topography and precipitation in the context of point (1); (3) how much of
the spatial precipitation δ18O variability is explained by the variability in topography and a chosen set of
atmospheric variables; (4) the regional variations and causes in the δ18O variance; and (5) the differences
between results (1–4) using model output and observational and reanalysis data sets.

2. Data and Methods
2.1. Observation-Based Data Sets

The GTOPO30 data set, a product available from the U.S. Geological Survey, was processed and interpolated
to T63 resolution. The resulting interpolated data set was used in the correlation and multiple regression
analyses (section 2.4) and as one of the input variables for the ECHAM5-wiso simulation (section 2.2).
Results from the GTOPO30 data set were cross-checked with the T63 topography from ECHAM5 boundary
fields to ensure that they are identical. All topography-related variables that served as additional boundary
conditions for the implemented ECHAM5-wiso simulation, such as orographic slope, orographic standard
deviation, and orographic angle, were also derived from this data set.

Data sets from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (ERA40)
[Uppala et al., 2005] and from the National Centers for Environmental Prediction and National Center for
Atmospheric Research (NCEP/NCAR) reanalyses [Kalnay et al., 1996; Kistler et al., 2001] serve as observation-
based climate data in this study. The reanalyses include data recovered by various measurement systems
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and are dynamically interpolated by models to produce more homogeneous data sets. While these are not
exclusively observation-based, the analyses conducted for this study requires this homogeneity of data.
Additionally, the latest version (TS3.21) of the CRU (climate research unit) gridded climate data set [Harris
et al., 2013] is used for further validation of model output. CRU TS3.21 is derived from interpolation of values
of land-based meteorological stations [Harris et al., 2013]. For the greatest temporal model-data set overlap,
long-term seasonal means of 2m air temperature and precipitation are constructed from these data sets and
compared to long-term seasonal means of modeled temperature and precipitation

2.2. ECHAM5-wiso Simulation

ECHAM5 is an atmospheric general circulation model [Roeckner et al., 2003], developed at the Max Planck
Institute for Meteorology (MPIM) and is based on the spectral weather forecast model of the ECMWF
[Simmons et al., 1989]. The isotopemodule in ECHAM5-wiso implements the calculation of oxygen and hydro-
gen isotopes in water as part of the hydrological computations in ECHAM and adds isotopic counterparts
to the water variables in ECHAM [Hoffmann et al., 1998; Werner et al., 2011]. Since the third major version
of ECHAM, the physics of fractionation of oxygen and hydrogen isotopes in water was built into the model.
The implementation of isotopes in ECHAM5-wiso is done in the following way: For each phase of the
water variables modeled by ECHAM5 (solid, liquid, and vapor), an isotopic counterpart is implemented.
The water isotopologues, H2

180 and HD160, are treated as separate forms of water that are transported
and transformed in parallel to the water calculated by ECHAM5. The transport scheme for both is semi-
Lagrangian advection according to Lin and Rood [1996]. The isotope fractionation processes considered
are divided into equilibrium processes, in which phase changes are slow enough to allow isotopic equilibrium,
and nonequilibrium processes, which are a function of phase change velocity as well as kinetic fractionation
processes [Hoffmann et al., 1998].

The ECHAM5-wiso model simulation was run at a T63 spatial resolution (horizontal grid size 1.8° × 1.8°) and
with 19 vertical levels (between surface and 10 hPa) for present-day boundary conditions. It was run for
43 model years in order to ensure a sufficiently large number of years for analysis, i.e., the standard climato-
logical reference period of 30 years. This leaves a more than sufficient model spin-up time before analysis
of the model output. The experiments are Atmospheric Model Intercomparison Project (AMIP)-style experi-
ments with sea surface temperatures and sea ice concentrations annually varying from 1957 to 2000 and
greenhouse gas concentrations for the same period.

2.3. Preparation of Variables

Monthly long-term averages were used in the analyses. These were obtained by calculating the means over
the last 30 years of the model output for each month separately, thereby capturing the mean climate while
keeping information on intermonthly variability. The δ18O values were calculated from model convective-
and large-scale precipitation and represents the total precipitation δ18O. The known factors controlling
δ18O in precipitation [Dansgaard, 1964; Gat, 1996] determined the choice of climate variables to be included
in the analyses. Precipitation, 2m air temperature, and model topography were chosen to represent controls
of the amount, temperature, and altitude effect on precipitation δ18O. The same means were constructed
from temporally corresponding NCEP and ERA40 data. Since model output and reanalyses are spatially
homogeneous and the investigated region does not cover higher latitudes, unweighted means are used.

2.4. Correlation and Multiple Regression

All correlation and multiple regression procedures in this study analyze spatial variability rather than
temporal variability. Thus, it was possible to incorporate topography in the same way that climate variables
were used in the methods described in this section. Although the first-order control of 2m air temperature is
topography, especially in high-altitude regions, we include topography as an independent variable to
identify discrepancies between the relationships of temperature and topography with oxygen isotope values.
This allows us to identify where topographic variability correlated with isotope ratios is not reflected in
temperature variability and where the correlation of temperature with δ18O values may not be attributed
to topography but to another variable that covaries with temperature where topography does not. It there-
fore helps better understand the underlying causes for the relationships between δ18O and the predictors.
The multiple regression procedure used in this study implements measures to avoid overfitting due to the
resulting multicollinearity (see description of method).
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The region was subdivided into model grid box areas, and Pearson correlation coefficients and multiple
regression analyses were computed for each of those and each month separately. To ensure a sufficiently
large sample size and assess the sensitivity of sample size, the analyses were carried out for model grid
box areas of size 5 × 5, 7 × 7, and 9× 9. The calculated values were assigned to the grid box at the center of
each area. Each variable is correlated against the precipitation δ18O separately. The significance level of the
resulting Pearson correlation coefficient is determined by t tests.

The multiple correlation analysis allows the quantitative assessment of the regression relationship between a
number of model variables and precipitation δ18O values, referred to as the predictors and the predictands,
respectively. It is also a means to get a quantitative estimate of how much of the variability in the precipita-
tion δ18O can be explained by the variability of each of the selected predictors [von Storch and Zwiers, 1999].

The applied multiple regression procedure is a cross-validated procedure, involving a stepwise multiple
regression with random bootstrapping [Paeth and Hense, 2003; Paeth et al., 2006;Mutz et al., 2015]. The multi-
ple regression was adjusted to the problems addressed in this study and carried out as follows: The included
predictors are sorted by their importance, which is determined by linear regression analyses between the
n-dimensional predictand, where n is the number of total grid boxes in the investigated area (25, 49, and 81

for grid box areas 5 × 5, 7 × 7, and 9× 9, respectively), and the predictor series x1
→
;…; xk

→ , where k is the number
of predictors used in the multiple regression, in this case 3 (temperature, precipitation, and topography). The
most important predictor is selected for the regression analysis, and the residual ε→ is calculated. The residual
is then used in the regression analysis with the subsequent predictor, and a new residual is determined. This
method is continued with all predictors included in the multiple regression model. For cross validation
[Michaelsen, 1987], a reasonable number of random values are retained before each regression analysis to
leave sufficient values for training the algorithm. The regression model is trained with the dependent data,
i.e., the data left after the removal of the randomly selected bootstrap values. The model is then applied to
the retained data, and the RMSE (root-mean-square error) between the independent predictand values
and regression model estimates is calculated. Once the RMSE can no longer be reduced by the addition of
another predictor, the currently investigated predictor is not included in the final model and the multiple
regression is terminated. This results in an exclusion of predictors that do not provide any additional informa-
tion about the independent data. The whole process is repeated 1000 times. Each time, a different set of
bootstrap values is retained and the resulting regression equation is saved. The coefficients are averaged
over all iterations for the final model. To ensure the robustness of the model, a filter for predictors is intro-
duced before the computation of the final multiple regression. Only predictors that pass through the filter
in at least 50% of all iterations are included.

The correlation and multiple regression analyses are conducted first using the prepared model output and
interpolated GTOPO30 topography data set. The procedures are then repeated with the prepared NCEP
variables, an interpolated observation-based δ18O data set [Bowen and Revenaugh, 2003], and the same
topography data.

2.5. Cluster Analysis

The same analyses as described in the previous section were carried out for different isotope zones on the
Tibetan Plateau. The Tibetan Plateau has previously been subdivided into three zones based on spatiotem-
poral patterns of precipitation δ18O and their relationship to climatic controls [Yao et al., 2013; Li et al. 2016].
In this study, we evaluate these findings and attempt to quantitatively constrain the geographical extent of
the domains by subdividing the plateau using a cluster analysis and on the basis of precipitation δ18O
variability. Three variables describe δ18O variability in the analysis: annual mean δ18O, the amplitude of annual
δ18O values, and δ18O values during the monsoon season (July–September). They are used in a centroid clus-
tering method with randomized regroupment [Paeth, 2004; Bahrenberg et al., 1992], where the Mahalanobis
distance is used as a measure for unit-independent statistical distance in multidimensional variable space.
Tian et al. [2001a] and Yao et al. [2013] divide the Tibetan plateau into three distinct domains based on δ18O
variability and its relationship with temperature and precipitation. These domains represent regions influenced
by different climate system components, namely, the Westerlies in the north and the Indian monsoon in the
south. The central domain is a transitional zone. The cluster number of three is therefore explicitly prescribed
based on these findings.
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The cluster analyses are first carried out using the prepared model output and then repeated with the
observation-based δ18O data set. The same method is later applied on the basis of the three sets of Pearson’s
R values calculated by correlating precipitation, 2m temperature, and topography with δ18O. This provides a
method of clustering based on investigated relationships between δ18O and its controls rather than δ18O varia-
bility. In order to ensure that only values on the plateau are used, a topographic high pass filter (HPF) was
applied to all values in the investigated region prior to the analysis. An HPF cutoff height of 2 km was used.

2.6. Model-Observation Comparisons

While this study focuses more on the comparison of the results obtained from model output and observation-
based data (using the methods described in previous sections), direct comparisons of modeled and observed
values are made in order to assess the feasibility of the long-term means of relevant model variables. The CRU
TS3.21 data set [Harris et al., 2013] and NCEP/NCAR [Kalnay et al., 1996; Kistler et al., 2001] and ERA40 [Uppala
et al., 2005] reanalyses products were used to validate simulated climate. The Bowen and Revenaugh [2003] data
set was used to validate the simulated precipitation δ18O. For these comparisons, values from the temporal
overlaps of the reanalyses time series and analyzedmodel time period (1970–2000) were used. For brevity, only
comparisons of ECHAM5-wiso and ERA40 precipitation and 2m air temperature are shown here. The remaining
direct comparisons of values are included as difference plots in the supporting information (Figures S1–S4). To
allow the reader to put these differences in context of interobservational data set differences, plots of ERA40
and NCEP precipitation and 2m air temperature are included. Comparison of the reanalysis products with
CRU are included in the supporting information (Figures S5–S8).

Figure 1. Long-term (30 year) means of ECHAM5-wiso total precipitation for seasons DJF (top left), MAM (top right),
JJA (bottom left), and SON (bottom right).
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3. Results

In this section, 30 year long-term means of model output are shown. Furthermore, plots of the Pearson
correlation coefficients from the correlation analyses between the chosen predictor variables and δ18O values
are shown. Results from the multiple regression analysis are also presented. In this study, the term “monsoon
season” is used to describe the major summer rain period on the Indian subcontinent (aka Indian summer
monsoon). Results are presented by seasons and divided into DJF (December, January, and February),
MAM (March, April, and May), JJA (June, July, and August), and SON (September, October, and November).
For better spatial orientation, the geographical locations of several towns and mountains are marked on
the panel plots: Dushanbe (Du), Nanga Parbat (Nn), Kunlun mountains (Ku), Kathmandu (Ka), Lhasa (Lh),
Namche Barwa (Na), and Chengdu (Ch). These locations were chosen to cover particular regions of interest.
Dushanbe and Chengu lie to the west and east of the Tibetan Plateau, the Kunlun Mountains and Lhasa are
locations on the northern and southern plateau, respectively, Nanga Parbat and Namche Barwa lie in the
orogen syntaxes, and Kathmandu is located just south of the high plateau.

3.1. ECHAM5-wiso Simulation Results

The ECHAM5-wiso simulated 30 year seasonal means of 2m temperature, total precipitation rate, and total
precipitation δ18O are presented in Figures 1–3. Results show that the total precipitation rate over central
Asia typically stays below 5mm/day outside the summer season (Figure 1). During the summer monsoon,

Figure 2. Long-term (30 year) means of ECHAM5-wiso 2m air temperature for seasons DJF (top left), MAM (top right), JJA
(bottom left), and SON (bottom right).
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the southeastern Himalaya experiences anomalously high precipitation ≥ 25mm/day. Modeled tempera-
tures reproduce the latitude-related differences in temperatures of central Asia and the Indian subcontinent
(Figure 2). The model output highlights constant low temperatures across the Tibetan Plateau relative to
the temperatures of the surrounding regions that lie at approximately the same latitude but lower altitude.
The temperature on the plateau itself varies between �20°C outside the monsoon seasons and up to 10°C
during the monsoon season. Simulated precipitation δ18O values show a similar altitude-specific geographic
distribution (Figure 3). The typical range of �25 to 5‰ is covered in all seasons, although the average δ18O
values outside the monsoon season are lower. The values on the plateau are usually lower than the values
of surrounding regions that lie on approximately the same latitude but at a lower altitude.

A comparison of long-term seasonal means of modeled and ERA40 precipitation show the largest discre-
pancies in the summer season JJA (Figure 4). ECHAM5-wiso overestimates precipitation along the eastern
Himalayan orogen and to a lesser degree in low-altitude China. This overestimation persists when model
results are compared to NCEP reanalyses and CRU (Figures S1 and S3 in the supporting information). A
similar overprediction of precipitation in the eastern Himalaya, especially in summer, was also noticed in
comparisons to the HAR30 (High Asia Refined analysis) data set [Maussion et al., 2014] for a model simula-
tion with a different temporal coverage that overlaps with that of the HAR time series. However, these
comparisons are not shown here, because a different time period is covered by the simulations presented
in this study and HAR is not yet suitable for calculations of long-term trends due to the short time period
covered by the data set.

Figure 3. Long-term (30 year) means of ECHAM5-wiso total precipitation δ18O for seasons DJF (top left), MAM (top right), JJA
(bottom left), and SON (bottom right).

Journal of Geophysical Research: Atmospheres 10.1002/2016JD024856

MUTZ ET AL. δ18O CONTROLS OVER THE HIMALAYA-TIBET 9284



A comparison of long-term seasonal means of modeled and ERA40 2m air temperature reveals that the
model overestimates temperatures in northwest Pakistan, especially in summer (Figure 5). This model bias
also persists for comparisons to NCEP reanalysis and CRU data. Precipitation differences between the two
reanalysis products (Figure 6) and NCEP and CRU data (supporting information) show discrepancies of a
similar magnitude in low-altitude China and Southeast Asia during the summer season but no significant
disagreement along the Himalayan orogen. On the Tibetan Plateau, 2m air temperature differences between
the reanalysis products (Figure 7) and NCEP and CRU data (see supporting information) are larger than differ-
ences between modeled and ERA40 temperature. The largest discrepancies between modeled and interpo-
lated observation-based δ18O values of the Bowen and Revenaugh [2003] data set exist on parts of the Tibetan
Plateau covering the Kunlun Mountains (≤10‰), north of Lake Balkhash in Kazakhstan, and between Lhasa
and Chengdu in summer (Figure 8).

3.2. Correlation Analysis

Pearson’s R values were calculated by correlation analyses between each predictor variable and δ18O values.
Statistically significant Pearson’s R values with α ≤ 0.05 are shown in Figures 9–11. Statistically insignificant R
values are shown in white. Results are presented for the analyses using 7× 7 grid box windows.

The statistically significant Pearson’s R values attained in the correlation analysis between total precipitation
and δ18O values typically range from 0.4 to 0.6 and�0.2 to�0.8 (Figure 9). Anomalously high positive values

Figure 4. Difference between ECHAM5-wiso and ERA40 precipitation for seasons DJF (top left), MAM (top right), JJA
(bottom left), and SON (bottom right). Long-term means of ERA40 precipitation were subtracted from ECHAM5-wiso
total precipitation means for their temporal overlap (1970–2000).
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of over 0.8 are calculated for MAM in the north of the investigated region and northeast of Chengdu particu-
larly outside the summer season. Anomalously high negative values of under�0.8 can be seen in the north of
the investigated region from MAM to SON, around Dushanbe and north of it during MAM and SON, and in
parts of northern India from DJF to JJA. During DJF and MAM, the most negative values extend to the north-
west toward Nanga Parbat and Dushanbe. During the seasons MAM, JJA, and SON, the negative Pearson’s
R values are predominant. The area covering the easternmost Tibetan Plateau and the region just off the
plateau, approximately between Lhasa and Chengdu, is characterized by positive Pearson’s R values through-
out the year. A second notable feature in the geographical distribution of Pearson’s R values is the high values
along parts of the Himalayan orogen, particularly from DJF to MAM.

Pearson’s R values from analyses based on observed precipitation rates (NCEP) and δ18O values exhibit a
similar pattern, including the high positive values between Lhasa and Chengdu. However, they often reveal
a weaker statistical relationship outside the monsoon season than R values based on model output. Only
during JJA, R values based on observations show a more widespread, strong negative correlation in the
northwest of the investigated region, north of the Caspian and Aral Seas.

The statistically significant Pearson’s R values attained in the correlation analysis between 2m temperatures
and δ18O values are predominantly positive and typically range from 0.2 to over 0.8 (Figure 10). In the region
between the Aral Sea and the Arabian Sea, calculated Pearson’s R values are low in the seasons SON andMAM

Figure 5. Difference between ECHAM5-wiso and ERA40 2m air temperature for seasons DJF (top left), MAM (top right), JJA
(bottom left), and SON (bottom right). Long-termmeans of ERA40 2m air temperature were subtracted from ECHAM5-wiso
2m air temperature means for their temporal overlap (1970–2000).
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and insignificant in summer. There are a few significant R values for the Indian subcontinent during any sea-
son of the year. Along the eastern Himalayan orogen, south of Kathmandu, Pearson’s R values lie between 0.8
and 1.0 from JJA to DJF. For most seasons, few significant correlation coefficients were obtained for the
region west of Lake Baikal. The correlation analysis for the region east of the Kunlun mountains also yielded
few significant Pearon’s R values during the summer season. Overall, there are fewer significant Pearson’s R
values during the summer monsoon than during the remaining year.

Pearson’s R values fromanalyses basedonobserved2mair temperature (NCEP) and δ18O values exhibit a similar
pattern. In a few regions, including the Tibetan plateau and north of the plateau, R values based on observations
are lower (by approximately 0.2–0.4) but mostly still significant. For most seasons, observation-based analyses
yield high positive (>0.8) R values on the Indian subcontinent, where model output-based analyses yield no or
few statistically significant R values.

The statistically significant Pearson’s R values attained in the correlation analysis between the interpolated
GTOPO30 topography and δ18O values are predominantly negative and typically range from �0.4 to over
�0.8 (Figure 11). Most of the highest negative values can be seen on the Tibetan Plateau, the Himalayan
orogen, and in eastern China. Correlation analyses for the region northeast of the Aral Sea yield only a few sig-
nificant Pearson’s R values throughout the year, possibly due to low-relief terrain. The region north of Lake
Balkhash is characterized by a positive correlation between δ18O and topography throughout the year. The
statistical relationship generally weakens north of China, east of the plateau, and on the Indian subcontinent.

Figure 6. Difference between NCEP and ERA40 precipitation for seasons DJF (top left), MAM (top right), JJA (bottom left),
and SON (bottom right). Long-termmeans of ERA40 precipitation were subtracted from NCEP precipitation means for their
temporal overlap.
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Correlation of GTOPO30 topography and observation-based δ18O values is of very limited use and would
result in overfitting, since δ18O values in the Bowen and Revenaugh [2003] data set are interpolated with
topography and actual observations are rare.

The results from the correlation analysis carried out with 5 × 5 and 9× 9 grid box sized geographical areas
(not shown) reveal that most of the patterns of statistically significant values described in this section are
persistent but slightly weakened for 9 × 9 and sparser for 5 × 5. Due to a masking procedure that ignores R
values that are calculated using grid boxes over bodies of water, the missing value margin at the continent
edges increases in area with an increase in the size of the geographical areas used in the analysis. The
otherwise conspicuous pattern in high values at the Himalayan orogen are therefore lost to some extent in
the analysis using 9× 9 grid box sized areas.

Overall, the geographical coverage of high R values is greatest for correlation coefficients calculated from
temperature and δ18O. Since temperature is controlled by altitude, especially at higher elevations, high
widespread R values across the plateau are expected. However, temperature also yields high R values north
of the investigated regions where topography often yields no significant R values. An analysis of the differ-
ence in the strength of correlation, i.e., difference of absolute correlation coefficients, revealed that large dis-
crepancies between R values from topography-δ18O and temperature-δ18O analyses spatially often coincide
with small discrepancies between R values from precipitation-δ18O and temperature-δ18O analyses. To inves-
tigate further, temperature was correlated with topography and precipitation for each month. For brevity,
the results are presented as cumulative correlation coefficients (Figure 12) by adding up the values calculated

Figure 7. Difference between NCEP and ERA40 2m air temperature for seasons DJF (top left), MAM (top right), JJA
(bottom left), and SON (bottom right). Long-term means of ERA40 2m air temperature were subtracted from NCEP 2m
air temperature means for their temporal overlap.
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for each month, thus preserving information that may be lost in an analysis of annual values. Results reveal a
high statistical relationship of temperature and topography predominantly in the south of the investigated
region, north of Lake Balkhash, and north of the Caspian and Aral Seas (Figure 12a). The statistical relationship
between temperature and precipitation is highest in the northwest of the investigated region, Mongolia,
northwestern India, and southeast of Chengdu (Figure 12b).

3.3. Multiple Regression and Cluster Analysis

Results of themultiple regression analysis are presented in Figure 13. The selectionof results is again presented
as seasonal means as in previous sections. The percentage of the variance in precipitation δ18O explained
by the variables included in the multiple regression analysis, namely, total precipitation, 2m temperature,
and topography, ranges from 0% to over 90% (Figure 12). During the summer season, the average explained
variance in the region of interest is lower than in all of the other seasons.

In the region between the Aral Sea and the Arabian Sea, the southern Indian subcontinent, east of the Kunlun
Mountains and along the Russian-Mongolian border west of Lake Baikal, the average percentage of explained
variance is lowest and often within 0%–10%. The region between the Aral Sea and the Arabian Sea holds
higher values in winter. In Kazakhstan, southern Russia, eastern China, and along the Himalayan orogen,
the percentage of explained variance is often highest and sometimes 90–100%. The explained variance along
the Himalayan orogen at and just south of Kathmandu is particularly high in winter, but more restricted to the
eastern Himalayan orogen during JJA and SON, and lowest in the MAM season.

Figure 8. Difference in precipitation δ18O between ECHAM5-wiso and the Bowen and Revenaugh [2003] data set for
seasons DJF (top left), MAM (top right), JJA (bottom left), and SON (bottom right). Precipitation δ18O values from the
Bowen and Revenaugh [2003] data set were subtracted from ECHAM5-wiso precipitation δ18O values for each season.
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Similar to the results from correlation analyses, the pattern of explained variance calculated in the multiple
regression procedure persists but weakens with a grid box area increase.

Results from themultiple regression analysis carried out over the complete study area, from 40°E to 120°E and
0°N to 60°N, shows similarly high total explained variance, ranging from ~50% to ~90% over space and
months analyzed. As in the results from the analyses using smaller geographic areas, a decrease in the
explained variance in the summer season can also be observed here. This temporally coincides with a
weakened statistical δ18O-temperature relationship and slightly stronger δ18O-precipitation and δ18O-
topography relationship. Averaged over all seasons, the total explained spatial variance (73.7%) can be
broken down into that coming from 2m air temperature (83.8% of the total), from topography (16.2%),
and from total precipitation (1.2%).

The multiple regression analysis conducted on the basis of observation-based data does not yield the same
high values of explained variance. The highest values are calculated for August and the JJA season on the
plateau, reaching up to approximately 80%. However, most values are below 50%. Other regions of
high explained variance include the eastern Himalayan orogen syntax near Kathmandu and Lhasa and
the region north of the Caspian and Aral Seas. Even though the explained variance calculated on the
basis of observational data sets is much lower than that calculated on the basis of model output, the
regions characterized by highest explained variance are the same. This result underscores the utility of
using an isotope-tracking AGCM to understand spatial variability in δ18O-precipitation for regions where
limited data are available.

Figure 9. Correlation coefficients calculated from long-term (30 year) means of total precipitation and precipitation δ18O
values for seasons DJF (top left), MAM (top right), JJA (bottom left), and SON (bottom right).
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Results from the cluster analysis carried out on the basis of modeled precipitation δ18O variability show three
zones along a southeast-northwest axis on the Tibetan Plateau. Explained δ18O variance is similarly high in all
clusters (92%, 93%, and 97% in clusters 1, 2, and 3, respectively). Contributions by topography, temperature,
and precipitation vary from 64%, 35%, and 1% in cluster 1 to 87%, 13%, and 0% in cluster 2 and 40%, 60%,
and 0% in cluster 3 (Figure 14). Topography and temperature are highly correlated in the clusters (R=0.94,
0.94, and 0.96 in clusters 1, 2, and 3, respectively). Cluster 1 is characterized by high annual (�9.7) and mon-
soon season (�5.4) means and large amplitude of values (12.8). Cluster 2 is characterized bymoderate annual
(�11.6) and monsoon mean (�11.4) and moderate amplitude of values (11). Cluster 3 is characterized by low
annual (�15.2) and monsoon mean (�18) and low amplitude of values (9.5). The geographical coverage of
the third cluster corresponds to the distribution of extremely low values in August and other monsoon
months. Respectively, 40, 32, and 40 grid boxes are assigned to clusters 1, 2, and 3.

The cluster analysis carried out on the basis of observed precipitation δ18O yields similar results (Figure 15),
but cluster 3 is more central than cluster 3 calculated on the basis of model output. Cluster 1 is characterized
by high annual (�10.2) and monsoon season (�7.1) means and large amplitude of values (11.5). Cluster 2 is
characterized by moderate annual (�14.6) and monsoon mean (�12.3) and moderate amplitude of values
(10.1). Cluster 3 is characterized by low annual (�17.2) and monsoon mean (�16.2) and low amplitude of
values (8.6). Respectively, 37, 35, and 40 grid boxes are assigned to clusters 1, 2, and 3.

ClusteringbasedonRvaluescalculated in thecorrelationanalysesusingmodeloutput results inoneclusteroccu-
pying much of the southern Tibetan Plateau, one occupying the northern and western plateau, and a smaller

Figure 10. Correlation coefficients calculated from long-term (30 year) means of 2m air temperature and precipitation
δ18O values for seasons DJF (top left), MAM (top right), JJA (bottom left), and SON (bottom right).
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Figure 11. Correlation coefficients calculated from topography and long-term (30 year) means of precipitation δ18O values
for seasons DJF (top left), MAM (top right), JJA (bottom left), and SON (bottom right).

Figure 12. Cumulative absolute monthly correlation coefficients for analyses of (a) temperature and topography, and
(b) temperature and precipitation.
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cluster between the northern and southern clusters on the eastern plateau (Figure 16). The larger clusters are
characterized by high correlation of temperature and topographywith δ18O, while themiddle zone is character-
ized by a weaker relationship with temperature and topography and a stronger relationship with precipitation.

4. Discussion
4.1. Synthesis of Results and Processes Influencing Precipitation δ18O

Generally, ECHAM5-wiso accurately reproduces temperature and precipitation patterns in the investigated
region. In most cases, discrepancies between model and observation-based (ERA40, NCEP, and CRU) precipi-
tation and 2m air temperature do not exceed discrepancies between the observation-based data products.
A notable exception is the model bias in precipitation along the Himalayan orogen. ECHAM5-wiso signifi-
cantly overestimates precipitation in this region, and this bias persists in comparison to all observation-based
data products. ECHAM5-wiso also overestimates near-surface temperatures on the plateau. However,
there seem to be similarly large discrepancies in temperature between observation-based data products
(Figure 7 and S8 in supporting information). These model biases in precipitation and temperature have
already been identified for an older version of the model (ECHAM4-iso) and the GCM of the Laboratoire de
Météorologie Dynamique (LMDZ-iso) by Gao et al. [2011], and resulting limitations for the interpretation of
model output ought to be taken into consideration. Modeled precipitation δ18O values show large differ-
ences to the observation-based Bowen and Revenaugh [2003] data set on parts of the Tibetan Plateau, eastern
Kazakhstan, and between Lhasa and Chengdu in summer. However, since the density of observations in the

Figure 13. Total δ18O variance explained by all predictors (temperature, topography, and precipitation) for seasons DJF
(top left), MAM (top right), JJA (bottom left), and SON (bottom right).
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investigated region is low, these differences may be due to model biases as well as the spatial interpolation
method applied by Bowen and Revenaugh [2003].

The correlation coefficients calculated from precipitation means and precipitation δ18O values are predomi-
nantly negative. One notable observation in the spatial distribution of these values is a pattern of strong

Figure 14. (top) Clusters on the Tibetan Plateau determined by the cluster analysis on the basis of modeled δ18O variability
and (bottom) annual mean percentage contributions of predictors (temperature, topography, and precipitation) to the
total explained δ18O variance as calculated in the multiple regression.

Figure 15. Clusters on the Tibetan Plateau determined by the cluster analysis on the basis of observed δ18O variability.
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negative correlation coefficients south of the Himalaya that becomes more pronounced and stretches farther
to the northwest towardNanga Parbat andDushanbe in seasons DJF andMAM. This temporally coincideswith
higher average precipitation rates around Nanga Parbat and Dushanbe. This negative correlation may be
attributed to rainout. However, the record high precipitation rates at Kathmandu and along the Himalayan
orogen in summer are not reflected in the Pearson’s R values presented here, possibly due to the fact that
only variance in space is considered. R values calculated from observation-based data sets are lower except
in summer, when strong negative correlation is more widespread north of the Caspian and Aral Seas.

The correlation coefficients calculated from 2m air temperature means and precipitation δ18O values are
predominantly positive and particularly high (>0.9) in the region around Chengdu and along the eastern
Himalayan orogen in all seasons. The high Pearson’s R values along the Himalayan orogen spatially coincide
with a steep temperature and topography gradient and may be attributed to the rainout effect, i.e., the
depletion of isotopic values through the loss of moisture from the air as a result of cooling [Dansgaard,
1964; Gat, 1996]. Results from observation-based analyses yield similar results. The main differences are high
positive R values on the Indian subcontinent and 0.2–0.4 lower R values on the plateau, north of the plateau,
where stations providing observations are sparse. Overall, correlation of observation-based data yield lower
R values. This may reflect an overestimation of local climatic controls on the δ18O distribution by the model.
In an investigation of the influence of the Asian monsoon on δ18O, Vuille et al. [2005] have already identified
an overestimation of the local climatic controls, in particular temperature, by the older ECHAM4-iso.

The correlation coefficients calculated from GTOPO30 topography and precipitation δ18O values are predo-
minantly negative and particularly high (<�0.9) along the Himalayan orogen and on parts of the plateau
and China. The high correlation coefficients along the Himalayan orogen coincide with a steep topographic
gradient and may be attributed to the effect of altitude on precipitation δ18O values. An increase in altitude
favors a decrease in temperature, cooling of air masses, and depletion of isotopic values due to the loss of
moisture from the air [Dansgaard, 1964; Gat, 1996].

Overall, the distribution of Pearson’s R values calculated from topography and precipitation δ18O is similar
to that of the values calculated from 2m air temperature and precipitation δ18O but spatially more restricted
to the plateau and surrounding regions due to the high covariance and strong physical relationship of
temperature and topography in regions of great topographic relief. The correlation analysis using 2m air
temperature and isotopic values more frequently yielded high correlation coefficients (>0.9) in Kazakhstan
and southern Russia.

Correlation analyses using topography and temperature yield high R values especially in the southern high-
altitude regions and lower values in the lower altitude north. Temperature and precipitation are highly
correlated mostly in the northwest of the investigated region. This spatially coincides with areas where
temperature is highly correlated with δ18O values but topography is not. Taking this into account, the high

Figure 16. Clusters on the Tibetan Plateau determined by the cluster analysis on the basis of correlation of δ18O values
with precipitation, temperature, and topography.
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correlation of temperature with δ18O values in regions with notable topographic features can be explained
by the inverse physical relationship between altitude and temperature. The correlation of δ18O with temp-
erature in lower altitude northwest characterized by no significant correlation between temperature and
topography may ultimately not be attributed to a topographic control. The high correlation of temperature
with δ18O values in this region may instead be related to precipitation-related processes.

The amount of precipitation δ18O variance that can be explained by the three factors, precipitation, tempera-
ture, and topography, in the multiple regression analysis is highest along the Himalaya and China. The 2m air
temperature is the dominant predictor in almost all regions. In the regression analysis using the entire study
area, it contributes 93.6% of the total explained spatial variance, while topography and total precipitation
only contribute 4.5% and 1.9%, respectively. The average contribution of topography to explained δ18O
variance based on moving geographical windows is 16.2%, and the average δ18O variance explained by
topography in the three precipitation δ18O clusters on the plateau are 64%, 87%, and 40%. These results
are significant as they show that in some regions, topography shows a more statistically robust relationship
with modeled δ18O variability than temperature and may therefore be a better predictor for spatial δ18O
variability, especially on the plateau. During the summer season (JJA), less variance can be explained than
during other seasons. This can be observed for results of all regression analyses and may be due to the failure
to include a variable in the spatial analyses that adequately represents the effects of vapor source on preci-
pitation δ18O. Upstream circulation has been demonstrated to be one of the important controls on precipita-
tion δ18O over the Tibetan Plateau [Vuille et al., 2005; Gao et al., 2011, 2013; Bershaw et al., 2012; Yao et al.,
2013; He et al., 2015]. Gao et al. [2011] note that the older ECHAM4-iso simulations underestimate the amount
effect in summer at the southern margin of the plateau. Part of the unexplained variance, especially during
the monsoon season, may be due to the inability of the model, and the restrictions of the spatial correlation
and multiple regression applied here, to capture this effect. This explanation is also supported by Li et al.
[2016] highlighting the importance of vapor source as a control on δ18O during the monsoon season.

While the explained variances calculated in the multiple regression procedure using observation-based data
is much lower, the regions of highest explained variance are the same.

4.2. Comparison to Other Studies

Previouswork by Tian et al. [2003] and Araguas-Araguas [1998] were based on observational data and describe
different climatic controls on δ18O value distribution in Southeast Asia. Based on a<9 year record of meteor-
ological station data, Tian et al. [2003] describe a strong relationship between enhanced monsoon activity,
increased precipitation rates, and a depletion in heavy isotopes on a 1500 km southwest-northeast transect
of the Tibetan Plateau. This is accompanied by a weak δ18O-temperature relationship on seasonal and
annual scales [Tian et al., 2003]. Araguas-Araguas [1998] also describes the amount effect overshadowing
the temperature effect in certain regions such as Lhasa. While the results of this study also show a weaker
δ18O-temperature relationship during the summermonsoon, precipitation rates continue to explain very little
of the spatial δ18O variance. This could be due to the lower spatial resolution and timescales used in this study
or inadequately represented precipitation rates. However, the strong relationship between δ18O values and
temperature on a monthly scale, described by Tian et al. [2003], is consistent with the findings of this study.

Liu et al. [2008] used a model to predict δ18O distribution over China by using geographical parameters,
namely, latitude and altitude, as proxies for the more direct controls of the isotopic composition of precipita-
tion (i.e., temperature driven rainout effect and vapor source control). In this study, Pearson correlation coef-
ficients of altitude and δ18O values are high over the plateau and China throughout most of the year and
show, not surprisingly, a similar yet inverse relationship to that of temperature with δ18O values. However,
the relationship of temperature with precipitation δ18O remains strong in regions where the relationship of
altitude and δ18O weakens, thus highlighting the regional limits of using altitude rather than temperature
as a predictor of δ18O in statistical models.

Studies by Vuille et al. [2005] and Gao et al. [2011] use ECHAM4-iso to understand isotopic variability. Both
studies highlight ECHAM4-iso’s deficiencies in the model’s ability to simulate different aspects of monsoon
precipitation. Gao et al. [2011] also list an overestimation of precipitation, underestimation of temperature
on the Tibetan Plateau, a stronger than observed correlation of precipitation and temperature with δ18O,
an underestimation of the amount effect in summer, and overestimation of the effect of temperature and
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precipitation in winter at the southern Tibetan Plateau as biases for ECHAM4-iso (and LMDZ). ECHAM5-wiso
output generated for this study shows a stronger (spatial) correlation between simulated temperature
and precipitation with δ18O than between observation-based data sets. However, the sparse δ18O observa-
tion record in the investigated region limits the conclusions that can be drawn from the comparison of
model correlations with observation-based correlations. ECHAM5-wiso also overestimates precipitation at
the southern Tibetan Plateau during the monsoon season. However, it does not show an underestimation
of temperatures on the Tibetan Plateau. Findings of a high correlation between temperature and δ18O
north of the region influenced by the Indian Monsoon empirically complement findings of Tian et al.
[2001a, 2001b]. The cluster analysis based on variables describing only model precipitation δ18O variability
split up the domain of the Tibetan Plateau into roughly southeast to northwest trending zones and
provides empirical support for the more qualitative division based on δ18O values [Li et al. 2016]. The
analysis based on the relationships between precipitation δ18O and temperature, precipitation, and topogra-
phy (established in this study) yields two major zones in the north and south of the eastern plateau and a
smaller zone between them. The latter supports the division into three north-south trending zones as
discussed in, e.g., Tian et al. [2001a] and Yao et al. [2013] based on controls of δ18O values rather than
δ18O variability only. The weaker correlation of topography and temperature with δ18O in the smaller middle
zone between the Himalayas and Tanggula Mountains south of the Kunlun Mountains is consistent with
reported loss of altitude effect [Yao et al., 2013]. It is accompanied by stronger correlation with precipitation
and spatially overlaps with the region identified by Tian et al. [2001a] in which summer moisture originates
from the Bay of Bengal.

4.3. Methodological Limitations

In addition to general model uncertainties of ECHAM5, there are a number of limitations of the statistical
methods used in this study. Due to the incremental procedure of the multiple regression that prevents an
overestimation of explained variance (section 2.4), similar and strongly dependent predictors, such as 2m
air temperature and topography in this study, may “compete” to be chosen as the first predictor. This may
result in little explained δ18O variance by one of the competing predictors despite a high correlation between
them or even in a complete exclusion of the predictor from the statistical model. The multicollinearity
of topography and temperature results in such a competition and may be the reason why temperature
explains significantly more isotopic variance than topography despite the high correlation of topography
with δ18O values.

The residual or unexplained δ18O variance may be the result of omissions of relevant factors from our
analysis. One such example of this includes the effect of the distance of the investigated geographical
window to the coast along the vapor source trajectory. Such an isotopic depletion factor was identified as
important by Dansgaard [1964]. For part of the investigated region, i.e., the southern Tibet, Nepal, and
northern India, upstream convective activity during the monsoon season has been listed as a major control
of spatial and temporal δ18O variability [Vuille et al., 2005; Gao et al., 2011, 2013; Bershaw et al., 2012; Yao
et al., 2013; He et al., 2015]. While the importance of local climate in explaining the spatiotemporal variability
of precipitation δ18O at the southern Tibetan Plateau has also been highlighted [Gao et al., 2011], they may
account only for a small fraction of the δ18O variability during the monsoon season [Gao et al., 2013]. This
suggests that caution is needed when interpreting the results of this study for that particular region during
the monsoon season.

Unfortunately, the analysis conducted here with different size windows for analysis around a point is not
amendable to include predictors that adequately capture upstream convective activity and, hence, is the
focus of our efforts using a stream trace analysis in the companion paper to this one by Li et al. [2016]. As part
of this study, several other efforts have been made to quantify the effect of the rainout along the path
traveled by an air mass on precipitation δ18O. These include the calculation of the distance to the nearest
body of water, the calculation of the distance to the nearest body of water weighted by the frequency and
degree of deviation of wind directions from the direct path, and the calculation of the distance between
an investigated geographical window and a region over the sea identified as relevant to the local precipita-
tion by correlation with latent heat flux over the sea. When used in the regression procedure, the weighted
distances contributed most (>~ 5%) to explaining the δ18O variance that had not been explained by the
other predictors used in this study. This predictor may be refined by making a more informed choice of a
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possible water source region and developing a simple dynamic model that is able to accommodate geogra-
phical shifts in the water source region. None of the attempts we made produced satisfactory results
for quantifying the effects of upstream circulation over Tibet on precipitation δ18O with the correlation
and regression analyses. This may explain the decrease in explained δ18O variance in summer and remains
one of the study’s shortcomings.

Finally, model performance may introduce a bias in the results of the model-based multiple regression
analysis. While ECHAM5 and other GCMs are able to accurately simulate near-surface air temperatures,
mesoscale circulation is not well resolved and regional orography is poorly represented [e.g., Cohen, 1990].
Since the main results of this study are based on relatively small geographical domains, varying model
performance for temperature and precipitation may result in an underestimation of the role of precipitation
in explaining the spatial variability of precipitation δ18O.

The caveats associated with our analysis are mentioned to highlight that some degree of (unquantifiable)
uncertainty exists in our results. The approach presented here does, however, provide a robust statistical
analysis of the common regional factors attributed to spatial precipitation δ18O variations.

4.4. Conclusions

The primary conclusion of this study is that predictors considered in the statistical model, namely, 2m air
temperature, precipitation, and topography, are able to explain most of the precipitation δ18O spatial
variance over the Tibetan Plateau. More specifically, topography and topography-related variations in
temperature show the strongest statistical relationship with precipitation δ18O values over the Himalaya-
Tibet region, indicating that most of the modeled spatial δ18O variability can be explained by the rainout
effect, i.e., the depletion through loss of moisture from the air as a result of cooling. While temperature
yields most of the highest Pearson correlation coefficients for different geographical regions investigated,
topography shows an even stronger correlation along the Himalaya Mountains, suggesting that topo-
graphic variability in these regions empirically better represents the controls of the rainout effect than
2m air temperature. In regions where temperature is the dominant predictor but primarily is controlled
by topography, like in the region of the Tibetan plateau, much of the precipitation δ18O value distribution
can ultimately also be attributed to topography, although the control of the rainout effect is better repre-
sented by temperature variability here. In regions where topography has no apparent control over
temperature, results from temperature-precipitation correlation analyses suggest that the high correlation
of temperature with δ18O values may in part be attributed to variability in precipitation rates. The smallest
amount of the precipitation δ18O variance that can be explained in our analysis occurs between the Aral
Sea and the Arabian Sea. Values of explained variance are particularly low in summer when the otherwise
strong statistical relationship between temperature and δ18O is weakened. The correlation of temperature
with δ18O is also weak in the region influenced by the Indian Monsoon. The inability of the model and
methods to adequately capture the effect of upstream circulation on δ18O variability in Tibet, which has
previously been identified as a major control in the region during the monsoon season, is one of this
study’s limitations and may be the reason for the low explained δ18O variance in summer in the regions
affected by the monsoon.

It can be concluded that the temperature and altitude effect are the dominant regional controls of the spatial
distribution of isotopic values at least outside the summer monsoon season and north of the region influ-
enced by the Indian Monsoon.
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