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1. Introduction 
 
 
The SUGAR Toolbox contains scripts for calculating various thermodynamic, kinetic, 
and geologic properties of substances occurring in the marine environment, particularly 
gas hydrate and seep systems. The algorithms have been programmed over the past 
fifteen years and have been updated, corrected and harmonized in the course of the 
German gas hydrate intiative SUGAR (2008-2014). 

The scripts are coded as functions in the MATLAB environment and require the basic 
version as well as the “Optimization Toolbox”. From the latter the function ‘fsolve’ is 
used in several scripts. ‘fsolve’ can be replaced by ‘fzero’, if necessary, but this may 
lead to poor or no performance. 

The scripts return ‘NaN’ output values for provided input values outside of the validity 
range of the respective underlying algorithm. A warning is issued as well. This check 
may be removed by the user at his/her own risk. 

The scripts were checked against values reported in the cited references as much as 
possible, but no guarantee is given for correctness. If you, the user, find severe errors, 
we, the authors, would be grateful, if you would report them to us by sending an email 
to “mhaeckel@geomar.de”. 

In addition to brief descriptions of the toolbox scripts and some notes on the underlying 
basic theory, this document also contains tables of property values where no algorithm 
for programming could be found. All of this is by no means a compendium covering the 
topics or provides a complete reference list, but, hopefully, assists in getting started in 
the fascinating world of marine biogeochemical modelling.  

 

The SUGAR Toolbox can be downloaded from the PANGEA world database at 
“http://doi.pangaea.de/10.1594/PANGAEA.816333”. 

 

 

Kiel, July 2013 
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2. Thermodynamic properties 
 
2.1. Phase diagrams of seawater and the binary systems CH4–H2O and CO2–H2O 
 
The most commonly used model to predict gas hydrate equilibrium pressures and 
temperatures was developed by van der Waals and Platteeuw (1959) and extended by 
Parrish and Prausnitz (1972) to account for mixed gas hydrates. It is based on the 
equality of the chemical potential of water molecules in gas hydrate and in liquid water 
at equilibrium: 
 

l
W

h
W µµ ∆=∆                         (Eq.2.1.1) 

 
where h

Wµ∆   is the difference in chemical potential between water in the hypothetical 
empty gas hydrate lattice and in the real gas hydrate lattice filled with guest molecules, 
whereas l

Wµ∆  is the difference in chemical potential between water in the hypothetical 
empty gas hydrate lattice and water in the liquid phase. At temperatures below the 
freezing point of water, the chemical potential difference to water in ice has to be taken 
instead.  
 

h
Wµ∆  can be calculated from: 

 











Θ−−=∆ ∑∑

j
jm,

m
m

h
W 1lnR vTµ                 (Eq.2.1.2) 

 
where R is the gas constant, T  is the temperature in Kelvin, m is the type of gas 
hydrate cage (large or small), mv is the number of cages of type m  per water molecule 

in the gas hydrate lattice, j is the type of guest molecule and  jm,Θ  is the cage 

occupancy of molecule j  in cages of type m . For structure-I hydrate,  largev  and smallv  

equal 6/46 and 2/46, respectively. The cage occupancy is given by a Langmuir 
adsorption relation: 
 

∑+
=Θ

l
lml

jmj
jm, C1

C

f

f
                     (Eq.2.1.3) 

 
where jf  is the fugacity of the guest molecule j and  the sum in the denominator is 

running over all types of guest molecules present in the hydrate lattice. The Langmuir 
constant mlC  is obtained by integrating the interaction potential between the guest 
molecule and the water in the hydrate lattice. In most publications, a Kihara-type cell 
potential is assumed and the integration space is confined to one lattice cell. An 
exception is the work of Duan and Sun (2005; 2006), who derive the Langmuir 
constants from ab initio intermolecular potentials. The calculated Langmuir constants 
depend on the parameters that are used for the Kihara potential, the distances 
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between the interacting molecules in the hydrate lattice and the size of the integration 
space which differ in publications from different research groups.  
 
The difference in chemical potential between the empty hydrate lattice and water in the 
liquid phase is derived from: 
 

( )w

l
W

2

l
W

0

l
W

l
W ln
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00

m
0

adp
T

V
dT

T
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TT
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p
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−∆+
∆
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∫∫

µµ
          (Eq.2.1.4) 

 
where 0l

Wµ∆  is the chemical potential difference at reference pressure 0p  and 

reference temperature 0T , usually taken to be 0 MPa and 273.15 K, and wa  is the 
activity of water. The second term on the right hand side gives the temperature 
dependence at constant pressure, while the third term corrects for pressure effects. 
The expressions l

Wm
H∆  and l

WV∆   are the molar enthalpy difference and the change in 

the partial molar volume of water between an empty gas hydrate and liquid phase, 
respectively.  
 
In order to calculate the activity of water, interactions of water molecules with dissolved 
ions and molecules have to be taken into account. The Pitzer (1973) formalism is 
widely considered to be the standard model for calculating activities in seawater. 
According to this model, the activity coefficient iγ  for species i is calculated from 
 

γ

ijkkj
ijk

i
γ

ijj
ij

ii CB  DHln mmmmm ∑∑ ++=γ .             (Eq.2.1.5) 

 
DH is a Debye-Hückel limiting law, γ

ijB  are interaction parameters for the binary 

interactions of species i  and j , γ

ijkC  are interaction parameters for the ternary 

interactions of species i , j  and k  and m is the concentration of the species in terms 

of molality. The activity coefficient is related to the activity by 
 

www ma γ= .                        (Eq.2.1.6) 
 
When all constants in Eq.2.1.2 and Eq.2.1.4 are known, Eq.2.1.1 can be solved for the 
equilibrium pressure at a given temperature by numerical iteration.  
 
A slightly different approach to calculating gas hydrate equilibria is the fugacity model, 
where the equilibrium condition is given by 
 

l
W

h
W ff =                           (Eq.2.1.7) 

 
with Wf  being the fugacity of water in the hydrate or liquid phase (e.g. Klauda and 
Sandler, 2000; 2003; Ballard and Sloan, 2002; Jager et al., 2003).  
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A multiparametric equation for the direct calculation of methane and carbon dioxide 
hydrate equilibrium pressures as a function of temperature and salinity was developed 
by Tishchenko et al. (2005; 2009). In this approach, the equation for the dissociation 
pressure was derived by fitting of experimental phase boundary data. 
 

 

 
Figure 2.1: Vapor-liquid equilibrium curve and saturation curve of the system NaCl-
H2O. The NaCl concentration corresponds to S = 300 (see comments in toolbox script 
phase_sw.m).

SUGAR Toolbox: 
 
Included programs for the calculation of phase boundaries are:  
 
phase_co2h2o.m    Phase boundaries of carbon dioxide with seawater 
phase_ch4h2o.m    Phase boundaries of methane with seawater 
They are based on the multiparametric equations of Tishchenko et al. (2005; 2009). 
 
phase_sw.m     Phase boundaries of seawater  
vlh_naclh2o.m     Vapor/liquid/halite 3 phase equilibrium of NaCl solutions  
These scripts are based on multiparametric equations as published by Driesner 
(2007). Driesner’s equations were developed for NaCl solutions. Input for the script 
is salinity which is converted to a NaCl concentration of equivalent ionic strength 
using Millero’s reference composition of seawater (Millero et al., 2008). 
 
hydrate_phasediagram.m  Plots the dissociation curves of CH4- and CO2-hydrates 
sw_phasediagram.m    Plots the phase diagram of seawater  
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Figure 2.2: Phase diagrams of the system CH4-H2O: a) pure water (S=0), b) seawater 
(S=35). 

 

 

Figure 2.3: Phase diagrams of the system CO2-H2O: a) pure water (S=0), b) seawater 
(S=35). 
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2.2.  Energies for phase transitions  
 
When a thermodynamic system undergoes a phase transition, a change of enthalpy is 
observed. The enthalpy of vaporization is the energy that is required to transform a 
given quantity of a substance into a gas, while the enthalpy of fusion is the energy that 
is required to transform a solid into a liquid. The enthalpy of vaporization vH∆ can be 
calculated from the Clapeyron equation: 
 

TV

H

T

p

v

v

d

d

∆
∆=                         (Eq.2.2.1) 

 
where vV∆  is the volume change during the phase transition. 
 
For isobaric phase transitions, vH∆ can also be derived from the volume change and 

the change of internal energy vU∆ : 
 

vvv VpUH ∆+∆=∆  .                    (Eq.2.2.2) 
 
 

 
 

SUGAR Toolbox: 
 
The specific enthalpy of CH4, CO2, N2, O2 and (sea)water is an output parameter of 
the functions: 
eos_ch4.m  
eos_co2.m 
eos_n2.m 
eos_o2.m  
eos_h2o.m  
eos_sw.m 
eos_swDriesner.m 
Enthalpies for phase transitions can thus be calculated from the enthalpy change at 
the phase boundary. 
 
In the pressure and temperature range of interest for hydrate formation, CH4, N2 
and O2 do not undergo a phase transition, whereas the liquid/gas phase boundary 
of CO2 and the solid/liquid phase boundary of water intersect with this range. The 
equations used in eos_sw.m are valid for the liquid phase of seawater and the 
liquid and gas phase of pure water, only. Therefore, no enthalpies of fusion for can 
be derived from this function, while enthalpies of vaporization for pure water can be 
extracted from the output of eos_h2o.m and enthalpies of vaporization for saltwater 
can be extracted from eos_swDriesner.m. The enthalpy of vaporization for CO2 can 
be calculated from the output of eos_co2.m by evaluating the enthalpy difference at 
conditions slightly above and below the phase transition curve. 
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Figure 2.4: Specific enthalpy of vaporization for CO2. 
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2.3. Heat capacities of H2O, seawater, N2, O2, H2S, CH4, CO2, CH4 hydrate and CO2 
hydrate 
 
The specific heat capacity c  is the proportionality factor between the thermal energy 
Q  that is absorbed by a substance of mass m  and the generated change in 
temperature T∆ : 
 

T

Q

m
c

∂
∂= 1

.                        (Eq.2.3.1) 

 
(Incompressible) liquids and solids have a single heat capacity value. For gases, two 
values are defined: The specific heat capacity at constant pressure ( pc ) and the 

specific heat capacity at constant volume ( Vc ).  
 
 
 
 

 
 
 
 

SUGAR Toolbox: 
 
As for all thermodynamic properties, the heat capacity can be calculated from any 
fundamental thermodynamic potential. Based on this approach, it is an output 
parameter of the routines: 
eos_h2o.m    for water 
eos_sw.m     for seawater 
eos_swDriesner  for seawater 
eos_co2.m    for CO2 
eos_ch4.m    for CH4 

eos_n2.m     for N2 
eos_o2.m     for O2 
 
For the temperature dependence of the methane hydrate heat capacity, an 
empirical function has been developed by Gupta (2007). This function has been 
integrated into the routine:  
heatcap_ch4gh.m. 
 
No published data for the heat capacity of CO2 hydrate could be found, but it is 
believed to show a similar behavior as methane hydrate.  
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Figure 2.5: Specific heat capacity of seawater and isobaric heat capacities of 
(sea)water, CH4, CO2, N2, O2 and CH4 hydrate as a function of temperature. 

 

Figure 2.6: Specific heat capacity of seawater and isobaric heat capacities of 
(sea)water, CH4, CO2, N2 and O2 as a function of pressure. The phase transition from 
gaseous to liquid CO2 is marked by a decrease of cp. 
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Figure 2.7: Specific heat capacities at constant volume of CH4, CO2, N2 and O2 as a 
function of temperature. 

 

Figure 2.8: Specific heat capacities at constant volume of CH4, CO2, N2 and O2 as a 
function of pressure. The phase transition from gaseous to liquid CO2 is marked by a 
decrease of cV. 
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2.4 Equations of State for H2O, seawater, CH4, CO2, N2, O2 and H2S 
 
From statistical mechanics, it is possible to derive an expansion of the ideal gas law 
which is known as the virial equation of state (virial EOS): 
 

n
j

2n
n

B

B 
k

ρρ ∑
=

+=
T

p
                     (Eq.2.4.1) 

 
where ρ  is the density, Bk is the Boltzmann constant and nB  are the temperature 
dependent virial coefficients.  
 
Although the virial EOS has a firm theoretical background, the derivation of the virial 
coefficients is not trivial. More applicable equations for an EOS are for example the 
Redlich-Kwong (Redlich and Kwong, 1949), Redlich-Kwong-Soave (Soave, 1972) and 
Peng-Robinson (Peng and Robinson, 1976) equations of state. These are cubic 
equations with respect to the molar volume mV  and have the general form: 
 

( ),TV
V

T
p m

m

f
b

R +
−

=                     (Eq.2.4.2) 

 
where b  is a constant that depends on the molecule of interest and ( ),TVmf  is a 
function of molar volume and temperature. 
 
Alternatively, the EOS can be derived from a thermodynamic potential. If a 
fundamental thermodynamic potential of a system is known, the complete 
thermodynamic representation of the system is available and all thermodynamic 
equilibrium properties can be calculated, including the EOS. Each thermodynamic 
potential has natural independent variables. Experimental data in marine sciences are 
typically measured as a function of pressure and temperature. The corresponding 
thermodynamic potential with pressure and temperature as natural variables is the 
Gibbs free energy G : 
 

TSpVUG(p,T) −+=                     (Eq.2.4.3) 
 
where U is the internal energy and S  is the entropy of the system. 
 
Unfortunately, the Gibbs function is ambiguous at phase boundaries. Therefore it 
cannot be used for the description of systems with phase transitions in the temperature 
and pressure range of interest. For these systems, the Helmholtz free energy A  
 

TSUTA −=),(ρ                       (Eq.2.4.4) 
 
is used instead. Natural variables of the Helmholtz free energy are density and 
temperature. The density is calculated for given pressures by numerically solving the 
EOS. 
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SUGAR Toolbox: 
 
The toolbox functions 
eos_ch4.m 
eos_co2.m 
eos_n2.m 
eos_o2.m 
eos_h2o.m 
use formulations for the thermodynamic properties of CH4 (Setzmann and Wagner, 
1991), CO2 (Span and Wagner, 1996), N2 (Span et al., 2000), O2 (Schmidt and 
Wagner, 1985) and H2O (Wagner and Pruß, 2002; with additional information from 
IAPWS, 1996, IAPWS, 2007, and Marcus, 2000) that have been derived from the 
Helmholtz energy formalism.  
 
Some older publications use the (outdated) IAPS 1984 formulation (IAPS, 1984; 
Kestin, 1986; IAPWS, 2007; Marcus, 2000). The parameter-fits depend on water 
densities from IAPS84. Therefore, the IAPS84 formulation is also provided in the 
toolbox, but its use is not recommended. 
eos_IAPS84.m 
 
For seawater, a Gibbs energy formalism has been developed (Feistel, 2008; 
IAPWS, 2008), which corrects the values for pure water for salt effects. The pure 
water values are calculated with a formalsm based on the Helmholtz energy 
(Wagner and Pruß, 2002). Since the Gibbs energy formalism is inaccurate at phase 
boundaries, it is only valid for seawater in the liquid phase. The corresponding 
toolbox function is 
eos_sw.m 
 
Densities, enthalpies and heat capacities for NaCl solutions over an extended 
temperature and pressure range can be calculated with the formalism of Driesner 
and Heinrich (2007). Driesner (2007) and Driesner and Heinrich (2007) use the 
Wagner and Pruß (2002) EOS for pure water and substitute the input temperature 
by a “modified temperature” that depends on NaCl concentration. The toolbox 
implementation takes salinity as input parameter und converts it to a NaCl 
concentration of equivalent ionic strength. 
eos_swDriesner.m 
 
eos_h2s.m 
calculates density and fugacity coefficient of H2S (Duan et al., 2007; Reamer et al., 
1950). It is based on an equation of state that is a higher order polynomial of the 
inverse molar volume.  
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2.5. Densities of H2O, seawater, CH4, CO2, N2, O2, H2S, CH4-CO2-N2 mixtures, CH4-
rich and CO2-rich seawater 
 
The densities of the pure phases of CH4, CO2 N2, O2 and (sea)water can be obtained 
by numerically solving the equations of state at given pressure, temperature and in 
case of seawater also at given salinity (Setzmann and Wagner, 1991; Span and 
Wagner, 1996; Span et al., 2000; Schmidt and Wagner, 1985; Wagner and Pruß, 
2002; Feistel, 2008). Less accurate, but faster in terms of computational cost, is the 
option to calculate densities from multiparametric equations such as the formulae 
published by the UNESCO Joint Panel on Oceanographic Tables and Standards 
(Fofonoff and Millard, 1983; Poisson et al., 1991; Sun et al., 2008; Spivey and McCain, 
2004). 
For solutions of gases in seawater, the density solρ  is given by: 
 

∑

∑

≠

+
=

Wi
iiWW

i
ii

sol VxVx

Mx
ρ                     (Eq.2.5.1) 

 
where ix  is the mole fraction of component i , iM  is the molar mass of component ,  

WV  is the molar volume of pure water and Wi≠V  is the apparent molar volume of solute 
i  (ion or gas molecule) in water (Duan and Mao, 2006; Duan et al., 2008; Hu et al., 
2007; Mao and Duan, 2006). 
 
For the calculation of mixture densities, mixing rules have to be applied to the equation 
of state. As a consequence, the equation becomes more complex and is more difficult 
to solve. A relatively simple and robust equation of state is the cubic Peng-Robinson 
equation of state (PR-EOS) (Peng and Robinson, 1976): 
 

( ) ( ) ( ) 0231 3223 =−−−−−+−− BBABZBBAZBZ        (Eq.2.5.2) 
 
with 
 

RT

PV
Z m=                          (Eq.2.5.3) 

ijj
ji

i axx
TR

P
A ∑=

,
22                      (Eq.2.5.4) 

i
i

ibx
RT

P
B ∑=                       (Eq.2.5.5) 

 
Vm is the molar volume, a is a parameter that describes the inter- and intra-molecular 
particle interactions, b is a parameter that is related to particle size and xi is the mole 
fraction of component i in the mixture. The PR-EOS is known to produce good results 
for gas phases but is less accurate in the liquid phase. 
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SUGAR Toolbox: 
 
The toolbox functions 
density_ch4.m 
density_co2.m   
call the corresponding EOS to calculate the densities of CH4 and CO2. 
 
The densities of N2, O2, H2S, pure water and seawater are output parameters of the 
respective EOS scripts: 
eos_n2.m 
eos_o2.m 
eos_h2s.m  
eos_h2o.m 
eos_sw.m 
 
density_swSpivey.m 
density_swSun.m 
density_cacl2brine.m 
calculate the density of seawater at elevated pressures and temperatures (Spivey 
and McCain, 2004; Sun et al., 2008) and CaCl2 brines (Al Ghafri et al., 2012) from 
multiparametric equations. The equations of (Spivey and McCain, 2004) were 
derived for NaCl solutions. Hence, the input salinity is converted to a NaCl 
concentration of equivalent mass. 
 
density_swUnesco.m 
calculates the density of seawater based on the UNESCO formulations.  
 
density_sw.m 
checks the input pressure, temperature and salinity and calls the function matching 
the p-T-S range of validity best, i.e. eos_sw.m, eos_swDriesner.m, 
density_swSpivey.m, density_swSun.m or density_swUnesco.m. The choice of the 
functions can also be forced by an additional input parameter. 
 
Eq. 2.5.1 for the densities of seawater with dissolved gases is integrated in 
density_ch4sw.m 
density_co2sw.m 
density_n2sw.m 
 
A Peng-Robinson equation of state is used to calculate the densities and 
composition of single-phase and two-phase mixtures of CH4, CO2 and N2 (Risnes et 
al., 1981; Michelsen, 1982; Adewumi): 
density_ch4co2n2.m  
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Figure 2.9: Densities of N2, O2 and H2S as a function of temperature. 

 
 

 
Figure 2.10: Densities of N2, O2 and H2S as a function of pressure. 
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Figure 2.11: Densities of seawater, CH4 and CO2 as a function of temperature. 

 

 

Figure 2.12: Densities of seawater, CH4 and CO2 as a function of pressure. The phase 
transition from gaseous to liquid CO2 is marked by a steep increase in density. 
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Figure 2.13: Densities of seawater and seawater saturated with CH4, CO2 or N2 as a 
function of temperature. A distinct change in density is observed at the hydrate 
dissociation temperature. 

 

Figure 2.14: Densities of seawater and seawater saturated with CH4, CO2 or N2 as a 
function of pressure. The phase transition of CO2 hydrate is omitted for the curve at 
T = 2 °C because the calculated density shows an er ratic behavior at this point. 
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Figure 2.15: Densities of seawater as a function of dissolved CH4 or CO2 
concentration. 
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2.6. Fugacities of CH4, CO2, N2, O2, H2S and H2O in all phases 
 
The fugacity f is a measure of the effective partial pressure of a real gas. The fugacity 

coefficient φ  describes the deviation from ideal gas behavior: 
 

ipf φ=                          (Eq.2.6.1) 
 
For ideal gases, φ equals 1 and the fugacity equals the (partial) gas pressure ip . 
φ  is related to the basic thermodynamic variables via 
 

( ) ∫ 

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

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1
ln φ                     (Eq.2.6.2) 

 
By substituting Eq.2.6.2 into Eq.2.6.1 and introducing a reference state fugacity, 0f , 
the basic form of the fugacity equation becomes: 
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where µ∆  is the change of  the chemical potential with respect to the reference state 

0pp = , and mV is the molar volume of the gas. 
 
Strictly speaking, the fugacity is a property of the gas phase only. Nevertheless, 
Eq.2.6.3 can also be applied to calculate a pseudo fugacity for other phases, if the 
difference in chemical potential with respect to a gas state fugacity is known. The 
reference pressure for liquid phases is the saturation pressure satp : 
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Klauda and Sandler (2000; 2003) compiled a set of equations for hydrate phase 
fugacities HOHf ,2

 (fugacity of water in gas hydrate) and Hjf ,  (fugacity of a guest 

molecule of type j in gas hydrate): 
 

( )







 ∆−







 −
=

RTRT

ppV
pf satsat

satHOH

µββ
β expexp ,,

,,2
           (Eq.2.6.5) 

















+
−−=∆ ∑

∑
∑

j
j

Hjij

Hjij

i
i fC

fC
nRT

,

,

1
1lnµ                 (Eq.2.6.6) 



2. Thermodynamics 

 

21 

Here, β,satp  is the saturation pressure of the hypothetical empty gas hydrate lattice, 

β,satV  is the molar volume of the hypothetical empty gas hydrate lattice, in  is the 

number of cages of type i per water molecule in the hydrate lattice and ijC  is the 

Langmuir constant of a guest molecule of type j in a lattice cage of type i. Langmuir 
constants are coefficients that are related to cell potential parameters. Fugacities of 
dissolved gases can be calculated from Henry’s law (Eq.2.7.1; Henry, 1803). 

 

SUGAR Toolbox: 
 
Fugacity coefficients of pure CO2, CH4, N2, O2, H2S and water are output 
parameters of the functions:  
eos_co2.m  
eos_ch4.m  
eos_n2.m  
eos_o2.m  
eos_h2s.m  
eos_seawater.m 
 
For seawater, the pure water fugacity is corrected for the presence of salt ions and 
dissolved methane and carbon dioxide by incorporating the corresponding activity 
coefficient (Jager et al., 2003): 
fugacity_sw.m 
 
The formalism of Klauda and Sandler (2000; 2003) and Cole and Goodwin (1990) is 
used to calculate the fugacities of H2O in CH4 hydrate (mh) and CO2 hydrate (ch) as 
well as fugacities of the guest molecules CH4 and CO2 in gas hydrate (for the 
calculation of guest molecule fugacities, cage occupancies have to be known): 
fugacity_h2omh .m     
fugacity_h2och.m    
fugacity_ch4gh.m     
fugacity_co2gh.m    
 
Fugacities of dissolved gases are calculated via Henry’s law (see chapter 2.7): 
fugacity_ch4sw.m     
fugacity_co2sw.m  
fugacity_n2sw.m     
fugacity_o2sw.m   
fugacity_h2ssw.m       
 
Eq.2.1.7 states that hydrate formation is initiated, if the fugacity of a molecule in the 
aqueous phase equals its fugacity in the hydrate phase. Since only gas phase 
fugacities can be measured directly, only the equations for gas phase fugacities are 
validated by experimental data. All other equations for fugacities are based on the 
evaluation of related quantities, such as solubility or dissociation pressure, which 
depend on more than one parameter. The derived fugacity values, therefore, 
depend on the formulation of the additional parameters, which differ by authors. The 
functions for water fugacities in hydrate phases were fitted to match water phase 
fugacities at gas hydrate dissociation pressures. 
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Figure 2.16: Fugacities of pure N2, O2 and H2S as a function of temperature. 

 

 

Figure 2.17: Fugacities of pure N2, O2 and H2S as a function of pressure. 
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Figure 2.18: Fugacities of N2, O2 and H2S dissolved in seawater at saturation as a 
function of temperature.  

 

Figure 2.19: Fugacities of N2, O2 and H2S dissolved in seawater at saturation as a 
function of pressure. 
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Figure 2.20: Fugacities of pure CH4 and CO2 as a function of temperature (no hydrate 
formation). 

 

 
Figure 2.21: Fugacities of pure CH4 and CO2 as a function of pressure (no hydrate 
formation). 
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Figure 2.22: Fugacities of CH4 and CO2 dissolved in seawater at saturation as a 
function of temperature.  

 
Figure 2.23: Fugacities of CH4 and CO2 dissolved in seawater at saturation as a 
function of pressure. 
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Figure 2.24: Fugacities of water in seawater, CH4-saturated seawater and CH4 gas 
hydrate as a function of temperature. The curves for seawater and CH4-saturated 
seawater are almost identical and cannot be distinguished in this representation. 

 
Figure 2.25: Fugacities of water in seawater, CH4-saturated seawater and CH4 gas 
hydrate as a function of pressure. The curves for seawater and CH4-saturated 
seawater are almost identical and cannot be distinguished in this representation. 
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Figure 2.26: Fugacities of water in seawater, CO2-saturated seawater and CO2 gas 
hydrate as a function of temperature. The curves for seawater and CO2-saturated 
seawater are almost identical.  

 
Figure 2.27: Fugacities of water in seawater, CO2-saturated seawater and CO2 gas 
hydrate as a function of pressure. The curves for seawater and CO2-saturated 
seawater are almost identical. 
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2.7. Henry constants of CH4, CO2, N2, O2 and H2S in H2O and seawater 
 
Henry’s law describes the solubility of a gas in a liquid (Henry, 1803): 
 

HK

x
f =                          (Eq.2.7.1) 

 
where f  is the fugacity of the gas, x  is the mole fraction of the dissolved gas at 

saturation and HK  is Henry’s constant, which is defined at infinite dilution: 
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=                         (Eq.2.7.2) 

 
A more elaborate form of Henry’s law is 
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where 0

HK  is Henry’s constant at a reference pressure. The exponential term defines 
the pressure dependency of the solubility. Salinity effects can be accounted for by a 
non-unity activity coefficient. For dilute solutions of weakly interacting molecules in 
water, Eq.2.7.3 reduces to the Krichevski-Kasarnovski equation (Krichevski and 
Kasarnovski, 1935): 
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 .                  (Eq.2.7.4) 

 
However, this simplification is not applicable for dissolved gases in seawater at high 
pressures. Here, the common approach is a semi empirical formulation for 0

HK  with a 
pressure correction as given in Eq.2.7.4 and a salinity dependency in the form of a 
Setchenov equation (Setchenov, 1889): 
 

( )c
x

x
S0

kexp=                        (Eq.2.7.5) 

 
where 0x  is the mole fraction at zero salinity, c  is the concentration of the dissolved 
salt (or the salinity) and Sk  is the Setchenov constant. Weiss (1974) calculates 0

HK  

based on an integrated form of van‘t Hoff’s equation (Eq.2.11.2), whereas Harvey 
(1996) uses a correlation with critical parameters of the solvent. The latter approach 
takes advantage of the fact, that Henry’s constant shows a distinct behavior at the 
solvent’s critical point. In general, Henry’s law is most accurate at low pressures and 
for dilute solutions. 
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Figure 2.28: Henry constants for CO2, CH4, N2, O2 and H2S at reference pressure (0.1 
MPa) and zero salinity. 

SUGAR Toolbox: 
 
Within the SUGAR toolbox, pressure and salinity dependent Henry constants are 
calculated based on Harvey (1996) with partial molar volumes from Plyasunov et al. 
(2000) and activity corrections from Duan et al. (2006), Duan and Mao (2006), Mao 
and Duan (2006), Geng and Duan (2010), and Duan et al. (2007). Henry constants 
are converted to the unit mol/kg/MPa by assuming that seawater and the gas of 
interest are the only components of the system. Henry’s law does not hold for total 
pressures above the vapor pressure of a solvent. 
 
The following toolbox functions compute Henry constants as functions of pressure, 
temperature, salinity and partial gas pressure.Two Henry constants are calculated: 
KH_m (which has the unit mol/kg/MPa) and KH_x (which has the unit 1/MPa). 
soluhenry_co2sw.m    for CO2 in seawater 
soluhenry_ch4sw.m    for CH4 in seawater 
soluhenry_n2sw.m    for N2 in seawater 
soluhenry_o2sw.m    for O2 in seawater 
soluhenry_h2ssw.m    for H2S in seawater 
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2.8. Solubilities of CH4, CO2, N2, O2 and H2S, in H2O and seawater 
 
A more general equation to calculate the solubility of gases in liquids is based on the 
equality of the molecules’ chemical potential in the vapor phase and in solution: 
 

)ln(R)ln(R 00 l
G

g
G aTfT +=+ µµ                  (Eq.2.8.1) 

 

where 0g
Gµ  is the ideal gas chemical potential in the vapor phase at standard pressure,  

f is the fugacity in the vapor phase, 0l
Gµ  is the chemical potential in a solution of unit  

molality and ma γ=  is the activity of the gas molecules in solution (Sun and Duan, 
2005; Duan et al., 2006). For uncharged species N in dilute solutions with anions a and 
cations c, Eq.2.1.5 for the calculation of the activity coefficient γ  can be simplified to 
 

Nacc
ac

aN
c

cNa
a

aN 2 2ln ζλλγ mmmm c ∑∑∑ ++=            (Eq.2.8.2) 

 
with interaction parameters cNa /λ  and Nacζ  (Millero, 2007) and molalities cam / . 



2. Thermodynamics 

 

31 

 
 

SUGAR Toolbox: 
 
Solubilities are calculated from multiparametric equations. With only two phases 
present (gas and liquid water), the equations of Duan et al. (1992; 1996; 2006; 
2007), Duan and Sun (2003), Duan and Mao (2006), Mao and Duan (2006), and 
Geng and Duan (2010) with vapor pressures from (Wagner and Pruß (1993), 
Shibue (2003), and Velasco et al. (2008) are used: 
solu_co2gl.m    for CO2 in seawater 
solu_ch4gas.m   for CH4 in seawater 
solu_n2sw.m    for N2 in seawater 
solu_o2sw.m    for O2 in seawater 
solu_h2ssw.m   for H2S in seawater 
 
Solubilities as functions of the gas partial pressure can be derived from Henry’s law 
(see chapter 2.7): 
soluhenry_co2sw.m    for CO2 in seawater 
soluhenry_ch4sw.m    for CH4 in seawater 
soluhenry_n2sw.m    for N2 in seawater 
soluhenry_o2sw.m    for O2 in seawater 
soluhenry_h2ssw.m    for H2S in seawater 
 
In the presence of gas hydrate, the formalism of Tishchenko et al. (2005; 2009) is 
employed:  
solu_co2gh.m   for CO2 in seawater + hydrate 
solu_ch4gh.m   for CH4 in seawater + hydrate 
 
solu_co2.m 
solu_ch4.m 
call solu_co2gl.m and solu_ch4gas.m, respectively, if pressure and temperature 
conditions are outside the gas hydrate stability zone and they call solu_co2gh.m 
and solu_ch4gh.m, respectively, if pressure and temperature conditions are inside 
the respective gas hydrate stability zone. Due to the use of two different 
formulations, a slight mismatch of the solubilities at the hydrate dissociation 
pressure may occur.  
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Figure 2.29: Solubilities of CO2 and CH4 in seawater as a function of temperature. A 
distinct change in solubility is observed at the gas hydrate dissociation temperature. 

 
Figure 2.30: Solubilities of CO2 and CH4 in seawater as a function of pressure. A 
distinct change in solubility is observed at the gas/liquid phase transition of CO2 
(T = 20 °C) and at the onset of gas hydrate formati on (T = 2 °C). 
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Figure 2.31: Solubilities of N2, O2 and H2S in seawater as a function of temperature. 

 

Figure 2.32: Solubilities of N2, O2 and H2S in seawater as a function of pressure. A 
distinct change in solubility is observed at the H2S gas/liquid phase transition. 
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2.9. Solubilities of H2O, CH4 and N2 in CO2 and of CO2 in CH4 
 
To a small extent, water dissolves in liquid CO2. The mole fraction of the dissolved 
water is in the order of a few tenth of a percent (Spycher et al., 2003). Equations for 
the calculation of the solubility of H2O in CO2 as a function of pressure, temperature 
and salinity have been derived by Spycher et al. (2003) and Tishchenko (unpublished). 
 
Mole fractions of dissolved CH4 and N2 in liquid CO2 can reach several tens of a 
percent (Al-Sahhaf et al., 1983). The standard approach for calculating solubilities in 
liquid CO2 is by solving a multiphase equation of state with suitable interaction 
parameters. 
 
 

 
 

SUGAR Toolbox: 
 
Solubilities of water in CO2 are calculated from Tishchenko’s empirical equations in: 
solu_swco2.m  
 
Solubilities of CH4 and N2 in CO2 are estimated from the multiphase Peng-Robinson 
equation of state that is utilized in the function density_ch4co2n2.m (see chapter 
2.5): The gas concentration at which the phase separation (liquid → gas + liquid) 
occurs is returned as the solubility of the gas in liquid CO2:  
solu_ch4co2.m  
solu_n2co2.m  
 
solu_co2ch4.m 
calculates the partial pressure of CO2 in a CH4 gas bubble from a Henry’s law 
approach (Wong et al., 2005; Duan et al., 2008; Tishchenko, unpublished). The CO2 
concentration in the surrounding seawater is assumed to be the saturation 
concentration. 
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Figure 2.33: Solubility of H2O in liquid CO2 as a function of temperature. 

 

 
Figure 2.34: Solubility of H2O in liquid CO2 as a function of pressure at T = 20 °C. 
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Figure 2.35: Solubilities of CH4 and N2 in liquid CO2 as a function of temperature. 

 

 
Figure 2.36: Solubilities of CH4 and N2 in liquid CO2 as a function of pressure. 
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Figure 2.37: Partial pressure of CO2 in CH4 gas that is in equilibrium with CO2-
saturated seawater as a function of temperature. CO2 hydrate formation causes a 
distinct change in solubility and thus in partial pressure. 

 

 
Figure 2.38: Partial pressure of CO2 in CH4 gas that is in equilibrium with CO2-
saturated seawater as a function of of pressure.  
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2.10. Solubilities of minerals in seawater 
 
The solubility m  of minerals in water depends on the activity coefficient of the 
dissolved mineral minγ  and the thermodynamic equilibrium constant for the dissolution 
process K (see chapter 2.11): 
 

minγ
K

m =                          (Eq.2.10.1) 

 
K  is determined by the change in Gibbs free energy G∆  during dissolution: 
 






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RT

G
K exp                       (Eq.2.10.2) 

 
While the term for K  dominates the temperature dependence of m , additional 
correction terms have to be included in Eq.2.10.2 to account for pressure-dependent 
variations. The basic equation for the pressure correction of K  is: 
 

mV
p

K
RT ∆−=

∂
∂ ln

                     (Eq.2.10.3) 

 
where mV∆  is the change in partial molar volume of the reactants. 
If the minerals are dissolved in an ionic solution such as seawater, the activity of the 
solvent Wa  has to be explicitly included in Eq.2.10.1:  
 

minγ

n
WaK

m =                         (Eq.2.10.4) 

 
With n  being the hydration number.  
 
K  is not to be confused with the solubility product LK  of a dissolution process: 
 

∏=
i

ii
vaK L                        (Eq.2.10.5) 

 
Here, ia  are the activities of the dissolved ions only and iv  the stoichiometric 
coefficients.  
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SUGAR Toolbox: 
 
The toolbox includes empirical multiparametric functions with pressure and salinity 
corrections for calculating the solubility product of CaSO4 (gypsum, anhydrite and 
hemihydrate) (Marshall and Slusher, 1968; Blount and Dickson, 1973) and the 
solubilities of NaCl (Driesner, 2007; Driesner and Heinrich, 2007), opal (Fournier, 
1983; Fournier and Marshall, 1983; Willey, 1974; Sun et al., 2008; Walther and 
Helgeson, 1977; Helgeson and Kirkham, 1974), and quartz (von Damm et al., 1991;  
Fournier, 1983) in (sea)water. For opal and quartz, two different functions are 
available covering different pressure, temperature and salinity ranges. The scripts 
solu_opal.m and solu_quartz.m choose the appropriate functions based on the 
input: 
 
solu_caso4.m      solubility product of gypsum, anhydrite, hemihydrate 
solu_nacl.m       solubility of NaCl 
solu_opal.m        calling routine 
solu_opalFournier.m    solubility of opal (Fournier and Marshall, 1983) 
solu_opalWalther     solubility of opal (Walther and Helgeson, 1977) 
solu_quartz       calling routine 
solu_quartzFournier    solubility of quartz (Fournier, 1983) 
solu_quartzDamm     solubility of quartz (von Damm et al., 1991) 
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Figure 2.39: Solubilities of opal, quartz and halite as a function of temperature. 
Differences in solubility at different pressures are hardly visible in this representation. 

 
Figure 2.40: Solubilities of opal, quartz and halite as a function of pressure. Differences 
in halite solubility at different pressures are hardly visible in this representation. 
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2.11. Acid-base and mineral equilibria in seawater and CO2-rich seawater 
 
Equilibrium constants of chemical reactions in seawater are affected by temperature, 
pressure and salinity. The law of mass action relates the equilibrium constant K  to the 
reactant’s and product’s activities ia  

 

∏=
i

ivaK
i

                        (Eq.2.11.1) 

 
where iv  are the stoichiometric coefficients; iv  < 0 for educts and iv  > 0 for products.  
 
As indicated by Eq.2.1.5, the presence of salt ions changes the activities of the 
reacting species. At high concentrations of CO2, the calculation of the equilibrium 
constants must also include interactions between dissolved carbon dioxide molecules 
and between CO2 and the salt components (Wong et al., 2005). 
 
The temperature dependence of the equilibrium constants is described by van’t Hoff’s 
law: 
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where 0H∆  is the standard molar enthalpy change of the reaction. The temperature 
dependence of the enthalpy change is given by   
 

dTCHH
T

T

pTT ∫=∆−∆
2

1

m12

00                    (Eq.2.11.3) 

 
where 

mpC is the molar isobaric heat capacity. 

 
Equilibrium constants are often calculated from empirical functions of temperature and 
salinity at standard pressure and then explicitly corrected for pressure effects. The 
pressure correction accounts for the change in molar volume mV∆  and the change in 
compressibility κ∆  with pressure and is an approximate solution of Eq.2.10.3: 
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with B  being an empirical constant. 
 
Equilibrium constants for dissociation reactions of dissolved compounds and solubility 
products for minerals in water can be used to determine the ionic concentrations in the 
solution at equilibrium. The pH value of the solution is then defined as the negative 
decadal logarithm of the H+ concentration. 
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SUGAR Toolbox: 
 
Equilibrium constants and solubility products for various dissociation and dissolution 
reactions in seawater are calculated from empirical functions that depend on 
temperature and salinity. Pressure corrections are integrated in the form of 
Eq.2.11.4 (Boudreau, 1996; Clegg and Whitfield, 1995; Fofonoff and Millard, 1983; 
Luff et al., 2001; Millero, 1983; 1995; 2007; Millero et al., 2006; Stumm and Morgan, 
1996; Van Cappellen and Wang, 1996; Zeebe and Wolf-Gladrow, 2001): 
 
kequilib_sw.m    for reactions in seawater 
kco2_sw.m     for carbonic acid dissociation in CO2-rich seawater 
 
ph_analyt.m 
ph_model.m 
access the above equilibrium constants to calculate the pH value and 
concentrations of dissociated species in mol/{kg H2O} of a user-defined system by 
either analytical solutions (less species) or numerical iteration. 
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3. Properties for heat and mass transport 
 
3.1. Viscosities of H2O, seawater, CH4, CO2 and N2 

 
The dynamic viscosity η  is a measure for the internal frictional forces of a liquid. In a 
first-order approximation, the viscosity is assumed to depend on temperature T  only. 
For liquids, an Arrhenius-type expression can be used to describe the decrease in 
viscosity with increasing temperature: 
 

( )TBexpAl −=η                       (Eq.3.1.1) 
 
where A and B are constants.  
 
For gases, the viscosity increases with increasing temperature: 
 

C
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T

Tη                        (Eq.3.1.2) 

 
Here, D and C are constants. 
 
A more accurate procedure to calculate the viscosity of real gases and liquids is to use 
experimentally validated empirical functions to calculate the viscosity of the ideal gas 
and then to add one or more correction terms, that account for interactions in dense 
gases or liquids, as well as a critical enhancement term describing the change of the 
viscosity in the vicinity of the critical point (Hanley et al., 1977; Fenghour et al., 1998; 
Lemmon and Jacobsen, 2004; IAPWS, 2008). These terms are polynomial functions of 
density and temperature.  
 
For seawater, a dense fluid, the standard approach is to use polynomial functions of 
pressure, temperature and salinity that were fitted to experimental data (Kestin et al., 
1978; Kukulka et al., 1987; Spivey and McCain, 2004; Mao and Duan, 2009). Palliser 
and McKibbin (1998) use a slightly different strategy and combine the viscosities of 
pure water and pure NaCl to calculate brine viscosities. 
 
Bando et al. (2004) deduced from the regression of experimental data that the 
viscosity of saltwater SWη  changes in the presence of dissolved CO2 according to: 
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where CSWη  is the viscosity of the CO2-saltwater solution, SWx  and Cx  are the mole 

fractions of saltwater and CO2, respectively, and )f(T  is a function of temperature. 
 
No published data could be found for the viscosity of (sea)water with dissolved 
methane. Due to the small solubility of methane, the effect is assumed to be negligible.  
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SUGAR Toolbox: 
 
The toolbox functions 
visco_h2o.m 
visco_co2.m 
visco_ch4.m 
visco_n2.m 
use the empirical equations of IAPWS (2008), Fenghour et al. (1998), Hanley et al. 
(1977), and Lemmon and Jacobsen (2004) to calculate the viscosity of water, CO2, 
CH4 and N2, respectively.  
 
The toolbox includes several functions to calculate seawater viscosities covering 
different pressure, temperature and salinity ranges, including extreme conditions of 
high temperatures, pressures and salinities. The function 
visco_sw.m 
uses by default the formalism of Kukulka et al. (1987), which covers most of the pTS 
conditions in the open ocean. An additional flag can be set to call any of the 
following functions instead:  
visco_swSpivey.m 
visco_swMao.m 
visco_swPalliser.m 
These functions cover larger pTS ranges including hydrothermal brines. They can 
also be called directly. 
 
The empirical equation of Bando et al. (2004) calculates the viscosity of seawater 
containing dissolved CO2:  
visco_co2sw.m 
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Figure 3.1: Viscosities of CH4, CO2 and N2 as a function of temperature. 

 

 
Figure 3.2: Viscosities of CH4, CO2 and N2 as a function of pressure. A steep increase 
in viscosity results from the gas/liquid phase transition of CO2. 
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Figure 3.3: Viscosities of seawater and seawater saturated with CO2 as a function of 
temperature. The curves at the two different pressures are almost identical. 

 

Figure 3.4: Viscosities of seawater and seawater saturated with CO2 as a function of 
pressure. 
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3.2. Diffusion coefficients in seawater and sediment 
 
Diffusion is caused by random motions of molecules and ions. The macroscopic result 
of this phenomenon is the transfer of solutes from areas of high concentrations to 
areas of low concentrations. The mass flux J  is described by Fick’s first law of 
diffusion: 
 

cD∇−=J                         (Eq.3.2.1) 
 

where D  is the diffusion coefficient , ∇  is the differential Nabla operator 
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and c  is the concentration of the solute. The change in concentration over time is then 
described by Fick’s second law: 
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t
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∂

                       (Eq.3.2.2) 

 
The diffusion coefficient is a function of pressure, temperature and salinity. A first 
approximation for the diffusion of uncharged particles in liquids at infinite dilution is the 
Stokes-Einstein equation. It assumes spherical particles of radius r  diffusing in a 
solvent with viscosity η  that is composed of molecules which are much smaller than 
the molecules of the solute. The diffusion coefficient is then given by: 
 

r6π

k B

η
T

D =                         (Eq.3.2.3) 

 
with Bk  being the Boltzmann constant. If charged particles are considered, the Nernst-
Einstein equation has to be used instead: 
 

( )2F

R

z

T
D

Λ=                         (Eq.3.2.4) 

 
where F is the Faraday constant and Λ is the equivalent conductivity. 
  
Theoretical expressions for diffusion coefficients need to idealize the shape and the 
interactions of solute and solvent molecules. Their accuracy is therefore limited. More 
reliable calculations are possible with empirical expressions. Most of them are low 
order polynomial functions or exponential functions with respect to temperature. An 
overview of different models for diffusion coefficients of molecules and ions in 
(sea)water is presented in Boudreau (1997). Effects of pressure and salinity on the 
diffusion coefficient are considered by taking into account the corresponding changes 
in viscosity. From the Stokes-Einstein equation at constant temperature, it follows that 
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Hence, the molecular diffusion coefficient can be derived from the diffusion coefficient 
at reference pressure and salinity by multiplying with the respective relative viscosity 
change. Eq.3.2.3 can also be used for a temperature correction, if a more accurate 
equation is not available: 
 

const
ons

=
= tcT

D

η
                      (Eq.3.2.6) 

 
In porous media, however, the actual path that a dissolved species moves along is 
longer than the direct distance between two points (Fig. 3.10). Hence, the molecular 
diffusion coefficient needs to be corrected for this effect. The tortuosity θ   is the ratio of 
the average length of the shortest path between two points Ld  and their direct 
distance xd : 
 

x

L

d

d=θ                           (Eq.3.2.7) 

 
Boudreau (1997) lists a number of empirically or theoretically derived relations 
between the porosity φ , which is an measurable parameter, and the tortuosity (see 
chapter 3.5). A good fit to available data could be derived with the relation: 

 

( )φθ log212 −=                       (Eq.3.2.8) 
             
Once the tortuosity is known, the effective diffusion coefficient effD can be calculated 
from the molecular diffusion coefficient D : 
 

2eff θ
D

D =                          (Eq.3.2.9) 

 
 

 
 

SUGAR Toolbox: 
 
diffcoeff_sw.m  
calculates the diffusion coefficients of the most relevant gases, moelcules and ions 
in seawater based on empirical equations (Hayduk and Laudie, 1974; Li and 
Gregory, 1974; Boudreau, 1997). The diffusion coefficients are functions of 
pressure, temperature and salinity. The influence of dissolved CO2 is integrated by 
considering the corresponding change in viscosity.  
Included species are: O2, NO3

-, Mn2+, Fe2+, SO4
2-, CH4, HS-, H2S, NH4

+, NH3, PO4
3-, 

HPO4
2-, H2PO4

-, H2O, H+, OH-, CO2, HCO3
-, CO3

2-, B(OH)3, B(OH)4
-, Mg2+, Ca2+, 

Ba2+, Sr2+, Cl-, Br-, Li+, SiO4
-, He, Ne, Ar, Kr, Xe, Rn, N2 
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Figure 3.5: Diffusion coefficients for the molecules CH4, CO2 and H2O in seawater and 
CO2-saturated seawater (+CO2) as a function of temperature. The curves for the two 
different pressures are almost identical. 

 
Figure 3.6: Diffusion coefficients for the molecules CH4, CO2 and H2O in seawater and 
CO2-saturated seawater (+CO2) as a function of pressure. 
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3.3. Diffusion coefficients in CO2 

 
Supercritical CO2 is an excellent solvent for lipophilic organic compounds. Almost all 
research that has been conducted on diffusion of molecules in CO2 is related to this 
application. To our knowledge, the only publication that deals with the diffusion of 
water in liquid CO2 is Xu et al. (2003). This paper presents experimental data, but does 
not include a theoretical model. Publications concerning the diffusion of salt ions or 
methane in liquid CO2 could not be found.  
 
 
 

 
 
 

 
Figure 3.7: Diffusion coefficients of H2O dissolved in liquid CO2: Experimental data 
(crosses) from Xu et al. (2003) and fitted equation (lines). 

 

SUGAR Toolbox: 
 
diffcoeff_co2h2o.m  
calculates the diffusion coefficient of water in liquid carbon dioxide from a function, 
that was fitted to the published data points of Xu et al. (2003). 
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3.4. Thermal conductivites of sediment, H2O, seawater, gas hydrate, CO2, CH4 and N2 

 
Heat conduction is a transfer of thermal energy driven by a temperature gradient. The 
mathematical equations describing this process are similar to Fick’s laws for diffusion: 
The heat flux qJ is derived from Fourier’s first law: 

 
T∇−= λqJ                             (Eq.3.4.1) 

 
where λ  is the thermal conductivity. Analogously, the temperature change over time is 
derived from Fourier’s second law:  
 

)( T
t

T ∇⋅∇=
∂
∂ λ                       (Eq.3.4.2) 

 
The thermal conductivity for real gases and liquids is often calculated from the thermal 
conductivity of the ideal gas with one or more correction terms that account for 
interactions in dense gases or liquids and a critical enhancement term that describes 
the change of the thermal conductivity in the vicinity of the critical point (Scalabrin et 
al., 2007; Hanley et al., 1977; Lemmon and Jacobsen, 2004). These terms are 
polynomial functions of density and temperature.  
 
Seawater is a dense matter that cannot be approximated by a dilute phase. Therefore, 
a single polynomial function of pressure, temperature and salinity is used to calculate 
its thermal conductivity (Caldwell, 1974). 
 
Various authors have published values of the thermal conductivity of methane hydrate 
(see Appendix A.2). Sloan and Koh (2007) specify MHλ  to be 0.5 W/(m K), whereas 
more recent publications state slightly higher values of 0.62 W/(m K) (Waite et al., 
2007) and 0.68 W/(m K) (Rosenbaum et al., 2007). The temperature and pressure 
dependencies of the published correlations are very small. In the pressure and 
temperature range of typical interest, they are within the range of uncertainty of the 
experimental data. Therefore, the thermal conductivity values of gas hydrates can be 
assumed independent of pressure and temperature. No published data could be found 
for the thermal conductivity of CO2 hydrate, but its value is expected to be similar to 
that of methane hydrate (Mellon, 1996). 
 
Large variations are reported for the thermal conductivity of the sediment matrix (see 
Appendix A.2). The value strongly depends on the composition of the sediment. 
Thermal conductivities for common sediment forming minerals are provided by Horai 
(1971). They range from 1.8 W/(m K) for illite to 19.2 W/(m K) for pyrite. As a 
consequence, the thermal conductivities of sedimentary rocks typically vary between 
0.5 W/(m K) and 8.3 W/(m K) with mean values of 2-3 W/(m K) (Aplin et al., 1999). 
 
Several models exist to derive the thermal conductivity of wet sediment from the 
thermal conductivity of the sedimentary rock Sλ  and the thermal conductivity of the 

pore fluid Lλ . Among these models, three relatively simple relationships are most 
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commonly used: the arithmetic mean, the harmonic mean and the geometric mean 
(e.g., Aplin et al., 1999; Buntebarth and Schopper, 1998; Maxwell, 1873; Woodside 
and Messmer, 1961a+b). All of them are functions of porosity φ , which serves as a 
weighting factor for the two contributions. 
 

(1) arithmetic mean:  ( ) SL 1 λφφλλ −+=             (Eq.3.4.4) 
 

(2) harmonic mean:  
( )

SL

11

λ
φ

λ
φ

λ
−+=              (Eq.3.4.5) 

 
(3) geometric mean:  ( )φφ λλλ −= 1

SL                 (Eq.3.4.6) 
 
Generally, the arithmetic mean defines an upper boundary for the value of the thermal 
conductivity of the wet sediment, whereas the lower boundary is given by the harmonic 
mean.  
 
The above equations can be extendend for the calculation of thermal conductivities of 
hydrate-bearing sediments by simply adding a third term or factor for the gas hydrate 
weighting all the three contributions with their respective volume fraction.  
 
For hydrate-bearing sediments, Moridis et al. (2008) propose a different model that 
they derived from matching laboratory data: 
 
 ( ) ( )SbulkS λλλλ −++= HW SS                (Eq.3.4.7) 

 
where bulkλ  is the thermal conductivity of the bulk (i.e. wet) sediment and SW and SH 
are the pore saturations of water and gas hydrate, respectively. 
 
Other proposed models are summarized by Waite et al. (2009). Experimentally 
determined thermal conductivities for several types of sediments with different contents 
of hydrate and water were investigated by Martin (2004). The obtained values range 
from 0.5 W/(m K) to 3.5 W/(m K). 
 
 
 

 
 

SUGAR Toolbox: 
 
Included scripts for the calculation of thermal conductivities are  
heatcond_sw.m    thermal conductivity of seawater 
heatcond_co2.m    thermal conductivity of carbon dioxide 
heatcond_ch4.m    thermal conductivity of methane 
heatcond_n2.m    thermal conductivity of nitrogen 
 
They are based on the empirical equations of Caldwell (1974), Scalabrin et al. 
(2007), Hanley et al. (1977), and Lemmon and Jacobsen (2004).  
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Figure 3.8: Thermal conductivities of seawater, CH4, CO2 and N2 as a function of 
temperature. 

 
Figure 3.9: Thermal conductivities of seawater, CH4, CO2 and N2 as a function of 
pressure. The steep increase in thermal conductivity results from the gas/liquid phase 
transition of CO2. 
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3.5. Porosity, tortuosity and permeability  
 
Porosity φ  is a quantity that characterizes a porous medium. It is defined as the ratio 
of the void volume vV  and the total volume V  or, in other words, the volume of the 
mobile phase divided by the total volume: 
 

V

Vv=φ                           (Eq.3.5.1) 

 
Transport in porous media is restricted to the void volume and therefore depends on 
the porosity. It also depends on structural parameters of the pore space such as pore 
diameters and interconnectivity of the pores.  
 
 
The tortuosity θ  is defined as the ratio of the average length of the shortest path 
between two points Ld  and their direct distance xd : 
 

x

L

d

d=θ                             (Eq.3.5.2) 

 
Tortuosity is a concept that is, for example, used to calculate the effective diffusion 
coefficient effD  in a porous medium, where molecular diffusion is slowed down due to 

tortuos connections within the pore space (Fig. 3.10): 
 

2eff θ
D

D =                               (Eq.3.5.3) 

 
 
 

 
 
Figure 3.10: The concept of tortuosity: A particle travelling from A to B cannot take the 
direct, linear path, but must take a longer way around the sediment grains (red line). 
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Numerous equations, mostly empirical, relate the tortuosity θ  to the porosity φ . Most 
of them contain adjustable parameters to account for the geometrical diversity among 
pore spaces. Examples for porosity-tortuosity relationships are (Boudreau, 1997): 
 

( )φθ ln12 a−=      modified Weissberg equation        (Eq.3.5.4) 
( )a−= 12 φθ        Archie’s law              (Eq.3.5.5) 

)1(2 φφθ −+= a     Buerger-Friecke equation         (Eq.3.5.6) 
 
where a  represents an adjustable parameter.  
 
 
In contrast to diffusion, which takes place in the entire (filled) pore space, fluid flow is 
restricted to the interconnected pore space. The permeability k  is a measure 
characterizing the ability of a porous medium to establish a fluid flow v  when exposed 

to a pressure difference 
x

p

∂
∂

:  

x

pk
v

∂
∂=

η                              (Eq.3.5.7) 

 
Here, η  represents the dynamic viscosity of the pore fluid. The permeability is 
proportional to the hydraulic conductivity K  of the system: 
 

g
Kk

ρ
µ=                                 (Eq.3.5.8) 

 
with µ  being the kinematic viscosity of the pore fluid, ρ  being the fluid density and g  
being the gravitational acceleration. 
 
Equation 3.5.8 is known as Darcy’s law and is one of the central equations for fluid 
flow in porous media. It is valid for low to moderate Reynold’s numbers. 
 
Boudreau (1997) suggests the following (semi)theoretical equations to calculate the 
permeability of a porous system based on a known porosity value and the mean 
(sediment) particle diameter pd : 

 

( )2

32

1180 φ
φ
−

= pd
k      Carman-Kozeny           (Eq.3.5.9) 

( )2

32

1150 φ
φ
−

= pd
k      Blake-Kozeny            (Eq.3.5.10) 

 

6.5

5.52φpd
k =        Rumpf-Gupte            (Eq.3.5.11) 
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These equations have been proven to work well for 8.0<φ , i.e. small to moderate 
porosities. The Hsu-Cheng equation was developed for large porosities 1→φ  
 

( )φ
φ
−

=
118

22
pd

k .                       (Eq.3.5.12) 

 
and the blended Hsu-Cheng equation is a theoretical form that merges Eq. 3.5.9 with 
the Hsu-Cheng equation 3.5.12: 
 

( ) 














 −−−
−

=
φ

φ
φ

φ 1
10exp1

1180 2

32
pd

k                (Eq.3.5.13) 

 
 
Adding gas hydrate to the sediment reduces the pore space available for the mobile 
phases, gas and water. Consequently, the permeability is drastically reduced by 3-5 
orders of magnitude (Kurihara et al., 2005). Currently, no validated equations exist to 
predict the effect of hydrate saturation on absolute (or even relative) permeabilities. 
Some typically used equations can be found, for example, in Kurihara et al. (2005), 
Moridis et al. (2008), Nimblett and Ruppel (2003), Waite et al. (2009). 
 
 
 
 
 

 

SUGAR Toolbox: 
 
tortuos.m     
calculates the tortuosity of a porous medium at a given porosity. The user can 
choose from the porosity-tortuosity relationships Eq. 3.5.4, Eq. 3.5.5 and Eq. 3.5.6. 
Default is a modified Weissberg equation with a = 2 proposed by Boudreau (1997) 
and tested by Boudreau and Meysman (2006).  
 
permeab.m     
predicts the permeability of a porous medium based on porosity and the mean 
particle diameter. The user can choose from the porosity-permeability relationships 
Eq. 3.5.9, Eq. 3.5.10, Eq. 3.5.11, Eq. 3.5.12 and Eq. 3.5.13. Default is the blended 
Hsu-Cheng equation and a mean particle diameter of 1 µm.  
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Figure 3.11: Comparison of different porosity-tortuosity relationships. “Boudreau” is a 
Weissberg equation with a = 2. 

 

 
Figure 3.12: Comparison of different porosity-permeability relationships for a mean 
particle diameter of 1 µm. 
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4. Kinetic expressions for gas hydrate and gas reac tions 
 
4.1. Gas hydrate formation process 
 
This chapter gives a brief summary on the topic following Sloan and Koh (2008), where 
the reader can find more details. 
 
 
Nucleation 
 
Gas hydrate formation starts with a phase transition of water and a hydrate-forming 
gas into a crystalline solid. The transition occurs if this lowers the Gibbs free energy, 
∆G, of the system considered. The solid-liquid interface between the solution and a 
newly created nucleus introduces a surface energy term, ∆Gsfc, to the energy state of 
the system. The change of ∆G, is thus 
 

h
B

sfc GGG ∆+∆=∆                      (Eq.4.1.1) 
 
where ∆BGh denotes the Gibbs free energy change associated with formation of gas 
hydrates. Note that the contribution from ∆BGh to ∆G is negative and proportional to r3 
of the nucleus whereas ∆Gsfc is positive and proportional to r2. By stating that the 
absolute value of ∆BGh has to be large enough to over-compensate ∆Gsfc in order to 
lower ∆G, Eq.4.1.1 indicates that 
 

(1) only super-saturated or sub-cooled solutions stabilize the nuclei and stimulate 
further growth; 
 

(2) nuclei have to grow to a critical size in order to establish a balance between 
∆BGh and ∆Gsfc. 

 
Growth of hydrate clusters to a critical, stable size in a super-saturated solution is a 
statistical process. The time interval between the establishment of super-saturation 
and first formation of stable hydrate nuclei is called induction time, tind. It depends 
strongly on the abundance and surface properties of foreign particles that facilitate 
nucleation by offering stable solid-liquid interfaces for hydrate clusters to agglomerate 
on. Hence, the nucleation process can occur via two pathways: 
 

(1) homogeneous nucleation: the system is devoid of seed sites requiring maximum 
levels of super-saturation; 
 

(2) heterogeneous nucleation: pre-existing surfaces promote hydrate nucleation at 
lower degrees of super-saturation by reducing the Gibbs free energy increase 
associated with the appearance of a new phase. 

 
The majority of natural gas hydrates forms deep within submarine sediments due to 
reaction of hydrocarbon gas with pore water. These gas hydrates are therefore very 
unlikely to have formed by homogeneous nucleation. Even in laboratory investigations, 
where hydrates have been crystallized from distilled water, growth frequently started 
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from two-phase interfaces (gas/water, container wall/water) to reveal, at least to some 
extent, heterogeneous nucleation behavior.  
 
Skovborg and Rasmussen (1993) expressed the driving force for nucleation as the 
chemical potential difference of distilled water in the liquid and hydrate phases, ∆µ W

l-h. 
The authors found tind to decrease exponentially with ∆µ W

l-h at large driving forces 
(∆µ W

l-h ��> 80 J mol-1). 
 
Natarajan et al. (1994) expressed the driving force for hydrate nucleation at high 
thermodynamic driving forces using the fugacity difference between the guest 
molecule in the gas phase at measured conditions, fj

g, and the hydrate phase at 
thermodynamic equilibrium, fj

h: 
 

2
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),(
eqh

j
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j
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−
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


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


−=

Tpf

Tpf
t                    (Eq.4.1.2) 

 
Here, ξ1 and ξ2 are guest-molecule-specific parameters. Experimental measurements 
on tind are usually obtained with large variability, particularly at low thermodynamic 
driving forces. To account for the more stochastic nature of tind, Takeya et al. (2000) 
expressed their measurements of carbon dioxide hydrate nucleation in terms of an 
exponential nucleation probability and time: 
 

)( ind1)( ttJetP −−−=                       (Eq.4.1.3) 
 
where J denotes the nucleation rate per second.  
 
Experimental evidence that not only the driving force but also the thermal history of the 
water is important to tind was first proposed by Vysniauskas and Bishnoi (1983). These 
authors noticed that water from thawed ice or dissociated gas hydrate considerably 
sped up nucleation with respect to cold tap water. This phenomenon was termed the 
“memory effect”. It has been described in many studies since then (e.g., Parent and 
Bishnoi, 1996; Lee et al., 2005; Servio and Englezos, 2003; Linga et al., 2007) and has 
generally been interpreted as the persistence of hydrate-like microstructures of water 
molecules remaining in solution after dissociation of the hydrate phase. This 
hypothesis has been challenged by Buchanan et al. (2005), who found no evidence for 
the proposed microstructures in neutron diffraction experiments, and Wilson et al. 
(2008) carried out repeated dissociation/crystallization experiments without being able 
to confirm any “memory effect”.  
 
 
Growth 
 
Once stable gas hydrate nuclei are formed at tind further decrease in the Gibbs free 
energy may be accomplished by particle growth. The onset of this stage is 
characterized by a substantial increase of the gas consumption, the rate of which can 
be measured to find kinetic rate laws and constants for hydrate growth. The amount of 
hydrate-forming gas trapped in the hydrate cages may exceed the particular gas 
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solubility by several orders of magnitude. Therefore, the mass transport of the gas to 
the hydrate surface is of major importance to crystal growth. Additionally, since hydrate 
crystallization is an exothermic process (see Appendix A), heat transport away from 
the growth front can also control formation kinetics. In summary, hydrate growth can 
be considered to be limited by three factors: 
 

(1) kinetics of crystal growth at the hydrate surface (intrinsic growth); 
 

(2) mass transfer of components to the growth front; 
 

(3) heat transfer away from the growth front. 
 
 
First relevant experiments set up to investigate methane hydrate formation were 
carried out by Vysniauskas and Bishnoi (1983). Using a stirred tank reactor filled with 
water and methane gas, the authors measured the gas consumption and correlated 
the data to the hydrate growth via the following semi-empirical relationship: 
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where n is the gas consumption in moles, t is time, F is the pre-exponential factor, Aif is 
the area of the gas/liquid interface, EA is the activation energy, R is the universal gas 
constant, T is temperature, Teq is the equilibrium temperature for gas hydrate formation 
and ξ1,2,3 are fitting parameters. 
 
 
(a) Intrinsic growth 
 
In a slightly modified version of the experimental apparatus of Vysniauskas and 
Bishnoi (1983), Englezos et al. (1987) conducted experiments with methane and 
distilled water. Ruling out the significance of gas dissolution to the rate of hydrate 
growth, the authors proposed a 2-step model: 
 

(1) diffusive transport of the guest molecule from the bulk liquid to the hydrate-
solution interface; 
 

(2) reaction of water and guest molecules at the hydrate-solution interface. 
 
 
The growth rate for a single stable hydrate nucleus was defined as  
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Here, kd+r is the combined rate constant for the diffusion and reaction steps involved in 
hydrate growth, Ap is the surface area of the hydrate particle, fj

bulk and fj
eq denote the 
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fugacities of the hydrate-forming gas dissolved in the water and at the three-phase 
equilibrium at operating temperature, respectively.  
 
Due to the strong agitation of the water, mass and heat transfer limitations were 
reasoned to be insignificant to hydrate growth in the stirred tank, implying that growth 
was controlled by reaction only, i.e. kd+r = kr, (the latter being termed intrinsic growth 
rate). To determine kr, Englezos et al. (1987) equaled the amount of gas consumed 
due to hydrate formation to the flux of methane across the gas-liquid interface, arguing 
that at steady state the amount of methane transferred during these two mechanisms 
has to balance, i.e. fj

bulk = fj
g (where fj

g denotes the fugacity of gas “j” in the vapour 
phase). The mass flux across the two-phase interface is equal to the gas consumption 
rate in the reactor and was calculated by employing a two-film theory: 
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                  (Eq.4.1.6) 

 
where D is the diffusion coefficient of methane in water, cW0 is the initial concentration 
of methane in water, KH is the Henry constant and y is an axial coordinate along a 
normal to the gas/water interface.  
 
Assessing the overall gas consumption rate due to hydrate growth requires integration 
of Eq. 4.1.6 over the whole particle population in the system: 
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The particle size distribution φ(r,t) was determined by including a population balance 
equation, which for lack of experimental data had to rely on a number of assumptions. 
The concept of (Englezos et al. (1987) was adopted in many following studies. 
Dholabhai et al. (1993) conducted experiments to estimate the intrinsic growth rate for 
methane hydrate in aqueous electrolyte solutions. While the fugacities had to be 
changed to include the effect of the electrolytes, Dholabhai et al. (1993) found that 
kinetic rate constants remained unaffected, verifying the values for kr found by 
Englezos et al. (1987). First experimental data on carbon dioxide hydrate growth 
kinetics were gained using distilled water and gaseous carbon dioxide (Chun and Lee, 
1996). Further data was provided by Malegaonkar et al. (1997) who used distilled 
water and liquid carbon dioxide as well as methane gas. The first attempts to measure 
the crystal size distribution in situ in order to turn φ(r,t) into an input parameter were 
made by Herri et al. (1999) for methane and Clarke and Bishnoi (2005) for carbon 
dioxide. Using the experimental data, Clarke and Bishnoi (2005) calculate kr values, 
which are about one order of magnitude higher than those obtained by Malegaonkar et 
al. (1997).  
 
Bergeron and Servio (2008) and Bergeron et al. (2010) reported a rate law for 
methane and carbon dioxide hydrate formation, where they expressed the driving force 
in terms of mole fractions of the gas in the aqueous solution, x, instead of fugacities: 
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where VW, ρW and MW are the volume, the density and molar weight of water, 
respectively. From their experiments they could observe an Arrhenius-type increase of 
the kinetic rate constant with temperature, but they did not determine the activation 
energy. 
 
 
(b) Mass transfer controlled growth 
 
Reviewing the experimental data gained in the aforementioned stirred-tank 
experiments Skovborg and Rasmussen (1994) conclude that the monitored hydrate 
growth is limited by mass transfer of the gas from the gas/liquid interface to the bulk 
liquid, i.e. gas dissolution. This finding eliminates the need to determine the crystal size 
distribution in the solution. Accordingly, the global hydrate growth rate can be 
simplified to: 
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where kd is the mass transfer coefficient of the hydrate forming gas across the 
gas/liquid interface, Aif is the corresponding area, cW0 is the initial concentration of the 
gas dissolved in the liquid phase, xj

bulk is the mole fraction of the hydrate former in the 
liquid phase in equilibrium with the vapour, and xj

eq the mole fraction in equilibrium with 
the hydrate. Further experimental verification of the model was provided by Gaillard et 
al. (1999).  
 
Although Herri et al. (1999) acknowledged the importance of mass transfer control 
across the gas/liquid interface to hydrate formation in the described stirred-tank 
reactors, the authors stressed the importance of crystal growth rates for models of gas 
hydrate formation and maintained the need to include a population balance equation. 
In a new set of stirred-tank experiments Herri et al. (1999) tracked particle sizes at 
various time steps and correlated the measured crystal growth to the stirring speed. 
Because of the strong dependence of the mean particle radius on the stirring speed 
hydrate growth was reasoned to be limited by the transfer of methane from the bulk 
liquid to the crystal surface rather than by the incorporation of gas and water into the 
crystal lattice. Accordingly, the driving force for particle growth could be expressed as 
a concentration difference between the 3-phase equilibrium (cj

eq) and the bulk liquid 
phase (cj

bulk): 
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Note that in the above equation particle growth is expressed in m s-1 and kd in m4 mol-1 
s-1. 
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(c) Heat transfer controlled growth 
 
Uchida et al. (1999) measured the hydrate film growth across the surface of a carbon 
dioxide droplet. While the propagation rate was found to be temperature-dependent 
the authors showed that it was not controlled by thermal activation processes. Hence 
Uchida et al. (1999) concluded that hydrate film formation was mainly heat transfer 
controlled: 
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where x is the lateral position of the hydrate film front, zH is the hydrate film thickness, 
λW is the thermal conductivity of water, Teq is the corresponding hydrate equilibrium 
temperature, and T is the temperature of the system. 
 
Freer et al. (2001) presentend a similar expression: 
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where kd+r is the kinetic constant for gas hydrate formation (expressed by an 
Arrhenius-type equation) and h is the heat transfer coefficient. 
 
The correlations derived by Uchida et al. (1999), Freer et al. (2001) and others were 
criticized by Mochizuki and Mori (2006) for physical weaknesses and/or 
oversimplifications in the formulation of the heat transfer from the film front.  In a more 
realistic approach, using two-dimensional conductive heat transfer from the film front to 
water, guest fluid and hydrate phases, Mochizuki and Mori (2006) expressed the linear 
growth rate (dx/dt) as  
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Here, x is the lateral position of the hydrate film front, zH is the hydrate film thickness, 
λH and λW are the thermal conductivity of hydrate and water, respectively, and ∂T/∂x is 
the temperature gradient at the hydrate and water side of the film, respectively.  
 
Although an accurate prediction of the hydrate formation rate requires evaluation of all 
the rates of mass transfer, heat transfer and intrinsic formation rates, the role of 
intrinsic kinetics has been suggested in the recent literature to play a smaller role than 
mass or heat transfer effects (Sloan & Koh, 2008). However, the applicability of one of 
the above concepts depends on external factors such as hydrodynamic conditions, 
saturation state of the solvent or ambient pT-conditions. An example is the hydrate 
formation process under water flow, of which the flow rate is sufficiently high to ensure 
an adequate removal of heat released due to hydrate growth while at the same time 
keeping up the supply of reactants. In this case information of the intrinsic growth rate 
is essential for the prediction of hydrate formation.  
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4.2. Kinetic expressions of gas hydrate formation in numerical models 
 
Mechanistically, gas hydrate formation is typically modelled as a two-step process via 
two possible pathways: 
 

(1) Gas is dissolved in the water phase and after saturation with respect to the gas 
phase, hydrate precipitates from this solution because it is oversaturated with 
respect to the hydrate phase; 
 

(2) Gas hydrates form directly from the gas phase and subsequently the water 
phase equilibrates with the hydrate phase, i.e. methane dissolves in the pore 
water. 

 
The selection of the pathway usually depends on the available environmental or 
experimental data. 
 
 

The rate of dissolution of a gas in pore water, g
disR , is conveniently expressed in terms 

of the change in dissolved gas concentration with time and is driven by the difference 
between the actual dissolved gas concentration and its theoretical solubility (e.g., 
Haeckel et al., 2004): 
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where g
disk  is the dissolution rate constant, pw

jc is the concentration of the dissolved 

gas j in the pore water, eq(g)
jc  is the concentration of the dissolved gas j in equilibrium 

with the gas phase. In Eq.4.2.1 the rate is defined positive for gas dissolution. The gas 
solubility is either calculated applying Henry’s law or more sophisticated algorithms 
based on its chemical potential (see Chapter 2.8).  
 

The rate of formation of gas hydrate, h
formR , from the dissolved gas is typically 

expressed in terms of the fraction of pore volume occupied by gas hydrate, hφ , and is 
driven by the oversaturation of the pore water with respect to the gas hydrate solubility 
(e.g., Haeckel et al., 2004; Hensen and Wallmann, 2005; Wallmann et al., 2006): 
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(Eq.4.2.2) 

Here, h
formk  is the rate constant for gas hydrate formation and eq(h)

jc is the concentration 

of dissolved gas j in equilibrium with the hydrate phase. In order to calculate the rate of 

consumption of dissolved gas in the pore water, dtdc pw
j , Rh needs to be multiplied by 
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the density of the gas hydrate, ρh, and divided by its molar weight, Mh. In Eq.4.2.2 the 
rate is defined positive for gas hydrate being formed. 
 
Davie and Buffett (2001) present an alternative formulation: 
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(Eq.4.2.3) 

 
In order to ensure that the rate of hydrate growth is not limited by its solubility, but by 
the transport of dissolved gas, Davie and Buffett (2001) progressively increase the 

kinetic constant, rd+k , in Eq.4.2.3 until the numerical solution becomes insensitive to 
further change. Changes in the concentration of methane in the equilibrium across the 
gas hydrate stability zone (GHSZ) as a function of temperature are expressed by a 
simple empirical relationship: 
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(Eq.4.2.4) 

 

where eqc
 

is the dissolved gas concentration at the equilibrium, )( 3
eq Tc

 
is the 

dissolved gas concentration at the phase boundary, i.e. at the base of the GHSZ and 
τ  is ~ 10 ºC for mixtures of methane hydrate and seawater. 
 
 
Cathles and Chen (2004) proposed a model, where gas hydrates crystallize directly 
from a gas stream following a first-order rate equation: 
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where jm  is the mass of the gas j that crystallizes as gas hydrate, jx∆  is the 

difference between the mass fraction in the gas stream and the fictive mass fraction in 
the gas that would be in equilibrium with the hydrate crystallising from this gas, and 
that can be calculated from a polynomial expansion in pressure and temperature (e.g. 
Sloan and Koh, 2008); AE  is the activation energy of the crystallization reaction, R  is 

the gas constant, T  is temperature and 0T  is 273.15 K. 
 
 
Garg et al. (2008) present an alternative approach where thermodynamic equilibrium is 
assumed at all times. Hence, changes in gas concentration, pressure, temperature and 
fluid salinity are equilibrated instantaneously into all participating phases, i.e. gas 
hydrate, pore water, and gas. Kinetic phenomena are not taken into account, because 
they are assumed not to be important on geological time scales. Thus, only the 
respective mass balance equations and one energy balance equation are solved for 
the entire system. 
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The TOUGH+HYDRATE model (Moridis et al., 2008) considers either thermodynamic 
equilibrium or the kinetic hydration reactions to calculate dissociation and formation of 
gas hydrates. The kinetic behaviour of the gas hydrate follows the model of Kim et al. 
(1987): 
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where m  is the mass of the gas, rk  is the intrinsic hydration reaction constant, hyd
AE  

is the activation energy for gas hydrate formation, R is the gas constant, T is 
temperature of the system, AF  is an area adjustment factor, A  is the surface area 

participating in the reaction, gf
 
and eqf

 
are the fugacities of the gas phase and at 

equilibrium at temperature T, respectively. The surface area is computed by assigning 
the hydrate saturation uniformly to the interstitial spaces of the porous medium. 
Fugacities are computed following a Peng-Robinson equation of state using the real-
gas property package included in the model. 
 
 

4.3. Gas hydrate decomposition 
 
Since gas hydrate dissociation or dissolution can be understood as the formation 
reaction having the opposite sign. The concepts for gas hydrate decomposition are 
largely identical to those outlined above for hydrate formation. Bishnoi and coworkers 
conducted several stirred-tank experiments to measure intrinsic dissociation rates of 
methane hydrates. Kim et al. (1987) proposed a rate law based on the fugacity 
difference between the point at which dissociation takes place (fj

G) and equilibrium 
conditions (fj

eq): 
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The intrinsic rate constant kr was determined by fitting an Arrhenius-type expression  
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to the logarithmic values of the measured rate constant k versus 1/T. 
 
In order to improve the accuracy, the measurements were repeated by Clarke and 
Bishnoi (2001), who refined the experimental apparatus of Kim et al. (1987) by 
including a particle size analyzer. Measurements of intrinsic rate constants for the 
dissociation of carbon dioxide hydrate followed (Clarke and Bishnoi, 2004; 2005).  
 
Sean et al. (2007a) argued that simple stirring might not suffice to eliminate heat and 
mass transfer resistances. In an effort to test the results published by the Bishnoi 
group, Sean et al. (2007a+b) measured the shrinkage rate of a methane hydrate 
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sphere dissociating in a flow of water. In step 1, dissolution was achieved by under-
saturating the ambient water at pressures above the three-phase equilibrium line. The 
driving force for dissolution was expressed by the associated change of the Gibbs free 
energy. The latter was approximated by the difference in chemical potential of 
methane at equilibrium and in the ambient aqueous phases: 
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where xj

sfc is the mole fraction of methane at the surface of the hydrate sphere and xj
eq 

is the mole fraction of methane in water in equilibrium with gas hydrate. Note that in 
the above equation the sign was changed with respect to the original article by Sean et 
al. (2007a) in order to indicate a dissolution process.  
 
The authors registered a homogeneous surface temperature around the dissolving gas 
hydrate sphere, which was identical to that of the ambient water. Furthermore, the 
obtained value for kr was shown to be independent of the flow rate. Although admitting 
the narrow range of flow conditions, the observations led the authors to the conclusion 
that neither heat nor mass transfer effects were rate-determining factors during hydrate 
dissolution at pT-conditions within the gas hydrate stability field. The intrinsic rate 
constant found in step 1 was successfully tested in step 2 of the investigation, during 
which gas hydrate dissociation was induced by depressurization below the three-
phase equilibrium line (Sean et al., 2007b).  
 
The comparison of dissolution and dissociation rates observed by Sean et al. 
(2007a+b) and those by Kim et al. (1987) reveal a slight disagreement at low 
dissociation pressures: the discrepancy became smaller when the pressure 
approached the three-phase equilibrium pressure. 
 
 
Rehder et al. (2004) studied the simultaneous dissolution of synthetic methane and 
carbon dioxide hydrate specimens in an ocean experiment. The samples were brought 
to a water depth of 1028 meters. Pressures at this depth exceeded the three-phase 
equilibrium and dissolution occurred due to an under-saturation of the ambient 
seawater in methane and carbon dioxide. The authors applied a diffusive boundary 
layer model to express the dissolution rates: 
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where Dj is the diffusion coefficient of the gas species j and zDBL is the thickness of the 
diffusive boundary layer.  
 
Since the methane concentration measured in the ambient seawater was negligible, 
Rehder et al. (2004) reduced the driving force of dissolution to the methane solubility in 
seawater equilibrated with a hydrate phase. Since the gas hydrate specimens had 
identical sample geometry and were dissolved simultaneously, Dj, zDBL and A were 
identical for the two hydrate species. By showing that the dissolution rate ratio of the 
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two hydrate species was identical to the ratio of the respective gas species, the 
authors identified a mass transfer limitation in the dissolution reaction, thereby verifying 
their prior assumption. 
 
Bigalke et al. (2009) measured the dissolution rates of methane hydrate films due to 
under-saturation as a function of temperature and flow-induced shear stress. In the 
hydrodynamic and thermodynamic regime of their investigation, the authors proved 
dissolution to be mass transfer limited and present a correlation of the diffusive 
boundary layer thickness and shear stress. 
 
 
 
 4.4. Kinetic expressions of gas hydrate dissociation in numerical models 
 
Gas hydrate dissociation is typically treated by the same 2-step formalism outlined 
above for gas hydrate formation. However, the rates for both processes observed in 
experiments and in the field are usually different and hence, separate rate laws are 
formulated for the dissociation and formation reaction in order to provide individual, 
adjustable kinetic constants. 
  
Step 1: “Dissociation of gas hydrate”: 
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where h
disR  is the rate of gas hydrate dissociation, which is again expressed in terms of 

pore volume, and h
disk  is the respective kinetic constant. 

 
To avoid producing numerically negative gas hydrate saturations when the gas hydrate 
pool in the sediment has been depleted, Hensen and Wallmann (2005) and Wallmann 
et al. (2006) simply multiplied the rate of dissociation with the gas hydrate 
concentration, hφ . 
 
Step 2: “Formation of the gas phase”: 
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where g
vapR  is the rate of gas production and g

vapk  is the respective kinetic constant. 

 
In many gas hydrate reservoir simulators, e.g. TOUGH+HYDRATE (Eq.4.2.6; Moridis 
et al., 2008) and MH-21 (Kurihara et al., 2005), the hydrate dissociation process, 
induced by either depressurization or adding heat, is typically modelled with a Kim-
Bishnoi-type rate expression (Eq.4.3.1; Kim et al., 1987). Here, the driving force for 
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dissociation is the difference in gas fugacities between the vapour-hydrate-liquid 
(three-phase) equilibrium and the reservoir conditions. Typically, an energy 
conservation equation is also included to account for the uptake of heat during hydrate 
dissociation (~55 kJ/mol) and the corresponding significant cooling of the reservoir.  
 
 
 
4.5. Gas bubble dissolution and formation 
 
Gas bubble dissolution 
 
At typical oceanic conditions methane or carbon dioxide are highly under-saturated in 
the water column (at least below the mixed layer). Methane-rich gas bubbles entering 
the open water column at deep-sea seep sites rapidly shrink as the gas dissolves. 
Growth due to adverse transfer of dissolved oxygen and nitrogen as well as 
decreasing hydrostatic pressure accompany the bubble ascent, but are small 
compared to the shrinkage caused by gas dissolution. The mass flux of any gas into or 
out of a bubble is given by 
 

( )bulk
j

eq
j

bubbub
dissd

d
ccAk

t

n −=






± .                  (Eq.4.5.1) 

 
Here, Abub is the bubble surface area, bub

dissk  is the bubble-specific mass transfer 
coefficient, cj

eq is the concentration of the gas species j at equilibrium, and cj
bulk is the 

concentration of j in the ambient seawater.  
 
Important factors affecting bub

dissk  are the molecular diffusivity Dj in the seawater and the 
flow field around the bubble. The latter in turn is influenced by seawater density and 
viscosity, bubble size, shape and density and surface mobility (Clift et al., 1978; Leifer 
and Patro, 2002). All of these factors are commonly expressed by the drag coefficient 
Cd.  
 
Gas bubble and liquid droplet dissolution in general have been investigated in 
numerous experiments, many of which have been summarized in Clift et al. (1978). 
Without exception, these experiments have been performed at atmospheric pressures. 
While advancing the fundamental understanding of bubble/droplet propagation in a 
continuous medium the results are of limited applicability to oceanographic studies 
concerned with the lifetime of bubbles released at several hundreds of meters below 
sea level. Hydrostatic pressures and low temperatures in these cases may trigger 
hydrate formation around the bubble, which has been shown to significantly enhance 
bubble lifetimes due to attenuated dissolution (Rehder et al., 2002; Heeschen et al., 
2004; Sauter et al., 2006; Greinert et al., 2007).  
 
Technically challenging, laboratory simulations of the water column at near-seafloor 
conditions are still scarce. Thus parameterizations of bub

dissk  use theoretical models of 
large bubbles exceeding 1 cm in radius and data for small bubbles of a size around 
r = 1 mm. In between, bub

dissk  is parameterized as a monotonical function of rbub. Useful 
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experiments on the lifetime of methane bubbles rising in a natural water column were 
carried out by Rehder et al. (2002). Methane bubbles were released into the ocean 
between 830 and 440 m water depth. Their rise was monitored for several hundred 
meters by piloting a ROV-mounted camera vertically upwards in the water column. 
Shrinkage rates of bubbles rising within the methane hydrate stability field regularly 
shifted from fast to slow several minutes after release. This shift was attributed to a 
sudden formation of a hydrate skin around the bubbles. These data were used, among 
others, to validate the model by McGinnis et al. (2006), who expressed bub

dissk  via: 
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In the above equations bub

tu  is the steady-state rise velocity of a gas bubble, and n is a 
diffusion exponent that varies from 1/2 to 2/3 for clean and dirty bubbles, respectively.  
 
For bubbles smaller than rbub = 0.13 cm, the rise velocity was defined by 
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where ρj

bub is the bubble density, ρSW is the seawater density, g is the gravitational 
acceleration, and Cd is defined as 
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where Re is the Reynolds number and νSW denotes the kinematic viscosity of 
seawater.  
 
The terminal rise velocity of larger bubbles (rbub > 0.13 cm) was defined by 
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where σj is the surface tension of the compressed gas j.  
 
The model was adjusted empirically to account for a delayed mass transfer of gas 
across the hydrate-shielded bubble surface. This was criticized by Rehder et al. 
(2009), who showed that the observed delay in dissolution could be explained by 
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depth-dependent thermodynamic parameters alone and did not require empirical 
adjustments. The authors used a model by Leifer and Patro (2002), where bub

dissk  is 
defined as: 
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and bub

tu  is parameterized as:  
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with κ = 0 for hydrate-free and κ = ∞ for hydrate-coated bubbles.  
 
 
 
Liquid droplet dissolution 
 
Aya et al. (1993) studied the dissolution behavior of liquid carbon dioxide droplets in 
pressurized water and seawater. The driving force for dissolution was expressed in 
terms of a concentration difference between the measured bulk concentration and the 
saturation value. Dissolution was found to be significantly delayed if the droplets 
developed a hydrate skin on their surfaces. This effect was attributed to the lower 
equilibrium solubility inside the hydrate stability field with respect to higher values in 
metastable absence of hydrates at identical pT-conditions. While Aya et al. (1993) 
showed that dissolution in flowing water proceeded faster than in stagnant water, the 
first quantitative treatment of flow was a numerical simulation study by Haugan et al. 
(1995). However, in this study, the effect of gas hydrate formation around the droplets 
was left unconsidered. First experimental results on the dissolution of hydrate-skinned 
carbon dioxide droplets were reported by Hirai et al. (1996). Supported by a metal ring, 
the droplets were exposed to a controlled flow of under-saturated water. The 
dissolution behavior was expressed as  
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Note that here dissolution is expressed in kg s-1 and, consequently, c in kg m-3. The 
authors found drop

dissk  to satisfy the equation 
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Here, γ  is a fitting parameter.  
 
Although Hirai et al. (1996) also detected delayed dissolution once a hydrate skin 
formed at the droplet surface, the effect of the hydrate on dissolution rates was not 
explicitly stated. This was resolved in a following study by the group (Hirai et al., 1997), 
where the fitting parameter γ  was defined as 
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drop
tu  was calculated analogously to Eq.4.5.5, in which Cd takes the form 
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Pressurized-tank experiments by Ozaki et al. (2001) revealed that these relationships 
produced significant errors for droplets exceeding a radius of 4.5 mm. For droplet radii 
in the range of 1-11 mm they proposed the improved relationship 
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Brewer et al. (2002) used a similar technique as Rehder et al. (2002) to track the rise 
of single carbon dioxide droplets released in 800 m water depth in Monterey Bay, 
California. The ascent of the droplets was followed until the liquid had evaporated after 
crossing the gas-liquid phase boundary for carbon dioxide in 400 m water depth. A thin 
hydrate layer was observed to surround the droplet during its rise. Droplet size and rise 
velocity were reported for five experiments. From these data the authors deduced a 
constant dissolution flux of 3 µmol cm-2 s-1. drop

tu  was observed to increase from initially 
10.2 cm s-1 at 800 m water depth to 14.9 cm s-1 at 400 m water depth. The 
acceleration of the droplets during their transit through the water column was attributed 
to the increasing density difference between carbon dioxide and seawater with 
diminishing seawater depth (see also Fig. 2.12). Using Eq.4.5.5 with SW

bub
jd / ρρ=C , 

the authors managed to reproduce the rise history of the droplets. The match of the 
rise rates calculated with this definition of Cd with observed drop

tu  was criticized as 
“fortuitous” by Zhang (2005), but was supported in a response by Alendal et al. (2006).  
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Gangstø et al. (2005) re-interpreted the data of Brewer et al. (2002), adopting 
Eq.4.5.12 for the mass transfer and the drop

tu  parameterization of Bozzano and Dente 
(2001), which is based on observed shapes of air bubbles rising in a variety of liquids 
at atmospheric pressures. They achieved a good agreement, however, the model fails 
to reproduce observations by Bigalke et al. (2008), who simulated oceanic conditions 
up to a water depth of 2000 m in order to provide a reference data set for drop

tu  for 
carbon dioxide droplets with a radius of 1-12 mm. The study of Bigalke et al. (2008) 
confirmed the Cd-parameterization of Chen et al. (2003): 
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is a factor correcting for the deviation of the droplet shape from being a perfect sphere. 
 
 
Gas bubble growth 
 
Gas bubble nucleation and growth follow generally the same basic principles as gas 
hydrate nucleation and growth, which are outlined in Chapter 4.1. 
 
Boudreau et al. (2001) applied a diffusion-reaction model to determine the controls on 
bubble growth rate considering the dynamics of methane formation, diffusion and its 
incorporation into a bubble 
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where bubd  is the bubble diameter; φ is the porosity; effD is the diffusion coefficient 

corrected for tortuosity; bub
jc is the concentration of gas j in the bubble; Rt,j is the rate of 

production of j (methanogenesis in this case) near the bubble; d is the half-separation 

distance between bubbles; pw
jc  is the ambient concentration of the gas j in the pore 

water; d pw,
jc  is the concentration of the gas j in pore water at the position d; t  is time; 

0r  is the initial bubble radius. 
 
 
 



4. Kinetics 

 

80 

References 
 

Alendal, G., P. M. Haugan, et al. (2006). “Comment on "Fate of rising CO2 droplets in seawater".” 
Environmental Science & Technology 40: 3653-3654. 

Aya, I., K. Yamane, et al. (1993). ”Effect of CO2 concentration in water on the dissolution rate of its 
clathrate.” International Symposium on CO2 Fixation & Efficient Utilization of Energy. Tokyo 
Institute of Technology, Tokyo, Japan. 

Bergeron, S. and P. Servio (2008). "Reaction rate constant of CO2 hydrate formation and verification of 
old premises pertaining to hydrate growth kinetics." American Institute of Chemical Engineers 
Journal 54(11): 2964-2970. 

Bergeron, S., J. Beltran, et al. (2010). "Reaction rate constant of methane clathrate formation." Fuel 
89(2): 294-301.  

Bigalke, N. K., G. Rehder, et al. (2008). “Experimental investigation of the rising behavior of CO2 
droplets in seawater under hydrate-forming conditions.” Environmental Science & Technology 
42: 5241-5246. 

Bigalke, N. K., G. Rehder, et al. (2009). “Methane hydrate dissolution rates in undersaturated seawater 
under controlled hydrodynamic forcing.” Marine Chemistry 115: 226-234. 

Boudreau, B. P., B. S. Gardiner, et al. (2001). "Rate of growth of isolated bubbles in sediments with a 
diagenetic source of methane." Limnology and Oceanography 46(3): 616-622. 

Bozzano, G. and M. Dente (2001). “Shape and terminal velocity of single bubble motion: a novel 
approach.” Computers and Chemical Engineering 25: 571-576. 

Brewer, P. G., E. T. Peltzer, et al. (2002). “Experimental determination of the fate of rising CO2 droplets 
in seawater.” Environmental Science & Technology 36: 5441-5446. 

Buchanan, P., A. K. Soper, et al. (2005). “Search for memory effects in methane hydrate: Structure of 
water before hydrate formation and after hydrate decomposition”. Journal of Chemical Physics 
123. 

Cathles, L. M. and D. F. Chen (2004). "A compositional kinetic model of hydrate crystallization and 
dissolution." Journal of Geophysical Research 109(B08102): doi:10.1029/2003JB002910. 

Chen, B. X., Y. Song, et al. (2003). “Large-eddy simulation of double-plume formation induced by CO2 
dissolution in the ocean.” Tellus 55: 723-730. 

Chun, M. K. and H. Lee (1996). “Kinetics of formation of carbon dioxide clathrate hydrates.” Korean 
Journal of Chemical Engineering 13: 620-626. 

Clarke, M. and P. R. Bishnoi (2001). “Determination of the activation energy and intrinsic rate constant 
of methane gas hydrate decomposition.” Canadian Journal of Chemical Engineering 79: 143-
147. 

Clarke, M. A. and P. R. Bishnoi (2004). “Determination of the intrinsic rate constant and activation 
energy of CO2 gas hydrate decomposition using in-situ particle size analysis.” Chemical 
Engineering Science 59: 2983-2993. 

Clarke, M. A. and P. R. Bishnoi (2005). “Determination of the intrinsic kinetics of CO2 gas hydrate 
formation using in situ particle size analysis.” Chemical Engineering Science 60: 695-709. 

Clift, R., J. R. Grace, et al. (1978). Bubbles, Drops, and Particles. Academic Press New York. 

Davie, M. K. and B. A. Buffett (2001). "A numerical model for the formation of gas hydrate below the 
seafloor." Journal of Geophysical Research 106(B1): 497-514. 

Davie, M. K., O. Y. Zatsepina, et al. (2004). "Methane solubility in marine hydrate environments." Marine 
Geology 203(1-2): 177-184. 

Dholabhai, P. D., N. Kalogerakis, et al. (1993). “Kinetics of methane hydrate formation in aqueous-
electrolyte solutions.” Canadian Journal of Chemical Engineering 71: 68-74. 



4. Kinetics 

 

81 

Englezos, P., N. Kalogerakis, et al. (1987). “Kinetics of formation of methane and ethane gas hydrates.” 
Chemical Engineering Science 42: 2647-2658. 

Freer, E. M., M. S. Selim, et al. (2001). “Methane hydrate film growth kinetics”. Fluid Phase Equilibria 
185(1-2): 65-75. 

Gaillard, C., J. P. Monfort, et al. (1999). “Investigation of methane hydrate formation in a recirculating 
flow loop: Modeling of the kinetics and tests of efficiency of chemical additives on hydrate 
inhibition.” Oil & Gas Science and Technology 54: 365-374. 

Gangstø, R., P. M. Haugan, et al. (2005). “Parameterization of drag and dissolution of rising CO2 drops 
in seawater.” Geophysical Research Letters 32: doi:10.1029/2005GL022637. 

Garg, S. K., J. W. Pritchett, et al. (2008). "A mathematical model for the formation and dissociation of 
methane hydrates in the marine environment." Journal of Geophysical Research 113(B01201): 
doi:10.1029/2006JB004768. 

Greinert, J., Y. Artemov, et al. (2006). “1300-m-high rising bubbles from mud volcanoes at 2080m in the 
Black Sea: Hydroacoustic characteristics and temporal variability.” Earth and Planetary Science 
Letters 244, 1-15. 

Haeckel, M., E. Suess, et al. (2004). "Rising methane gas-bubbles form massive hydrate layers at the 
seafloor." Geochimica et Cosmochimica Acta 68(21): 4335-4345. 

Haugan, P., F. Thorkildsen, et al. (1995). “Dissolution of CO2 in the ocean.” Energy Conversion and 
Management 36: 461-466. 

Heeschen, K. U., R. S. Keir, et al. (2004). “Methane dynamics in the Weddell Sea determined via stable 
isotope ratios and CFC-11.” Global Biogeochemical Cycles 19. 

Hensen, C. and K. Wallmann (2005). "Methane formation at Costa Rica continental margin - constraints 
for gas hydrate inventories and cross-décollement fluid flow." Earth and Planetary Science 
Letters 236: 41-60. 

Herri, J. M., J. S. Pic, et al. (1999). “Methane hydrate crystallization mechanism from in-situ particle 
sizing.” American Institute of Chemical Engineers Journal 45: 590-602. 

Hirai, S., K. Okazaki, et al. (1996). “Transport phenomena of liquid CO2 in pressurized water flow with 
clathrate-hydrate at the interface.” Energy Conversion and Management 37: 1073-1078. 

Hirai, S., K. Okazaki, et al. (1997). “Dissolution rate of liquid CO2 in pressurized water flows and the 
effect of clathrate films.” Energy 22: 285-293. 

Kim, H. C., P. R. Bishnoi, et al. (1987). “Kinetics of methane hydrate decomposition.” Chemical 
Engineering Science 42: 1645-1653. 

Kurihara, M., H. Ouchi, et al. (2005). “Analysis of the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate 
thermal-production test through numerical simulation.” In: Scientific Results from the Mallik 2002 
Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, 
Canada. S. Dallimore and T. Collett (eds.), Geological Survey of Canada Bulletin 585. 

Lee, J. D., R. Susilo, et al. (2005). “Methane-ethane and methane-propane hydrate formation and 
decomposition on water droplets.” Chemical Engineering Science 60: 4203-4212. 

Leifer, I. and R. K. Patro (2002). “The bubble mechanism for methane transport from the shallow sea 
bed to the surface: A review and sensitivity study.” Continental Shelf Research 22: 2409-2428. 

Linga, P., R. N. Kumar, et al. (2007). “Gas hydrate formation from hydrogen/carbon dioxide and 
nitrogen/carbon dioxide gas mixtures.” Chemical Engineering Science 62: 4268-4276. 

Malegaonkar, M. B., P. D. Dholabhai, et al. (1997). “Kinetics of carbon dioxide and methane hydrate 
formation.” Canadian Journal of Chemical Engineering 75: 1090-1099. 

McGinnis, D. F., J. Greinert, et al. (2006). “Fate of rising methane bubbles in stratified waters: How 
much methane reaches the atmosphere?” Journal of Geophysical Research 111: 
doi:10.1029/2005JC003183. 

Mochizuki, T. and Y. H. Mori (2006). “Clathrate-hydrate film growth along water/hydrate-former phase 



4. Kinetics 

 

82 

boundaries - numerical heat-transfer study.” Journal of Crystal Growth 290: 642-652. 

Moridis, G. J., M. B. Kowalsky, et al. (2008). TOUGH+Hydrate v1.0 User’s Manual: A Code for the 
Simulation of System Behavior in Hydrate-Bearing Geologic Media. Lawrence Berkeley National 
Laboratory. 

Natarajan, V., P. R. Bishnoi, et al. (1994). “Induction phenomena in gas hydrate nucleation.” Chemical 
Engineering Science 49: 2075-2087.  

Ozaki, M., J. Minamiura, et al. (2001). „CO2 sequestration by moving ships.” Journal of Marine Science 
and Technology 6: 51-58. 

Parent, J. S. and P. R. Bishnoi (1996). “Investigations into the nucleation behaviour of methane gas 
hydrates.” Chemical Engineering Communications 144: 51-64. 

Rehder, G., P. W. Brewer, et al. (2002). “Enhanced lifetime of methane bubble streams within the deep 
ocean.” Geophysical Research Letters 29: doi:10.1029/2001GL013966. 

Rehder, G., S. H. Kirby, et al. (2004). “Dissolution rates of pure methane hydrate and carbon-dioxide 
hydrate in undersaturated seawater at 1000-m depth.” Geochimica et Cosmochimica Acta 68: 
285-292. 

Rehder, G., I. Leifer, et al. (2009). “Controls on methane bubble dissolution inside and outside the 
hydrate stability field from open ocean field experiments and numerical modeling.” Marine 
Chemistry 114: 19-30. 

Sauter, E. J., S. I. Muyakshin, et al. (2006). “Methane discharge from a deep-sea submarine mud 
volcano into the upper water column by gas hydrate-coated methane bubbles.” Earth and 
Planetary Science Letters 243: 354-365. 

Sean, W. Y., T. Sato, et al. (2007a). “CFD and experimental study on methane hydrate dissociation Part 
I. Dissociation under water flow.” American Institute of Chemical Engineers Journal 53, 262-274. 

Sean, W. Y., T. Sato, et al. (2007b). “CFD and experimental study on methane hydrate dissociation. 
Part II. General cases.” American Institute of Chemical Engineers Journal 53, 2148-2160. 

Servio, P. and P. Englezos (2003). “Morphology of methane and carbon dioxide hydrates formed from 
water droplets.” American Institute of Chemical Engineers Journal 49, 269-276. 

Skovborg, P., H. J. Ng, et al. (1993). “Measurement of induction times for the formation of methane and 
ethane gas hydrates. Chemical Engineering Science 48: 445-453. 

Skovborg, P. and P. Rasmussen (1994). “A mass-transport limited model for the growth of methane and 
ethane gas hydrates.” Chemical Engineering Science 49: 1131-1143. 

Sloan, E. D. and C. A. Koh (2008). Clathrate Hydrates of Natural Gases. Boca Raton, CRC Press. 

Takeya, S., A. Hori, et al. (2000). “Freezing-memory effect of water on nucleation of CO2 hydrate 
crystals.” Journal of Physical Chemistry B 104: 4164-4168. 

Uchida, T., T. Ebinuma, et al. (1999). “Microscopic observations of formation processes of clathrate-
hydrate films at an interface between water and carbon dioxide.” Journal of Crystal Growth 204: 
348-356. 

Vysniauskas, A. and P. R. Bishnoi (1983). “A kinetic study of methane hydrate formation.” Chemical 
Engineering Science 38: 1061-1072. 

Wallmann, K., G. Aloisi, et al. (2006). "Kinetics of organic matter degradation, microbial methane 
generation, and gas hydrate formation in anoxic marine sediments." Geochimica et 
Cosmochimica Acta 70: 3905-3927. 

Wilson, P. W., A. D. Haymet, et al. (2008). “Nucleation of clathrates from supercooled THF/water 
mixtures shows that no memory effect exists.” 6th International Conference on Gas Hydrates 
(ICGH 2008), Vancouver, Canada. 

Zhang, Y. X. (2005). “Fate of rising CO2 droplets in seawater.” Environmental Science & Technology 39: 
7719-7724. 



Appendix A 

 

83 

Appendix A:  Thermodynamic and kinetic properties o f gas hydrate systems 
 
 
A.1 Gas hydrate formation and dissociation process 
 
A.1.1 Enthalpy of CH4 hydrate dissociation: s-I CH4 hydrate - - -> CH4 + H2O(l) 
 
∆H [kJ/mol] p [MPa] T [K] Equation Reference 

Experiment 
    

52.0-51.6  
 

273-298 ∆H = 13521 – 4.02*T/K [cal/mol] 
Kamath (1984) 

3.6-13.7 
 

248-273 ∆H = 6543 – 11.97*T/K [cal/mol] 

54.19  1 160-210 
 

Handa (1986) 

52.8-57.7  
 

278 -283 
 

Lievois (1987) 

56.84  0.1-0.3 273 
 

Kang & Lee (2001) 

51.4-54.9 2.9-214.4 274-314 Eq.2.2.1 Gupta (2007) 

Modelling 
    

53.8 
   

Garg et al. (2008) 

52.0 water 273.15 ∆H = 56518 – 16.72*T/K [J/mol] 
Kurihara et al. (2005) 

13.6 Ice 273.15 ∆H = 27312 – 50.16*T/K [J/mol] 
∆H = -R * d ln(f)/d (1/T); R=82.055 cm3*atm/mol/K; 
ln(f/atm) = -6705/T + 27.73 + 3.0/(R*T)*exp(6705/T+27.73) 

Smith et al. (2001) 

 
 
A.1.2 Enthalpy of CO2 hydrate dissociation: s-I CO2 hydrate - - -> CO2 + H2O(l) 
 
∆H [kJ/mol] p [MPa] T [K] Equation Reference 

Experiment 
    

80.38  
 

273-298 ∆H = 19199 - 14.95*T/K [cal/mol ] Kamath (1984) 

82 1.4-3.3 274-281 
 

Clarke & Bishnoi (2004) 

65.22 0.1 - 0.3 273  Kang & Lee (2001) 

62.5 1.377 274 ∆H = 62.9 - 0.53*(T/K - 273.15) Anderson (2003) 

Modelling 
    

71.82 
 

274 Monte Carlo simulation Ota & Ferdows (2005) 
∆H = -R * d ln(f)/d (1/T); R=82.055 cm3*atm/mol/K; 
ln(f/atm) = -8482/T + 33.43 + 3.0/(R*T)*exp(8482/T+33.43) Smith et al. (2001) 

 
 
A.1.3 Gibbs energy of CH4->CO2 hydrate conversion 
 
Description ∆G [kJ/mol] p [MPa] T [K] Reference 

s-I: [8 CH4(S+L) + 6 CO2  -> 
                     [2 CH4(S), 6 CO2(L)] + 6 CH4 

-14.6 30 275 

Dornan et al. (2007) 
s-I: [8 CH4(S+L) + 6 CO2 + 2 N2  -> 
                     [2 N2(S), 6 CO2(L)] + 8 CH4 

-5.4 30 275 

s-II: [24 CH4(S+L) + 24 CO2  -> 
                     [24 CO2(S+L)] + 24 CH4 

-53.2 30 275 
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A.1.4 Kinetics of CH4 hydrate dissociation 
 
EA [kJ/mol] k0 [mol/(m2 Pa s)] p [MPa] T [K]  Equation Reference 

78.3 1.24x105  0-7 274-283 
Eq.4.3.1 + Eq.4.3.2 

Kim et al. (1987) 

81 3.6x104  3.1-6.1 275-281  Clarke & Bishnoi (2001) 

 
 
A.1.5 Kinetics CO2 hydrate dissociation 
 
EA [kJ/mol] k0 [mol/(m2 s Pa)] p [MPa] T [K] Equation Reference 

102.9 1.83x108  1.4-3.3 274-281  Eq.4.3.1 + Eq.4.3.2 Clarke & Bishnoi (2004) 

 
 
A.1.6 Kinetics of CH4 hydrate formation 
 
Parameter [unit] p [MPa] T [K] Equation Reference 
Intrinsic hydrate growth from 
gas consumption     

k = 0.55-0.65  [mol/(m2 Pa s)] 0.6-8.9 274-282 Eq.4.1.5 Englezos et al. (1987) 

k = 8.3-61.5 x 10-8  [m/s] 
 

275-279 Eq.4.1.8 Bergeron et al. (2010) 

Mass transfer contolled hydrate 
growth     

k = 4.08 x 10-5  [m/s]   Eq.4.1.9 Skovberg & Rasmussen (1994) 

Heat transfer controlled hydrate 
growth     
k0 = 1.61 x 1036  [W/m2 K] 
EA = 20599  [kJ/mol] 
h = 42326  [W/m2 K] 

3.6-9.1 273-275 Eq. 4.1.12 Freer et al. (2001) 

 
 
A.1.7 Kinetics of CO2 hydrate formation 
 
Parameter [unit] p [MPa] T [K] Equation Reference 
Intrinsic hydrate growth from 
gas consumption     

k = 3.2-6.4x10-3  [mol/(m2 Pa s)] 1.6-3.0 274-279 
Eq.4.1.5 

Clarke & Bishnoi (2005) 

k = 1.9-4.9x10-4  [mol/(m2 Pa s)] 
 

274-278 Malegoankar et al. (1997) 

k = 1.8-18 x 10-8  [m/s] 2-3 276-279 Eq.4.1.8 Bergeron & Servio (2008) 

 
 
A.1.8 Activation energy of CH4 -> CO2 gas hydrate conversion 
 
EA [kJ/mol] k0 [mol/(m2 s Pa)] p [MPa] T [K] Equation Reference 

14.5 2.4-2.6x108 
3.25 271-275  

Eq.4.3.1 (CH4 hydrate 
decomposition) 

Ota et al. (2005) 
73.3 2.4-3.8x108 

Eq.4.1.5 (CO2 hydrate 
formation) 
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A.1.9 Diffusion of CO2 and CH4 in the hydrate phase (percolation, hole-in-the-cage) 
 
EA [kJ/mol] Dref [m

2/s] p [MPa] T [K] Comment Reference 

Experiment  
    

61.5  6.9 253-273 CH4 hydrate from ice Wang et al. (2002) 

52.1 4.1x10-16 6.0 263 CH4 hydrate from ice Kuhs et al. (2006) 

27.2  6.2 230-263 CO2 hydrate from ice Henning et al. (2000) 

54.6 1.8x10-15 2.0 272 CO2 hydrate from ice Genov et al. (2006) 

46 2x10-16 1.0 253 CO2 hydrate from ice Falenty et al. (2013) 

EA [kJ/mol] Dref [m
2/s] p [MPa] T [K] Comment Reference 

Modelling  
    

7x10-15 * X  (#)  
250 CH4 in hydrate Peters et al. (2008) 

1x10-12 
 

273 CO2 in hydrate Demurov et al. (2008) 
(#) X = fraction of unoccupied cages 
 
 
 
 
A.1.10 CH4 gas dissolution / exsolution step during hydrate formation / dissociation 
 
Dissolution 
k1 [1/s] 

Exsolution 
k-1 [1/s] 

p [MPa] T [K] Equation Reference 

2.7-3.2 x 10-4 8.2-10.5 x 10-3 
 

284-298 

( ) tkk

CHCH

CHCH

11

4
0

4

44ln

−

∞

∞

+−=















−
−

 
Lekvam & Ruoff (1993) 
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A.2 Thermal properties 
 
 
A.2.1 Thermal conductivity of CH4 hydrate  
 
λ [W/m/K] p [MPa] T [K] Equation Reference 

0.564-0.587 2.0 263-278 Huang & Fan (2004) 

~0.68 2.5-14.7 261-277 λ = -1.99E-4*T/°C + 0.682 Rosenbaum et al. (2007) 

0.62-0.63 31.5 253-290 λ = -2.78E-4*T/°C + 0.624 Waite et al. (2007) 

0.50-0.58 Sloan & Koh (2008) 
 
 
 
A.2.2 Thermal conductivity of some sediments and rocks 
 
Sediment type λ [W/m/K] Comment Reference 

sandstone 

1.46-4.27 
 

Clark (1966) 

0.9-5.17 
 

Schön (1996) 

3.4-8 
 

Aplin et al. (1999) 

sandy siltstone 2.49 
 

Aplin et al. (1999) 

shaly sandstone 2.66 
 

Aplin et al. (1999) 

muddy sandstone 3.2  Aplin et al. (1999) 

siltstone 
2.47-2.84 

 
Schön (1996) 

3.2 
 

Aplin et al. (1999) 

mudstone-siltstone 2.5 
 

Aplin et al. (1999) 

clay-siltstone 1.7-3.4 
 

Schön (1996) 

claystone 
0.6-4 

 
Schön (1996) 

1.5-3  Aplin et al. (1999) 

clay 1.2-1.4 
 

Aplin et al. (1999) 

sandy shale 2.1 
 

Aplin et al. (1999) 

shale 

1.17-2.87 
 

Clark (1966) 

0.55-4.25 
 

Schön (1996) 

1.9-2.35 
 

Aplin et al. (1999) 

carbonate 3-3.24  Aplin et al. (1999) 

limestone 3.2-3.6 
 

Aplin et al. (1999) 

167 North Sea wells 0.8-8.3 
 

Aplin et al. (1999) 

Gulf of Mexico 2.02 
 

Aplin et al. (1999) 

sedimentary rock 1.7-4.2 
 

Aplin et al. (1999) 
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A.2.3 Thermal conductivity of some natural (water-saturated) marine sediments 
 
Sediment type λ [W/m/K] Comment Reference 

Black Sea 0.6-1.3 water content: 70-30% Petrunin et al. (2008) 

Juan de Fuca Ridge 0.8-1.8 
 

Goto & Matsubayashi (2008) 

Chile, ODP sites 860 + 863 1.0-2.5 porosity: 0.6-0.2 Revil (2000) 

Eastern Equatorial Pacific 0.6-1.0 
 

Matsuda & von Herzen (1986) 

 
 
A.2.4 Thermal conductivity of hydrate-bearing sediments 
 
λ [W/m/K] Comment Reference 

~1 
λ = -3.2E-3*T/°C + 1.04; quartz sand, Φ=0.4 (pores filled with 
gas); Sh=0.49 (volume expansion during hydrate formation) 

Waite et al. (2002) 
0.82-0.87 

λ = -2.3E-3*T/°C + 0.867; quartz sand, Φ=0.4 (pores filled with 
gas); Sh=1.14 (volume expansion during hydrate formation) 

~1 quartz sand, Φ=0.47, Sh=?; pores filled with gas+water Huang & Fan (2005) 

2.35-2.77 
Mallik-sand; Φ=0.3, Sh=0.9; calculated from regional heat flow 
and core log data using mixing laws 

Henninges et al. (2005) 

 
 
A.2.5 Specific heat capacity of some minerals and non-porous rocks (at 20 °C; Waples 
& Waples (2004a+b) 
 
Mineral cp [J/kg/K] Non-porous Rock cp [J/kg/K] 

average 660 +/- 235 Average 938 

    
Hematite 620 Plagioclases 711-837 

Magnetite 586 Feldspars 628-800 

Manganite 765 Olivines 576-840 

Quartz 740 Pyroxenes 670-831 

Opal 725 Basalt 898 

Aragonite 785 Clay 860 

Calcite 815 Limestone 680-880 

Dolomite 870 Sandstone 775 

Barite 540 Siltstone 910 

Anhydrite 585 Tuff 795-1090 

Gypsum 1070 Serpentinite 730-1005 

Halite 216 Schist 790-1096 

Pyrite  510 
  

 
 
A.2.6 Specific heat capacity of some natural (water-saturated) marine sediments 
 
Sediment type cp [J/kg/K] Comment Reference 

Black Sea 1580-3260 water content: 70-30% Petrunin et al. (2008) 
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A.3 Kinetic parametrizations from a few modelling studies of natural gas hydrate and 
seep systems 
 
Kinetic constant Modelled Setting Equation Reference 

kdis
G  CH4 gas dissolution 

  

1.4-8.5 x 10-5 s-1 
Hydrate Ridge 
cold vent + hydrate 

Eq. 4.2.1 Haeckel et al. (2004) 

9.5 x 10-9 s-1 
Black Sea 
gas seep + hydrate 

Eq. 4.2.1 Haeckel et al. (2008) 

3.1 x 10-8 M-1 s-1 
Aarhus Bay 
gas seep 

Eq. 4.2.1 * gas conc. Dale et al. (2008) 

kfm
H CH4 hydrate formation   

1 x 10-8 s-1  
Blake Ridge 
hydrate reservoir 

Eq. 4.2.3 Davie & Buffett (2001) 

9.4-32 x 10-6 s-1  
Hydrate Ridge 
cold vent + hydrate 

Eq. 4.2.2 Haeckel et al. (2004) 

6.3 x10-8 wt% s-1 
Blake Ridge 
hydrate reservoir 

Eq. 4.2.2 Wallmann et al. (2006) 

1.6 x 10-10 s-1  
Black Sea 
gas seep + hydrate 

Eq. 4.2.2 Haeckel et al. (2008) 

1 x 10-5 a-1 
Costa Rica margin 
subduction zone 

Eq. 4.2.2 Hensen et al. (2005) 

6.5 x 10-14 M/s 
Bush Hill 
cold vent + hydrate 

Eq. 4.2.5 
(MGH=122 g/mol) 

Cathles & Chen (2004) 

kfm
G CH4 gas bubble formation 

  

3.1 x 10-1 M-1 s-1 
Namibia Shelf 
gas seep 

Eq. 4.4.2 * gas conc. Dale et al. (2009) 

1.6 x 10-9 m/s 
Eckernförde Bay 
gas seep 

Eq. 4.5.1 Mogollon et al. (2009) 

1 x 10-8 s-1 
Blake Ridge 
hydrate reservoir 

Eq. 4.4.2 Davie & Buffett (2001) 

kdis
H CH4 hydrate dissociation 

  

6.3 x10-8 wt% s-1 
Blake Ridge 
hydrate reservoir 

Eq. 4.4.1 * hydrate 
conc. Wallmann et al. (2006) 

3 x 10-12 s-1 
Costa Rica 
subduction zone 

Eq. 4.4.1 * hydrate 
conc. 

Hensen et al. (2005) 
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Appendix B:  Application example of a hypothetical gas hydrate reservoir 
 
 

 
Figure B.1: Geological setting of the hypothetical gas hydrate reservoir. 

 
Figure B.2: Phase boundaries for methane (red) and carbon dioxide (green) gas 
hydrates for the imposed temperature profiles in the water column (hydrotherm) and 
sediment (geotherm). 
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Figure B.3: Profiles of (isobaric) specific heat capacities. The steep decrease in heat 
capacity results from the gas/liquid phase transition of CO2. 

 

Figure B.4: Profiles of specific heat capacities at constant volume. The decrease in 
heat capacity results from the gas/liquid phase transition of CO2. 
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Figure B.5: Density profiles for pure seawater, CH4, CO2 and N2. The steep increase in 
density results from the gas/liquid phase transition of CO2. 

 

Figure B.6: Density profiles for pure seawater and seawater saturated with CH4, CO2 
or N2. Sudden density changes are associated with hydrate formation and hydrate 
dissociation. 
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Figure B.7: Solubility profiles for CH4, CO2 and N2 in seawater. Sudden solubility 
changes are associated with hydrate formation, hydrate dissociation, phase transitions 
and changes in the temperature gradient. 

 

Figure B.8: Thermal conductivity profiles for CH4, CO2, N2 and seawater. The steep 
increase in thermal conductivity results from the gas/liquid phase transition of CO2. 
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Figure B.9: Viscosity profiles for CH4, CO2 and N2. The steep increase in viscosity 
results from the gas/liquid phase transition of CO2. 

 

Figure B.10: Viscosity profiles seawater and CO2-saturated seawater. Sudden 
viscosity changes are associated with abrupt changes of the temperature gradient. 
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Figure B.11: Profiles of the molecular diffusion coefficients for CH4, CO2, N2 and H2O 
in seawater and CO2-saturated seawater (+CO2). 
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Table B.1: Thermodynamic, kinetic, and transport properties at the model boundaries 
(x = 0 m: sediment-water interface; x = 600 m: 100 m below gas hydrate stability zone) 

x = 0 
p = 15 MPa, 
T = 2 °C, S = 35 

x = 600 
p = 21 MPa, 
T = 20 °C, S = 35 

pure CH 4 

density [kg/m^3] 141.165 169.443 

heat capacity  cp [J/(kg K)] 3857.100 3645.000 

fugacity coefficient 0.726 0.731 

viscosity [mPa s] 0.017 0.020 

thermal conductivity [W/m/K] 0.054 0.062 

pure CO 2  

density [kg/m^3] 990.790 942.686 

heat capacity  cp [J/(kg K)] 2064.600 2050.700 

fugacity coefficient 0.235 0.262 

viscosity [mPa s] 0.120 0.103 

thermal conductivity [W/m/K] 0.125 0.115 

pure N 2 

density [kg/m^3] 182.946 227.856 

heat capacity  cp [J/(kg K)] 1314.400 1325.400 

fugacity coefficient 0.969 1.004 

viscosity [mPa s] 0.021 0.023 

thermal conductivity [W/m/K] 0.036 0.038 

pure seawater  

density [kg/m^3] 1034.900 1033.700 

heat capacity  cp [J/(kg K)] 3941.100 3949.600 

fugacity coefficient 5.166E-05 1.286E-04 

viscosity [mPa s] 1.744 1.078 

thermal conductivity [W/m/K] 0.575 0.606 

saturated CH 4-seawater solution  

density [kg/m^3] 1033.400 1030.100 

solubility of CH4  sw (+hydrate) [mol/kg] 0.056 0.142 

diffusion coefficient of CH4 [m^2/s] 8.438E-10 1.454E-09 

fugacity coefficient of water at saturation 5.150E-05 1.265E-04 

Henry constant [1/MPa*mol/kg] 0.0141 0.0089 

fugacity of dissolved gas [MPa] 11.3 15.86 
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x = 0 
p = 15 MPa, 
T = 2 °C, S = 35 

x = 600 
p = 21 MPa, 
T = 20 °C, S = 35 

saturated CO 2-seawater solution  

density [kg/m^3] 1044.300 1048.400 

solubility of CO2 in sw (+hydrate) [mol/kg]  0.875 1.440 

viscosity [mPa s] 2.171 1.264 

fugacity coefficient of water at saturation 5.086E-05 1.237E-04 

diffusion coefficient of CO2 [m^2/s] at saturation  7.957E-10 1.337E-09 

Henry constant [MPa*kg/mol] 0.517 0.261 

fugacity of dissolved gas [MPa] 3.598 5.459 

saturated N 2-seawater solution  

density [kg/m^3] 1033.9 1032.8 

solubility of N2 in seawater [mol/kg] 0.090 0.088 

diffusion coefficient of N2 [m^2/s] 8.868E-10 1.528E-09 

Henry constant [MPa*kg/mol] 0.0065 0.0043 

fugacity of dissolved gas [MPa] 1.387E+01 2.027E+01 

water dissolved in liquid CO 2 

solubility of water [mol/kg] Eq. not applicable 0.075 

diffusion coefficient of water [m^2/s] 9.894E-09 1.430E-08 

CH4 dissolved in liquid CO 2 

solubility [mol/kg] Inf Inf 

N2 dissolved in liquid CO 2 

solubility of water [mol/kg] Inf Inf 

CH4 hydrate  

fugacity of water in hydrate [Pa] 654.760 2733.200 

heat capacity [J/kg/K] 2023.400 Eq. not applicable 

CO2 hydrate  

fugacity of water in hydrate [Pa] 695.660 2700.000 

CH4  + CO2 in seawater  

partial pressure of CO2 in CH4 gas bubbles for 
CO2 saturated seawater  [MPa] 8.049 20.766 
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Appendix C:  Scripts for unit conversion and auxili ary functions 
 
Calculation of standard seawater composition (molalities):  
 
seasalt.m 
calculates the molalities of the major sea salt components from salinity, S, according to 
the standard seawater composition in Millero et al. (2008). 
 
 
Calculation of standard seawater composition (molarities):  
 
seasalt_molarity.m 
calculates the molarities of the major sea salt components from the pressure and 
temperature dependent seawater density, ρ , and salinity, S. 
 
 
Calculation of salinity from  Cl- ion concentration:  
 
cl2salin.m 
calculates the practical salinity, S, from the concentration of Cl- ions, m_Cl, assuming 
standard seawater composition : 
 

0.5657647

35
_ ClmS =                        (Eq.C.1) 

 
 
Ionic strength of seawater:  
 
i_sw.m 
calculates the ionic strength, I, of seawater from ion concentrations, m, and ion charge 
numbers, z, at a given salinity, S: 
 

ion
ions

ion mzI ∑= 25.0                       (Eq.C.2) 

 
 
Conversion from seawater molarity to seawater molality:  
 
molar2molal_sw.m 
calculates molalities, m, from molarities, c, salinity, S and seawater density, ρ : 
 

( )ρS

c
m

0001005.01−
=                       (Eq.C.3) 
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Conversion from seawater molality to seawater molarity:  
 
molal2molar_sw.m 
calculates molarities, c, from molalities, m, salinity, S and seawater density, ρ : 
 

( )ρSmc 0001005.01−=                       (Eq.C.4) 
 
 
Conversion from seawater mol/kg{H2O}  to seawater mol/kg{solution}:  
 
mkgh2o2mkgsol.m 
calculates concentrations, k, in mol/kg{solution} from concentrations, m, given in  
mol/kg{H2O}  and salinity, S: 
 

( )Smk 0001005.01−=                       (Eq.C.5) 
 
 
Conversion from seawater mol/kg{solution} to seawater mol/kg{H2O}: 
 
mkgsol2mkgh2o.m 
calculates concentrations, m, in mol/kg{H2O}  from concentrations, k, given in 
mol/kg{solution} and salinity, S: 

S

k
m

0001005.01−
=                        (Eq.C.6) 

 
 
Conversion from CH4 partial pressure to CH4 partial molar volume:  
 
pp2pv_ch4.m, pp2pv_co2.m, pp2pv_n2.m, pp2pv_o2.m, pp2pv_h2s.m 
calculate the partial molar gas volume of a gas, Vm, from partial pressure pp, total 
pressure p and temperature T: 
 

),(

),(

Tp

Tpp
Vm ρ

ρ=                          (Eq.C.7) 

 
 
Calculation of partial presure from gas solubility in seawater:  
 
mol2pp_ch4.m, mol2pp_co2.m, mol2pp_n2.m, mol2pp_o2.m, mol2pp_h2s.m 
calculate the partial pressure of a gas, pp, at given molal concentration in the aqueous 
phase, total pressure and temperature from Henry’s law with Poynting correction for 
pressure effects and seawater activity factors. 
 
 
References 
Millero, F. J., R. Feistel, et al. (20080. "The composition of Standard Seawater and the definition of the 

Reference-Composition Salinity Scale." Deep-Sea Research I 55: 50-72. 



Appendix D 

 

102 

Appendix D:  List of SUGAR Toolbox scripts and vali d pTS ranges 
 

Script name Application Pressure range Temperature range Salinity range 

Equations of State 

eos_ch4 

Thermodynamic properties of CH4: 
density, specific heat capacities, specific entropy, 
specific internal energy, specific enthalpy, fugacity 
coefficient,  Joule-Thomson coefficient, vapor 
pressure 0.012 - 1000 MPa -183 - 347 °C  

eos_co2 

Thermodynamic properties of CO2: 
density, specific heat capacities, specific 
entropy,specific  internal energy, specific enthalpy, 
fugacity coefficient,  Joule-Thomson coefficient, 
vapor pressure 0 - 800 MPa 0 - 827 °C  

eos_n2 

Thermodynamic properties of N2: 
density, specific heat capacities, specific entropy, 
specific internal energy, specific enthalpy, fugacity 
coefficient 0 - 1000 MPa -73 - 727 °C  

eos_o2 

Thermodynamic properties of O2: 
density, specific heat capacities, specific entropy, 
specific internal energy, specific enthalpy, fugacity 
coefficient, Joule-Thomson coefficient 0 - 818 MPa -219 - 127 °C  

eos_h2s density and fugacity coefficient of H2S 0.1 - 35 MPa 0 - 137.7 °C  
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Script name Application Pressure range Temperature range Salinity range 

eos_h2o 

Thermodynamic properties of pure water: 
density, specific heat capacities, specific entropy, 
specific internal energy, specific enthalpy, 
isentropic temperatuer-pressure coefficient, 
fugacity coefficient,  Joule-Thomson coefficient 0 - 167.5 MPa 

0 - 1000 °C  
(not valid for ice phase) 

eos_sw 

Thermodynamic properties of seawater: 
density, specific heat capacities, specific entropy, 
specific internal energy, specific enthalpy, fugacity 
coefficient,  chemical potential of water, chemical 
potential of salt, thermal expansion coefficient, 
isentropic temperature pressure coefficient, 
compressibilities, haline contraction coefficient, 
fugacity coefficient (pure water) 0 - 100 MPa 0 - 80 °C  0 - 120  

eos_IAPS84 

outdated formulation for the density of pure water, 
may be used for eos_swDriesner around the critical 
point of water. 0 - 500 MPa 

0 - 1000 °C  
(not valid for ice phase) 

eos_swDriesner 

density, specific enthalpy and specific isobaric heat 
capacity for NaCl solutions, valid for an extended 
pressure and temperature range 0.1 - 167.5 MPa 0 - 600 °C  

up to NaCl 
saturation 

Densities  

density_ch4 density of pure CH4 0.012 - 1000 MPa -183 - 347 °C  

density_ch4sw 
density of CH4-seawater solution (mch4 is set to 
saturation concentration, if not provided)  0.1 - 200 MPa 0 - 250 °C  0 - 350  
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Script name Application Pressure range Temperature range Salinity range 

density_co2 density of pure CO2  0 - 800 MPa 0 - 827 °C  

density_co2sw 
density of CO2-seawater solution (mco2 is set to 
saturation concentration, if not provided)  0.1 - 100 MPa 0 - 200 °C  0 - 350  

density_n2sw density of N2-seawater solution 0.1 - 60 MPa 0 - 127 °C  0 - 350 

density_sw 

Checks pTS range and calls the appopriate 
function to calculate seawater density.  
User can decide by setting the input variable 
"choice" (default is ‘eos_sw’). 

density_swUnesco UNESCO formulation for density of seawater 0.1 - 100 MPa 0 - 40 °C  0.5 - 50  

density_swSpivey density of seawater for high pTS values 0- 200 MPa 0 - 275 °C  0 - 216 

density_swSun density of seawater for high pTS values 0.1- 100 MPa 0 - 374 °C  0 - 80  

density_ch4co2n2 
density for mixtures of CH4, CO2 and N2, mole 
fractions in liquid and vapor, vapor phase fraction 1-? MPa 

density_cacl2brine density of CaCl2-water solutions 0.1- 68.5 MPa 10 - 199 °C  0 - 86 

Phase boundaries 

hydrate_phasediagram 
plots the phasediagrams of the sytems seawater-
CH4 and seawater-CO2 
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Script name Application Pressure range Temperature range Salinity range 

phase_ch4sw 
dissociation pressure of CH4-hydrate in water, 
seawater and porewater 0.012 - 1000 MPa - 10 - 30 °C  0 - 70  

phase_co2sw 
Melting, sublimation, and vapor pressure of CO2, 
dissociation pressure of CO2-hydrate in seawater  0 - 800 MPa 0 - 827 °C  0 - 40  

phase_sw 
phase boundaries and critical properties of the 
system water – salt 0 - 1000 °C  0 - 1000  

sw_phasediagram plots the phasediagram of saltwater 

vlh_naclh2o 3-phase (vapor-liquid-halite) equilibrium 0 - 1000 °C  

Fugacities 

fugacity_ch4gh fugacity of CH4 in hydrate 

fugacity_ch4sw fugacity of CH4 dissolved in seawater 0.1 - 200 MPa 0 - 250 °C  0 - 350 

fugacity_co2gh fugacity of CO2 in hydrate 

fugacity_co2sw fugacity of CO2 dissolved in seawater 0.1-35 MPa 0-162 °C  0-263 

fugacity_h2och 
fugacity of water and fractional cage occupancies 
in CO2-hydrate -133 - 57 °C  
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Script name Application Pressure range Temperature range Salinity range 

fugacity_h2omh 
fugacity of water and fractional cage occupancies 
in CH4-hydrate -133 - 57 °C  

fugacity_sw 
fugacity of water in solutions with dissolved salt, 
CH4 and CO2 0.1 - 400 MPa 0 - 350  

fugacity_h2ssw fugacity of H2S dissolved in seawater 0.1 - 20 MPa 0 - 127 °C  0 - 350  

fugacity_n2sw fugacity of N2 dissolved in seawater 0.1-35 MPa 0-317 °C  0-350 

fugacity_o2sw fugacity of O2 dissolved in seawater 0.1 - 20 MPa 0 - 127 °C  0 - 350  

Solubilities 

solu_ch4 

Checks pTS range and calls the appopriate 
function to calculate solubility of CH4 in seawater 
(‘solu_ch4gas’ or ‘solu_ch4gh’) 

solu_ch4gas 
solubility of CH4 in seawater in equilibrium with gas 
phase and mole fraction of water in CH4 gas phase 0.1 - 200 MPa 0 - 250 °C  0 - 350  

solu_ch4gh 
solubility of CH4 in seawater and SO4-free 
porewater in equilibrium with hydrate phase 0.1 - 50 MPa 0 - 20 °C  0 - 70  

solu_co2 

Checks pTS range and calls the appopriate 
function to calculate solubility of CO2 in seawater 
(‘solu_co2gl’ or ‘solu_co2gh’) 
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Script name Application Pressure range Temperature range Salinity range 

solu_co2gl 
solubility of CO2 in seawater in equilibrium with gas 
or liquid phase 0.1- 100 MPa 0 - 162°C  0 - 263  

solu_co2gh 
solubility of CO2 in seawater or SO4-free 
porewater in equilibrium with hydrate phase 0.1 - 50 MPa 0 - 12 °C  0 - 40  

solu_h2ssw solubility of H2S in seawater 0.1 - 20 MPa 0 - 127 °C  0 - 350  

solu_n2sw solubility of nitrogen in seawater 0.1 - 60 MPa 0 - 317 °C  0 - 350  

solu_o2sw solubility of O2 in seawater 0.1 - 20 MPa 0 - 127 °C  0 - 350  

solu_co2ch4 partial pressure of CO2 in CH4-gas 3.5 - 50 MPa 0 - 25 °C  0 - 40  

solu_ch4co2 solubility of CH4 in liquid CO2 

solu_n2co2 solubility of N2 in liquid CO2 

solu_swco2 solubility of H2O in liquid CO2 5 - 20 MPa 10 - 40 °C  0 - 40  

solu_nacl solubility of NaCl 0-500 MPa 0-1000 °C  

solu_caso4 
solubility  product of anhydrite, gypsum and CaSO4 
hemihydrate 0.1 - 100 MPa 30 - 300 °C  0 – 250 
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Script name Application Pressure range Temperature range Salinity range 

solu_opal 

calls ‘solu_opalWalther’ or ‘solu_opalFournier’ to 
calculate the solubility of opal in seawater (default 
is ‘solu_opalWalther’) 

solu_opalFournier solubility of opal in seawater 10 - 120 MPa 150 - 350 °C  0 - 80  

solu_opalWalther solubility of opal in seawater 10 - 120 MPa 0 - 350 °C  0 - 80  

solu_quartz 

Checks pTS range and calls appopriate function to 
calculate solubility of quartz in seawater. 
User can decide by setting input variable "choice" 
(default is ‘solu_quartzFournier’). 

solu_quartzDamm solubility of quartz in seawater 0.1 - 986 MPa 45 - 900 °C  0 - 80  

solu_quartzFournier solubility of quartz in seawater 0.1 - 100 MPa 0 - 350 °C  0 - 80  

soluhenry_ch4sw 
solubility of CH4 in seawater calculated from pS-
corrected Henry constant + Henry constant 0.1 - 200 MPa 0 - 250 °C  0 - 350 

soluhenry_co2sw 
solubility of CO2 in seawater calculated from pS-
corrected Henry constant + Henry constant 0.1-35 MPa 0-162 °C  0-263 

soluhenry_h2ssw 
solubility of H2S in seawater calculated from pS-
corrected Henry constant + Henry constant 0.1 - 20 MPa 0 - 127 °C  0 - 350  
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Script name Application Pressure range Temperature range Salinity range 

soluhenry_n2sw 
solubility of N2 in seawater calculated from pS-
corrected Henry constant + Henry constant 0.1-35 MPa 0-317 °C  0-350 

soluhenry_o2sw 
solubility of O2 in seawater calculated from pS-
corrected Henry constant + Henry constant 0.1 - 20 MPa 0 - 127 °C  0 - 350  

Viscosities 

visco_ch4 viscosity of pure CH4 0 - 50 MPa - 178 - 227 °C  

visco_co2 viscosity of pure CO2 0.1 - 300 MPa - 56 - 827 °C  

visco_h2o 
viscosity of water (not suitable for pT conditions 
close to the critical point) 0.1 - 167.5 MPa 0 - 80 °C  

visco_n2 viscosity of N2 0.1 - 100 MPa (-120)- 727 °C  

visco_sw 

checks the pTS range and calls appopriate function 
to calculate solubility of quartz in seawater. 
User can decide by setting input variable "choice" 
(default is Kukulka's equation). 

0- 100 MPa 
(Kukulka) 

0 - 30 °C  
(Kukulka) 

0 - 36.1  
(Kukulka) 

visco_swSpivey viscosity of seawater for high pTS values 0- 200 MPa 0 - 275 °C  0 - 290  

visco_swMao viscosity of seawater 0.1 - 100 MPa 0 - 350 °C  0 - 300  

visco_swPalliser viscosity of seawater 0.1 - ? MPa 0.1 - 727 °C  0 - 1000  (?) 
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Script name Application Pressure range Temperature range Salinity range 

visco_co2sw 
viscosity of CO2-seawater (mco2 is set to 
saturation concentration, if not provided) (1-20 MPa) (30-60°C)  (0 - 30 ) 

Thermal properties 

heatcap_ch4gh heat capacity of CH4-hydrate -25 - 11 °C  

heatcond_ch4 thermal conductivity of pure CH4 0 - 50 MPa -5 - 227 °C  

heatcond_co2 thermal conductivity of pure CO2 0.1 - 200 MPa -48  -  727 °C  

heatcond_n2 thermal conductivity of N2 0.1 -100 MPa (-120)- 727 °C  

hetacond_sw thermal conductivity of seawater 0 -1 40 MPa 0 - 60 °C  0 - 45  

Diffusion coefficients 

diffcoeff_h2oco2 diffusion coefficient of H2O in liquid CO2 (13 - 30 MPa) (10 - 35 °C)  

diffcoeff_sw 
diffusion coefficients of various solutes in seawater 
and CO2-rich seawater 

variable 
(see script) 

variable 
(see script) 

variable 
(see script) 

Acid-Base and 
Mineral Equilibria 

kco2_sw 
equilibrium constants of carbonic acid dissociation 
in CO2-rich seawater 0.1 -100 MPa 0 - 45 °C  0 - 45  
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Script name Application Pressure range Temperature range Salinity range 

kequilib_sw 
equilibrium constants of various solute dissociation 
and mineral dissolution reactions in seawater 0.1 -100 MPa 0 - 45 °C  0 - 45  

ph_analyt 

Analytical solution of seawater pH and  equilibrium 
concentrations of H+, CO2, HCO3-, CO32-, 
B(OH)4-, B(OH)3, H2S, HS- based on total 
concentrations and total alkalinity 

ph_model 

Numerical solution of seawater pH, equilibrium 
concentrations of acid-base species, total alkalinity 
and total concentrations based on variable input 

Unit conversions 

cl2salin converts Cl- molality to practical salinity 

molal2molar_sw converts mol/kg to mol/l for seasalt components 

molar2molal_sw converts mol/l to mol/kg for seasalt components 

molkgh2o2molkgsol converts mol/kg{H2O} to mol/kg{solution} 

molkgsol2molkgh2o converts mol/kg{solution} to mol/kg{H2O} 

mol2pp_ch4 converts molality of CH4 to partial pressure 0.1 - 200 MPa 0 - 250 °C  0 - 350 
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Script name Application Pressure range Temperature range Salinity range 

mol2pp_co2 converts molality of CO2 partial pressure 0.1-35 MPa 0-162 °C  0-263 

mol2pp_h2s converts molality of H2S partial pressure 0.1 - 20 MPa 0 - 127 °C  0 - 350  

mol2pp_n2 converts molality of N2 partial pressure 0.1-35 MPa 0-317 °C  0-350 

mol2pp_o2 converts molality of O2 partial pressure 0.1 - 20 MPa 0 - 127 °C  0 - 350  

pp2pv_ch4 converts CH4 partial pressure to partial volume 0.012-1000 MPa -183-347 °C  

pp2pv_co2 converts CO2 partial pressure to partial volume 0.1-800 MPa -57-827 °C  

pp2pv_h2s converts H2S partial pressure to partial volume 0.1-35 MPa 0-137.5 °C  

pp2pv_n2 converts N2 partial pressure to partial volume 0.1-1000 MPa -73-727 °C  

pp2pv_o2 converts O2 partial pressure to partial volume 0-81.8 MPa -219-127 °C  

Auxiliary functions 

i_sw ionic strength of seawater 

permeab sediment permeability 

seasalt Molalities of major salts based on seawater salinity 
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Script name Application Pressure range Temperature range Salinity range 

seasalt_molarity Molarities of major salts based on seawater salinity 

tortuos 
tortuosity correction for diffusion coefficients in 
sediments 
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Appendix E:  Header information of the SUGAR Toolbo x scripts 
 
SUGAR_TOOLBOX 
  
Equations of state 
    eos_ch4      - calculates thermodynamic properties of CH4  
    eos_co2      - calculates thermodynamic properties of CO2  
    eos_n2      - calculates thermodynamic properties of N2  
    eos_o2      - calculates thermodynamic properties of O2  
    eos_h2s      - calculates density and fugacity coefficient of H2S  
    eos_h2o      - calculates thermodynamic properties of pure water  
    eos_sw      - calculates thermodynamic properties of seawater  
    eos_IAPS84     - outdated formulation to calculate thermodynamic properties of seawater  
    eos_swDriesner    - calculates thermodynamic properties of seawater for extreme conditions  
  
Densities 
    density_ch4     - calculates the density of CH4 (calls eos_ch4) 
    density_ch4sw    - calculates the density of a CH4-seawater solution 
    density_co2     - calculates the density of CO2 (calls eos_co2) 
    density_co2sw    - calculates the density of a CO2-seawater solution 
    density_n2sw    - calculates the density of a N2-seawater solution 
    density_sw     - calculates the density of seawater (calls function with matching pTS 
range)  
    density_swUnesco   - UNESCO formulation to calculate the density of seawater 
    density_swSpivey   - calculates the density of seawater for high p-T conditions 
    density_swSun    - calculates the density of seawater for high p-T conditions 
    density_ch4co2n2   - calculates the density and phase composition of CH4-CO2-N2 mixtures 
    density_cacl2brine   - calculates the density of a CaCl2-water solution 
  
Phase boundaries 
    hydrate_phasediagram  - plots the phase diagrams of CH4 and CO2 hydrates in seawater 
    phase_ch4sw    - calculates the phase boundaries of the system CH4-seawater 
    phase_co2sw    - calculates the phase boundaries of the system CO2-seawater 
    phase_sw      - calculates the phase boundaries of seawater 
    sw_phasediagram   - plots the phase diagram of seawater 
    vlh_naclh2o - calculates the 3-phase (vapor-liquid-halite) coexistence of the system 

NaCl-H2O 
  
Fugacities 
    fugacity_ch4gh    - calculates the fugacity of CH4 in CH4-hydrate 
    fugacity_ch4sw    - calculates the fugacity of CH4 dissolved in seawater 
    fugacity_co2gh    - calculates the fugacity of CO2 in CO2-hydrate 
    fugacity_co2sw    - calculates the fugacity of CO2 dissolved in seawater 
    fugacity_h2och    - calculates the fugacity of water in CO2 SI-hydrate 
    fugacity_h2omh    - calculates the fugacity of water in CH4 SI-hydrate  
    fugacity_sw  - calculates the fugacity of water in solutions with dissolved salts, CH4 and 

CO2 
    fugacity_h2ssw    - calculates the fugacity of H2S dissolved in seawater 
    fugacity_n2sw    - calculates the fugacity of N2 dissolved in seawater 
    fugacity_o2sw    - calculates the fugacity of O2 dissolved in seawater 
 
Solubilities 

solu_ch4 - calculates the solubility of CH4 in seawater (calls function with matching 
pTS range) 

solu_ch4gas - calculates the 2-phase (gas-water) equilibrium concentration of CH4 in 
seawater  

solu_ch4gh - calculates the 3-phase (gas-water-hydrate) equilibrium concentration of 
CH4 in seawater   
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solu_co2 - calculates the solubility of CO2 in seawater (calls function with matching 
pTS range) 

solu_co2gl - calculates the 2-phase (gas/liquid-water) equilibrium concentration of 
CO2 in seawater 

solu_co2gh - calculates the 3-phase (gas/liquid-water-hydrate) equilibrium 
concentration of CO2 in seawater 

    solu_h2ssw     - calculates the solubility of H2S in seawater 
    solu_n2sw     - calculates the solubility of N2 in seawater 
    solu_o2sw     - calculates the solubility of O2 in seawater 
    solu_co2ch4     - calculates the partial pressure of CO2 in methane gas  
    solu_ch4co2     - calculates the solubility of CH4 in CO2 
    solu_n2co2     - calculates the solubility of N2 in CO2 
    solu_swco2     - calculates the solubility of water in liquid CO2 
    solu_nacl      - calculates the solubility of NaCl in water 
    solu_caso4     - calculates the solubility of CaSO4 in seawater 
    solu_opal - calculates the solubility of opal in seawater (calls function with matching 

pTS range) 
    solu_opalFournier   - calculates the solubility of opal in seawater 
    solu_opalWalther   - calculates the solubility of opal in seawater 
    solu_quartz - calculates the solubility of quartz in seawater (calls function with matching 

pTS range) 
    solu_quartzDamm   - calculates the solubility of quartz in seawater for hydrothermal conditions 
    solu_quartzFournier  - calculates the solubility of quartz in seawater 
    soluhenry_ch4sw   - calculates the solubility and Henry constant of CH4 in seawater 
    soluhenry_co2sw   - calculates the solubility and Henry constant of CO2 in seawater 
    soluhenry_h2ssw   - calculates the solubility and Henry constant of H2S in seawater 
    soluhenry_n2sw    - calculates the solubility and Henry constant of N2 in seawater 
    soluhenry_o2sw    - calculates the solubility and Henry constant of O2 in seawater 
  
Viscosities 
    visco_ch4      - calculates the dynamic viscosity of CH4 
    visco_co2      - calculates the dynamic viscosity of CO2 
    visco_h2o      - calculates the dynamic viscosity of pure water 
    visco_n2      - calculates the dynamic viscosity of N2 
    visco_sw  - calculates the dynamic viscosity of seawater (calls function with matching 

pTS range)  
    visco_swSpivey    - calculates the dynamic viscosity of seawater 
    visco_swMao    - calculates the dynamic viscosity of seawater 
    visco_swPalliser    - calculates the dynamic viscosity of seawater 
    visco_co2sw     - calculates the dynamic viscosity of CO2-seawater solutions 
  
Thermal Properties 
    heatcap_ch4gh    - calculates the heat capacity of CH4 hydrate 
    heatcond_ch4    - calculates the thermal conductivity of CH4 
    heatcond_co2    - calculates the thermal conductivity of CO2 
    heatcond_n2     - calculates the thermal conductivity of N2 
    heatcond_sw     - calculates the thermal conductivity of seawater 
  
Diffusion Coefficients 
    diffcoeff_h2oco2    - calculates the diffusion coefficient of water in liquid CO2 
    diffcoeff_sw     - calculates the diffusion coefficients of dissolved species in seawater 
  
Acid-Base and Mineral Equilibria 
    kco2_sw      - calculates equilibrium constants for the carbonic acid system in seawater 
    kequilib_sw     - calculates stoichiometric equilibrium constants and solubility products 
    ph_analyt  - calculates pH-system in seawater analytically from given TAlk, TCO2, 

TH2S, TBOH4 
ph_model  - calculates pH-system in seawater numerically from variable input 

combinations 
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Unit Conversions 
    cl2salin      - converts seawater chloride concentration to salinity 
    molal2molar_sw    - converts molal concentrations to molar concentrations for seawater salts 
    molar2molal_sw    - converts molar concentrations to molal concentrations for seawater salts 
    mkgh2o2mkgsol    - converts mol/kg{H2O} to mol/kg{solution} 
    mkgsol2mkgh2o    - converts mol/kg{solution} to mol/kg{H2O} 
    mol2pp_ch4 - calculates the CH4 partial pressure from its molal concentration in 

seawater 
mol2pp_co2 - calculates the CO2 partial pressure from its molal concentration in 

seawater 
    mol2pp_h2s - calculates the H2S partial pressure from its molal concentration in 

seawater 
    mol2pp_n2 - calculates the N2 partial pressure from its molal concentration in seawater 

mol2pp_o2 - calculates the O2 partial pressure from its molal concentration in seawater 
    pp2pv_ch4     - converts CH4 partial pressure to partial volume 
    pp2pv_co2     - converts CO2 partial pressure to partial volume 
    pp2pv_h2s     - converts H2S partial pressure to partial volume 
    pp2pv_n2      - converts N2 partial pressure to partial volume 
    pp2pv_o2      - converts O2 partial pressure to partial volume 
     
Auxiliary Functions 
    i_sw       - calculates the ionic strength of seawater 
    permeab      - estimates the permeability of the sediment from porosity and grain size 
    seasalt      - calculates the molal concentrations of major salts in seawater 
    seasalt_molarity    - calculates the molar concentrations of major salts in seawater 
    tortuous      - calculates the tortuosity correction for diffusion coefficients 
 
 
 
 
E.1.  Equations of State (EOS) 
 
eos_ch4  - calculates thermodynamic properties of CH4 based on an equation of state 
  
      Usage: [rho cv cp s u h f JT pv cs] = eos_ch4(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0.012 < p < 1000)  
          T       - temperature [degC] (-183< T < 347) 
  
      Output parameters: 
          rho     - density [kg/m^3] 
          cv       - specific isochoric heat capacity [J/(kg K)] 
          cp      - specific isobaric heat capacity [J/(kg K)] 
          s        - specific entropy [J/(kg K)]  
          u        - specific internal energy [J/kg] 
          h        - specific enthalpy [J/kg]  
          f         - fugacity coefficient  
          JT      - Joule-Thomson coefficient [K/MPa] 
          pv      - vapor pressure [MPa] (only for T < T_critical) 
          cs      - saturated liquid heat capacity [J/kg/K] (only for T < T_critical) 
        

 All thermodynamic properties (except for pv) are calculated from the dimensionless Helmholtz 
 energy Phi = A/(RT)  

      ( A(rho,T) = h_0(T)-R*T-T*s_0(rho,T) ) and its derivatives with respect to p and T. 
  
      References: 
      Setzmann & Wagner (1991) J. Phys. Chem. Ref. Data 20, 1061-1155. 
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  eos_co2  -  calculates thermodynamic properties of CO2 based on an equation of state 
  
      Usage: [rho cv cp s u h f JT pv cs] = eos_co2(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0 < p < 800)  
          T       - temperature [degC] (-57 (0)< T < 827) 
  
      Output parameters: 
          rho     - density [kg/m^3] 
          cv      - specific isochoric heat capacity [J/(kg K)] 
          cp      - specific isobaric heat capacity [J/(kg K)] 
          s       - specific entropy [J/(kg K)]  
          u       - specific internal energy [J/kg] 
          h       - specific enthalpy [J/kg]  
          f       - fugacity coefficient  
          JT      - Joule-Thomson coefficient [K/MPa] 
          pv      - vapor pressure [MPa] 
          cs      - saturated liquid heat capacity [J/kg/K] 
  

All thermodynamic properties (except for pv) are calculated from the dimensionless Helmholtz energy 
Phi = A/(RT)  

     ( A(rho,T) = h_0(T)-R*T-T*s_0(rho,T) ) and its derivatives with respect to p and T.  
     The reduced Helmholtz energy is split into an ideal gas part (PHI_0) and a residual part (PHI_r): 
         A/(R*T) = PHI(del,tau) = PHI_0 + PHI_r 
     with  del = RHO/RHOc  and  tau = Tc/T 
     The pressure is related to the Helmholtz energy by: 
         P(RHO,T) = -(dA/dV)_T   
     and thus to the reduced Helmholtz energy PHI by: 
         P(del,tau)/(RHO*R*T) = 1 + del*(dPHI_r/ddel)_tau 
     Rearranging gives: 
         RHO = P / (R*T*(1+del*(dPHI_r/ddel)_tau)) 

Since the density is part of both sides of the above equation, RHO is determined iteratively by 
minimizing the following expression:  

         0 = RHO - RHOeos 
   
      References:  
      Span & Wagner (1996) J. Phys. Chem. Ref. Data 25, 1509-1597. 
   
     Comments: 

Caution should be taken because although the paper states that the equations are valid for   
temperatures between -57 degC and 827 degC, the curves show singularities at temperatures below 
0 degC. The exact positions depend on p and occur mainly, but not exclusively, at temperatures 
below -20 degC. 

 
 
  eos_n2  -  calculates thermodynamic properties of gaseous (supercritical) N2 based on an EOS 
  
      Usage: [rho cv cp s u h f] = eos_n2(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0 < p < 1000)  
          T       - temperature [degC] (-73 (0)< T < 727) 
  
      Output parameters: 
          rho     - density [kg/m^3] 
          cv      - specific isochoric heat capacity [J/(kg K)] 
          cp      - specific isobaric heat capacity [J/(kg K)] 
          s       - specific entropy [J/(kg K)]  
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          u       - specific internal energy [J/kg]  
          h       - specific enthalpy [J/kg] 
          f       - fugacity coefficient 
  

All thermodynamic properties (except for pv) are calculated from the dimensionless Helmholtz energy 
PHI = A/(RT)  

      ( A(rho,T) = h_0(T)-R*T-T*s_0(rho,T) ) and its derivatives with respect to p and T.  
     The reduced Helmholtz energy is split into an ideal gas part (PHI_0) and a residual part (PHI_r): 
          A/(R*T) = PHI(del,tau) = PHI_0 + PHI_r 
     with  del = RHO/RHOc  and  tau = Tc/T 
     The pressure is related to the Helmholtz energy by: 
          P(RHO,T) = -(dA/dV)_T   
     and thus to the reduced Helmholtz energy PHI by: 
          P(del,tau)/(RHO*R*T) = 1 + del*(dPHI_r/ddel)_tau 
     Rearranging gives: 
          RHO = P / (R*T*(1+del*(dPHI_r/ddel)_tau)) 

Since the density is part of both sides of the above equation, RHO is determined iteratively by 
minimizing the following expression: 

          0 = RHO - RHOeos 
  
      Reference:  
      Span et al. (2000) J. Phys. Chem. Ref. Data 29, 1361-1433. 
  
      Comments:  
      For (supercritical) gas phase only (to keep things simple). 
 
 
  eos_o2  -  calculates thermodynamic properties of O2 based on an equation of state 
  
      Usage: [rho cv cp s u h f JT] = eos_o2(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0 < p < 81.8)  
          T       - temperature [degC] (-219 < T < 127) 
  
      Output parameters: 
          rho     - density [kg/m^3] 
          cv      - specific isochoric heat capacity [J/(kg K)] 
          cp      - specific isobaric heat capacity [J/(kg K)] 
          s       - specific entropy [J/(kg K)]  
          u       - specific internal energy [J/kg]  
          h       - specific enthalpy [J/kg] 
          f       - fugacity coefficient 
          JT      - Joule-Thomson coefficient [K/MPa] 
  

All thermodynamic properties (except for pv) are calculated from the dimensionless Helmholtz energy 
Phi = A /(RT) 

     ( A(rho,T) = h_0(T)-R*T-T*s_0(rho,T) ) and its derivatives with respect to p and T. 
  
      Reference:  
      Schmidt & Wagner (1985) Fluid Phase Equilibria 19, 175-200. 
 
 
  eos_h2s  -  calculates the density and fugacity coefficient of H2S from a cubic equation of state 
     
      Usage:  [rho phi] = eos_h2s(p,T) 
       Input parameters (scalars or vectors):  
            p        -  pressure [MPa]     (0.1 < p < 35) 
            T        -  temperature [degC] (0 < T < 137.7) 
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     Output parameters:  
            rho      - density [kg/m3] 
            phi      - fugacity coefficient 
  
      References:  
      Duan et al. (2007) Energy & Fuels 21, 2056-2065. 
      Reamer et al. (1950) Ind. Eng. Chem. 1, 140-143. (lookup table) 
 
 
  eos_h2o  -  calculates thermodynamic properties of pure water based on an equation of state 
  
      Usage: [rho cp cv s u h beta f JT] = eos_h2o(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0 < p < 167.5)  
          T       - temperature [degC] (0 < T < 1000) 
  
      Output parameters: 
          rho     - density [kg/m^3] 
          cp      - specific isobaric heat capacity [J/(kg K)] 
          cv      - specific isobaric heat capacity [J/(kg K)] 
          s       - specific entropy [J/(kg K)]  
          u       - specific internal energy [J/kg] 
          h       - specific enthalpy [J/kg]  
          beta  - isentropic temperature-pressure coefficient [K/Pa] 
          f        - fugacity coefficient  
          JT     - Joule-Thomson coefficient [K/MPa] 
  
      All thermodynamic properties are calculated from the Gibbs energy  
      (g = u + pV - Ts) and its derivatives with respect to p and T.  
  
      References:  
      IAPSW (1996) The IAPWS formlation 1995 for the thermodynamic  
        properties of ordinary water substance for general and scientific 
        use. www.iapws.org 
      Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. 
      IAPSW (2007) Revised release for the IAPWS industrial formlation 1997 
        for the thermodynamic properties of water and steam. www.iapws.org 
      Marcus (2000) Phys Chem Chem Phys 2, 1465-1472. 
  
      Comments:  
      Not valid for ice phase! (No check for ice phase implemented) 
  
      The deviation from the tabulated density values of Wagner and Pruss is less than 1%. 
  

 The formulation of IAPWS (2007) and equations from Marcus (2000) are used to calculate a start 
 value for the iteration of the density.  
 The IAPWS (2007) formalism is valid for T=0-800 degC and p=0-100 MPa. Since the calculated 
 density is only considered as a start value and only needs to be approximated but not exact, the 
 formulation might be used for T=0-1000 degC and p<167.5 MPa or T=0-227 degC and p<225 MPa. 

  
 The formalism can be extended to the full range of IAPWS (0 < T < 1000 degC and p < 1000 MPa), 
 if good starting values for the density calculations can be provided. A lookup-table could be 
 implemented from table 13.2 in Wagner & Pruss (2002). 
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  eos_sw  - calculates thermodynamic properties of seawater based on an equation of state 
  
      Usage: [rho cp s u h phi mu_sw mu_ss alpha beta kappaT kappaS beta_hal fw] = eos_sw(p,T,S) 
   
      Input parameters (scalars or vectors):  
          p         - pressure [MPa]     (0 < p < 100),  
          T         - temperature [degC] (-12 (0)< T < 80), 
          S         - practical salinity (0 < S < 120) 
  
      Output parameters: 
          rho       - Density [kg/m^3] 
          cp        - Specific isobaric heat capacity [J/(kg K)] 
          s         - Specific entropy [J/(kg K)]  
          u         - Specific internal energy [J/kg] 
          h         - Specific enthalpy [J/kg]  
          phi       - Specific Helmholtz energy [J/kg] 
          mu_sw     - Relative chemical potential of seawater [J/kg] 
          mu_ss     - Chemical potential of sea salt [J/kg] 
          alpha     - Thermal expansion coefficient [1/K] 
          beta      - Isentropic temperature-pressure coefficient [K/Pa] 
          kappaT    - Isothermal compressibility [1/Pa] 
          kappaS    - Isentropic compressibility [1/Pa] 
          beta_hal  - Haline contraction coefficient [kg/kg] 
          fw        - fugacity coefficient of pure(!) water  
  

All thermodynamic properties are calculated from the Gibbs energy (g = u + pV - Ts) and its 
derivatives with respect to p, T and S.  
The Gibbs energy of seawater is taken as the sum of the Gibbs energy of pure water and the Gibbs 
energy of the saline part. The pure water properties are first calculated from a formalism based on 
the Helmholtz energy (a = u - Ts) as given in IAPWS (1995). 
The Gibbs energy of pure water and its derivatives are then derived from those calculated 
thermodynamic potentials. The saline contribution to the Gibbs energy is directly calculated 

     from the formalism given in IAPWS (2008). 
  
     References:  

IAPSW (1996) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water 
substance for general and scientific use. www.iapws.org 

     Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. 
IAPSW (2008) Release on the IAPWS formulation 2008 for the thermodynamic properties of 
seawater. www.iapws.org  

     Feistel (2008) DSR I 55, 1639–1671.  
  
     Comments: Not valid for ice phase! 
 
 
eos_IAPS84  -  calculates thermodynamic properties of pure water based on an equation of state from 

the outdated IAPS-84 formulation 
  
      Usage: rho = eos_IAPS84(p,T) 
   
      Input parameters (scalars or vectors):  
          p       - pressure [MPa]     (0 < p < 500)  
          T       - temperature [degC] (0 < T < 1000) 
  
      Output parameters: 
          rho     - density of pure water [kg/m^3] 
  
      All thermodynamic properties are calculated from the Gibbs energy 
      (g = u + pV - Ts) and its derivatives with respect to p and T. 



Appendix E 

 

121 

  
     References:  

IAPS Formulation 1984 for the Thermodynamic Properties of Ordinary Water Substance for Scientific 
and General Use. http://iapws.org. 

     Kestin & Sengers (1986) J.Phys.Chem.Ref.Data 15, 305-320. 
IAPSW (2007) Revised release for the IAPWS industrial formlation 1997 for the thermodynamic 
properties of water and steam. www.iapws.org 

     Marcus (2000) Phys Chem Chem Phys 2, 1465-1472. 
  
     Comments:  
     Not valid for ice phase! (No check for ice phase implemented) 
  

The formalism is outdated and for an accurate calculation, the MATLAB script eos_h2o should be 
used. IAPS-84 might be needed for the function eos_swDriesner. Driesner did use the IAPS84      
formulation to derive his density formalism. The deviations of IAPS84 from the actual formulation are 
small except in the vicinityof the critical point of water. For density calculations with eos_swDriesner 
close to the critical point, eos_swDriesner might be edited to use IAPS84 instead of eos_h2o. 

 
 
  eos_swDriesner  -  calculates the density, enthalpy and isobaric heat capacity of the system H2O-

NaCl based on multiparametric equations 
  
       Usage: [rho h cp] = eos_swDriesner(p,T,S) 
  
       Input parameters (vectors or scalars, S: scalar):  
            p       - pressure [MPa]        (0.1 < P < 167.5) 
            T       - temperature [degC]    (0 < T < 600) 
            S       - salinity (see comments) 
  
       Output parameters: 
           rho      - density [kg/m^3] 
           h        - specific enthalpy [J/kg] 
           cp       - specific isobaric heat capacity [J/kg/K] 
  

The densities, enthalpies and heat capacities are calculated from equations for pure water at a  
modified temperature that balances out the deviations caused by salinities. 

  
     References: 
     Driesner & Heinrich (2007) GCA 71, 4902-4919. 
  
     Comments:  

Currently, the EOS for pure water based on the IAPWS formulation (eos_h2o), which is called by this 
routine, is not implemented for its full pT range. It holds for T < 1000 degC and p < 167.5 MPa and 

     some more extended ranges. For details, see comments in eos_h2o. 
  

The second extrapolation function of Driesner's formalism for T >= 600 degC, p <= 350 bar and high 
salinities (close to saturation) is not implemented. As a comsequence, the temperature range of this 
script is reduced to 0 < T < 600 degC. 

  
This implemetation of Driesner's formalism calls the IAPS95 formulation for the calculation of pure 
water densities. Driesner developed his formalism based on the IAPS84 formulation. The two 
formulations differ mainly in the vicinity of the critical point of water. For calculations close to this 
point, it is recommended to edit this script to call the IAPS84 formulation. 

  
Although Driesner's paper states that the formulation is valid for mole fractions of up to 100% NaCl, 
the calculated densities for 100% NaCl do not approach the pure NaCl densities properly, except for 
conditions with high saturation concentrations. It seems that the formulation is only meant for NaCl 
concentrations up to saturation. Since the curve for the density as a function of NaCl concentration 
progresses smoothly after exceeding the saturation concentration by some 10%, this script will allow 
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for the calculation of oversaturated solutions up to mole fraction values of 0.2 above the saturation 
mole fraction. If this value is exceeded, a warning will be issued. 

 
 
 
E.2.  Densities 
 
  density_ch4  -  calculates the density of CH4 based on an EOS 

  The toolbox script EOS_CH4 is called. 
  
       Usage: rho = density_ch4(p,T) 
  
       Input parameters (scalars or vectors):  
           p        - pressure [MPa]     (0.012 < p < 1000)  
           T        - temperature [degC] (-183< T < 347) 
  
       Output parameter: 
           rho      - density of CH4 [kg/m^3] 
  
       References: 
       Setzmann & Wagner (1991) J. Phys. Chem. Ref. Data 20, 1061-1155. 
 
 
  density_ch4sw  -  calculates the density of a solution of CH4 in seawater 
  
        Usage: rho = density_ch4sw(p,T,S,m) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (0.1 < p < 200),  
            T       - temperature [degC] (0 < T < 250), 
            S       - practical salinity (0 < S < 350) 
            m       - molality of dissolved CH4 [mol/kg] 
                          (default value is saturation concentration)  
                          (input as scalar or p x T x S matrix) 
  
        Output parameter:  
            rho     - density of CH4-rich seawater [kg/m^3] 
  
        References: 
        Duan et al. (2006) GCA 70, 3369-3386. 
  
        Comments: 
        The validity range for salinity is not specified and the limit for NaCl is taken instead. 
 
 
  density_co2  -  calculates the density of CO2 based on an EOS 
       The toolbox script EOS_CO2 is called. 
  
       Usage: rho = density_co2(p,T) 
  
       Input parameters (scalars or vectors):  
           p        - pressure [MPa]     (0 < p < 800)  
           T        - temperature [degC] (-57 (0)< T < 827) 
  
       Output parameter: 
            rho     - density of CO2 [kg/m^3] 
  
       References: 
       Span & Wagner (1996) J.Phys.Chem.Ref.Data 25(6), 1509-1596. 
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  density_co2sw  -  calculates the density of a solution of CO2 in seawater 
  
        Usage: rho = density_co2sw(p,T,S,m) 
  
        Input parameters (p,T,S: scalars or vectors):  
           p        - pressure [MPa]     (0.1 < p < 100),  
           T        - temperature [degC] (0 < T < 200), 
           S        - practical salinity (0 < S < 350) 
           m        - molality of dissolved CO2 [mol/kg] 
                          (default value is saturation concentration)  
                          (input as scalar or p x T x S matrix) 
  
        Output parameter:  
            rho     - density of CO2-rich seawater [kg/m^3] 
  
        References: 
        Duan et al. (2008) Energy & Fuels 22, 1666-1674. 
        Hu et al. (2007) Chemical Geology 238, 249-267. 
        Duan et al. (2006) GCA 70, 3369-3386. 
  
        Comments: 

    The validity range for salinity is not specified and the NaCl limit is taken instead. The formalism 
    follows in part the Duan 2006 publication on density of CH4-seawater solutions. 

 
 
  density_n2sw  - calculates the density of a N2-seawater solution 
  
        Usage: rho = density_n2sw(p,T,S,m) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (0.1 < p < 60),  
            T       - temperature [degC] (0 < T < 127), 
            S       - practical salinity (0 < S < 350) 
            m       - molality of dissolved N2 [mol/kg] 
                          (default value is saturation concentration)  
                          (input as scalar or p x T x S matrix) 
  
        Output parameter:  
            rho      - density of N2-rich seawater [kg/m^3] 
  
        References: 
        Mao & Duan (2006) Fluid Phase Equilibria 248, 103-114. 
  
        Comments: 
        The validity range for salinity is not specified and the limit for NaCl is taken instead. 
 
 
  density_sw  -  calculates the density of seawater or saline brines 
       The user can choose 5 formalisms for different pTS ranges. 
       If no choice is specified, the formalism is chosen depending on the pTS input. 
  
       Usage: rho = density_sw(p,T,S,c) 
  
       Input parameters (scalars or vectors):  
           p     - pressure [MPa],  
           T     - temperature [degC]  
           S     - practical salinity  
           c     - user choice of algorithm (default is 'EOS') 
                   'EOS':      IAPSW seawater EOS (eos_sw) 
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                   'UNESCO':   Unesco formulae (density_swUnesco) 
                   'TEMP':     for high T (density_swSun) 
                   'BRINE':    for high p,T,S (density_swSpivey) 
                   'DRIESNER': for large p,T,S range (eos_swDriesner) 
  
       Output parameters:  
           rho   - density of seawater [kg/m^3] 
 
 
  density_swUnesco  -  calculates the density of seawater using the UNESCO formulae from 1983 and 

1991 
  
      Usage: rho = density_swUnesco(p,T,S) 
  
      Input parameters (scalars or vectors):  
          p        - pressure [MPa],  
          T        - temperature [degC]  
          S        - salinity [g/kg]  
  
      Output parameters:  
          rho      - density of seawater [kg/m^3] 
  
      References: 
      Fofonoff & Millard (1983) Unesco Technical Papers in Marine Science 44. 
      Poisson et al. (1991) Unesco Technical Papers in Marine Science 62. 
 
 
  density_swSpivey  -  calculates the density of seawater at elevated temperatures and NaCl 

concentrations 
  
        Usage: rho = density_swSpivey(p,T,S) 
  
        Input parameters (scalars or vectors):  
            p       -  pressure [MPa]     (0 < p < 200)  
            T       -  temperature [degC] (0 < T < 275)  
            S       -  practical salinity (0 < S < 216)  
     
        Output parameter: 
           rho      - density of seawater [kg/m^3] 
  
        References: 
        Spivey & McCain (2004) J.Can.Petrol.Tech 43, 52-61. 
 
 
  density_swSun  - calculates the density of seawater at higher temperatures 
  
       Usage: rho = density_swSun(p,T,S) 
  
       Input parameters (scalars or vectors):  
           p       - pressure [MPa]      (0.1 < p < 100)  
           T       - temperature [degC]  (0 < T < 374) 
           S       - practical salinity  (0 < S < 80) 
     
       Output parameter: 
           rho     - density of seawater [kg/m^3] 
 
       References: 
       Sun et al. (2008) DSR I 55, 1304-1310. 
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       Comment:  
       Equations are valid in the liquid phase only. 
 
 
  density_ch4co2n2  -  calculates the density of a mixture of CH4, CO2 and N2 and returns the phase 

composition (mixture might separate into a liquid and a vapor phase) and the vapor phase 
fraction. Calculations are based on the Peng-Robinson EOS. 

      
       Usage: [rho x y V exitflag] = density_ch4co2n2(p,T,mn2,mco2,mch4) 
   
       Input parameters (scalars!):  
            p        - pressure [MPa]      (p > 1 MPa) 
            T        - temperature [degC]  
            mn2      - total amount of N2 in mixture [mol] 
            mco2     - total amount of CO2 in mixture [mol] 
            mch4     - total amount of CH4 in mixture [mol] 
  
       Output parameters: 
            rho      - density of mixture [mol/kg] 
                         (scalar for single phase; 2-component vector, if  
                          mixture consists of liquid and vapor phase)  
            x        - mole fractions of N2, CO2, CH4 in liquid phase 
                         (3-component vector) 
            y        - mole fractions of N2, CO2, CH4 in vapor phase 
                         (3-component vector) 
            V        - vapor phase fraction 
            exitflag - exitflag of solver (to check the goodness of the numerical solution):  

=999 if solver has not been used 
  
     References: 
     Peng & Robinson (1976) Ind. Eng. Chem. Fund. 15, 59-64. 
     Risnes et al. (1981) Developments in Petroleum Science 13, 329-350. 
     Michelsen (1982) Fluid Phase Equilibria 9, 1-19. 
  

The calculation of the multi phase system follows the procedure outlined in the course documentation 
of M. Adewumi "Phase relations in reservoir engineering", Penn State College of Earth and Mineral 
Sciences, www.e-education.psu.edu/png520/m17_p4.html 

  
     Comments: 
     1. Only scalar input! 

2. Results for pure fluids deviate from results of the Span & Wagner EOS by about 10% at 10 MPa. 
The deviation increases with increasing pressure. 
3. V is set to NaN, if only 1 phase exists, but it is unknown if the phase is liquid or vapor  
4. This script can be used to calculate solubilities of CH4 and N2 in liquid CO2: Vary the amount of 
CH4 or N2 until the 1-phase solution becomes a 2-phase solution: The highest amount with a 1-
phase solution is the maximum amount that can be dissolved in the given amount of CO2 (see code 
example following this header, calculation is time consuming). Obtained values for solubility of CH4 
in CO2 are smaller than those calculated from the toolbox script solu_ch4co2. 

 
 
  density_cacl2brine  -  calculates the density of aqueous CaCl2 solutions 
  
        Usage: rho = density_cacl2brine(p,T,m) 
  
        Input parameters (scalars or vectors):  
            p        - pressure [MPa]              (0.1 < p < 68.5)  
            T        - temperature [degC]          (10 < T < 199) 
            m        - molality of CaCl2 [mol/kg]  (0 < m < 6) 
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        Output parameter: 
           rho      - density of CaCl2 solution [kg/m^3] 
  
        References: 
        Al-Ghafri et al. (2012) J. Chem. Eng. Data 57, 1288-1304. 
 
 
 
E.3.  Phase Boundaries 
 
  hydrate_phasediagram  -  plots the phasediagrams of the binary systems CH4-H2O and CO2-H2O 
  
      Usage: hydrate_phasediagram(S,t1,t2,p2) 
  
      Input parameters (scalar!): 
            S    - practical salinity (default: 35) 
            t1   - start of temperature axis [degC] (default: -10) 
            t2   - end of temperature axis [degC] (default: 35) 
            p2   - end of pressure axis [m water depth] (default: 2500)  (starting pressure is 0) 
                  
      References: 
      Tishchenko et al. (2005) Chem. Geol. 219, 35-52. 
      Tishchenko et al. (2009) 8th International CO2 Conference, Jena. 
 
 
  phase_ch4sw  -  calculates the phase boundaries of the binary system CH4-H2O 
  
      Usage: [pdisw,pdissw,pdispw] = phase_ch4sw(T,S) 
  
      Input parameters: 
          T       - temperature [degC]   (-10 < T < 30) 
          S       - practical salinity   (0 < S < 70) 
  
      Output parameters: 
          pdisw   - hydrate dissociation pressure for pure water [MPa] 
          pdissw  - hydrate dissociation pressure for seawater [MPa] 
          pdispw  - hydrate dissociation pressure for SO4-free porewater [MPa] 
  
      References: 
      Tishchenko et al. (2005) Chem.Geol. 219, 35-52. 
 
 
  phase_co2sw  -  calculates the phase boundaries of the binary system CO2-H2O  
  
      Usage: [pm,ps,pv,pgh] = phase_co2sw(T,S) 
  
      Input parameters (scalars or vectors): 
          T      - temperature [degC]  
          S      - practical salinity (0 < S < 40) 
  
      Output parameters: 
          Pm     - CO2 melting pressure [MPa]      
          Ps     - CO2 sublimation pressure [MPa] 
          Pv     - CO2 vapor pressure [MPa] 
          Pgh    - CO2 hydrate pressure [MPa] 
  
       References: 
       Tishchenko et al. (2009) 8th International CO2 Conference, Jena. 
       Span & Wagner (1994) J.Phys.Chem.Ref.Data 25, 1509-1597. 
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  phase_sw -  calculates the phase boundaries of the system H2O-NaCl based on multiparametric 
equations (also valid for hydrothermal systems) 

  
      Usage:  
          [P_sat P_VL Tcrit Pcrit T_VLH P_VLH x_vap PmNaCl PsNaCl PbNaCl] = phase_sw(T,S) 
  
      Input parameters (T is scalar or vector; S is scalar):  
          T         - temperature [degC]     (0 < T < 1000) 
          S         - practical salinity     (0 < S < 1000) 
  
      Output parameter: 
          P_sat      - saturation pressure [MPa] at given temperature + NaCl concentration 

 (liquid-halite coexistence line)  
          P_VL       - liquid-vapor coexistence pressure [MPa] at given temperature and NaCl concentration   
          Tcrit      - critical temperature [degC] at given NaCl concentration 
          Pcrit      - critical pressure [MPa] at given NaCl concentration 
          T_VLH      - temperature [degC] at liquid-vapor-halite coexistence for given NaCl concentration 
          P_VLH      - pressure [MPa] at liquid-vapor-halite coexistence for given NaCl concentration 
          xvap       - mole fraction of NaCl in the vapor phase at liquid-vapor coexistence 
          PmNaCl     - melting pressure [MPa] of NaCl at given temperatures 
          PsNaCl     - sublimation pressure [MPa] of NaCl at given temperatures 
          PbNaCl     - boiling pressure [MPa] of NaCl at given temperatures 
  
      References: 
      Driesner & Heinrich (2007) GCA 71, 4880-4901. 
      IAPWS (1992) Revised supplementary release on saturation properties of ordinary water substance. 

http://iapws.org 
  
     Comments:  

The vapor-liquid coexistence line is calculated only for temperatures below the triple point 
temperature of NaCl (800.7 degC). 

  
 
  sw_phasediagram  -  plots the phasediagrams of the binary system NaCl-H2O for salinities up to 

1000 g/kg, temperatures up to 1000 degC, and pressures of >500 MPa as calculated by 
phase_sw. 

  
      Usage: sw_phasediagram(S,T1,T2) 
  
      Input parameters (scalar): 
            S   - practical salinity (default: 300) 
            T1  - start of temperature range [degC] (default is 0 degC) 
            T2  - end of temperature range [degC]   (default is 800 degC) 
  
      References: 
      Driesner & Heinrich (2007) GCA 71, 4880-4901. 
 
 
  vlh_naclh2o -  calculates the vapor-liquid-halite (VLH) coexistence point for a given temperature from 

a multiparametric equation 
  
       Usage: [p_vlh,mnacl] = vlh_naclh2o(T) 
  
       Input parameter (vector or scalar):  
            T            - temperature [degC]   (0 < T < 1000) 
  
       Output parameter: 
          p_vlh          - VLH coexistence pressure [MPa]  
          mnacl          - molality of NaCl at saturation [mol/kg] 
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       References: 
       Driesner & Heinrich (2007) GCA 71, 4880-4901. 
 
 
 
E.4.  Fugacities 
 
  fugacity_ch4gh -  calculates the fugacity of CH4 in CH4-hydrate 
  
        Usage: f = fugacity_ch4gh(T,N) 
  
        Input parameters (scalars or vectors):  
            T    - temperature [degC]  
            N    - moles of CH4 per mole of water in hydrate phase (0 < N < 4/23) 
     
        Output parameter: 
            f    - fugacity of CH4 in CH4_hydrate [MPa] 
  
        References: 
        Cole & Goodwin (1990) Chem. Eng. Sci. 45, 569-573. 
        Klauda & Sandler (2003) Chem. Eng. Sci. 58, 27-41. (Langmuir constants) 
   

   Comments:  
   Function returns NaN, if no solution for f exists. This happens if N is too large (100% cage 
   occupancy does not occur). 

  
        An approximate N can be derived from the output of the toolbox function fugacity_h2omh:  
        N = 1/23 * theta_s + 3/23 * theta_l 
 
 
  fugacity_ch4sw  -  calculates the fugacity of dissolved CH4 gas in equilibrium with seawater 
  
      Usage: f = fugacity_ch4sw(p,T,S,m) 
  
      Input parameters (scalars or vectors):  
            p         - pressure [MPa] (0.1 < p < 200) 
            T         - temperature [degC]     (0 < T < 250) 
            S         - practical salinity     (S < 350) 
            m        -  molality of dissolved CH4 in seawater [mol/kg], 
                        default is saturation concentration 
  
      Output parameters:  
           f         - fugacity of CH4 in seawater [MPa] 
   
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Duan & Mao (2006) GCA 70, 3369-3386. (term gamma) 
      Duan et al. (2008) Energy & Fuels 22, 1666-1674. (molar volume of CH4) 
 
 
  fugacity_co2gh  - calculates the fugacity of CO2 in CO2-hydrate 
  
        Usage: f = fugacity_co2gh(T,N) 
  
        Input parameters (scalars or vectors):  
            T      - temperature [degC]  
            N      - moles of CO2 per mole of water in hydrate phase (0 < N < 4/23) 
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        Output parameter: 
            f      - fugacity of CO2 in CO2_hydrate [MPa] 
  
        References: 
        Cole & Goodwin (1990) Chem. Eng. Sci. 45, 569-573. 
        Klauda $ Sandler (2003) Chem. Eng. Sci. 58, 27-41 (Langmuir constants) 
  
        Comments:  
        This algorithm is entirely based on a theoretical equation  
        - no validation by experimental data conducted. 
  
        An approximate N can be derived from the output of the toolbox function fugacity_h2och:  
        N = 1/23 * theta_s + 3/23 * theta_l 
  

   At hydrate dissociation pressure, the match between gas phase fugacity of CO2 and hydrate phase 
   fugacity of CO2 is not satisfying. 

        N (as calculated from the output of fugacity_h2och) is decreased by about 2%. 
 
 
  fugacity_co2sw  -  calculates the fugacity of dissolved CO2 gas in equilibrium with seawater 
  
      Usage: f = fugacity_co2sw(p,T,S,m) 
  
      Input parameters (scalars or vectors, m: scalar/matrix of size pxtxS):  
            p        - pressure [MPa] (0.1 < p < 35 or gas/liquid phase boundary) 
            T        - temperature [degC]     (0 < T < 162) 
            S        - practical salinity     (S < 263) 
            m       -  molality of dissolved CO2 in seawater [mol/kg], 
                        default is saturation concentration 
  
      Output parameters:  
           f        - fugacity of CO2 in seawater [MPa] 
 
      References: 
      Harvey (1996) AIChE 42, 1491-1494. 
      Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. (vapor pressure of water) 
      Duan et al. (2006) Mar.Chem. 98, 131-139. (term gamma) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of CO2)  
  
      Comments:  
      Formalism is not valid for pT conditions where pure CO2 is liquid. 
 
 
 fugacity_h2och -  calculates the fugacity of water in CO2 SI-hydrate  
  
        Usage: [f theta_s, theta_l] = fugacity_h2och(p,T) 
  
        Input parameters (scalars or vectors):  
            p         - pressure [MPa]   
            T         - temperature [degC] (-133 < T < 57) 
     
        Output parameter: 
            f              - fugacity of water in CO2 SI-hydrate [MPa] 
            theta_s   - fractional occupancy of small hydrate cages 
            theta_l    - fractional occupancy of large hydrate cages 
             
        References: 
        Klauda & Sandler (2003) Chem. Eng. Sci. 58, 27-41. 
        Klauda & Sandler (2000) Ind. Eng. Chem. Res. 39, 3377-3386. 
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        Comments:  
   Coefficients A-D for the vapor pressure of the empty hydrate lattice are derived from a fit to match 
    the liquid water fugacity as provided by the toolbox function fugacity_sw to the water fugacity as 
   calculated by the Klauda & Sandler formalism at the hydrate phase boundary (calculated by 
   phase_co2sw). 

  
   Fugacities of CO2 in the hydrate phase are approximated as fugacities of gas phase CO2. For the 
   calculation of hydrate phase fugacities, the total mount of CO2 in the hydrate phase has to be 
   known. 

 
 
  fugacity_h2omh  - calculates the fugacity of water in CH4 SI-hydrate 
  
        Usage: [f theta_s theta_l] = fugacity_h2omh(p,T) 
  
        Input parameters (scalars or vectors):  
            p        - pressure [MPa]   
            T        - temperature [degC] (-133 < T < 57) 
     
        Output parameter: 
            f        - fugacity of water in CH4 SI-hydrate [MPa] 
            theta_s  - fractional occupancy of small hydrate cages 
            theta_l  - fractional occupancy of large hydrate cages 
             
        References: 
        Klauda & Sandler (2003) Chem. Eng. Sci. 58, 27-41. 
        Klauda & Sandler (2000) Ind. Eng. Chem. Res. 39, 3377-3386. 
  
        Comments:  

   Coefficients A-D for the vapor pressure of the empty hydrate lattice are derived from a fit to match 
    the liquid water fugacity as provided by the toolbox function fugacity_sw to the water fugacity as 
   calculated by the Klauda & Sandler formalism at the hydrate phase boundary (calculated by 
   phase_ch4sw). 

  
        Fugacities of CH4 in the hydrate phase are approximated as fugacities of gas phase CH4. For the 
        calculation of hydrate phase fugacities, the total mount of CH4 in the hydrate phase has to be 
        known. 
 
 
  fugacity_sw  -  calculates the fugacity of water in solutions with dissolved salts, CH4 and CO2 
  
        Usage: f = fugacity_sw(p,T,S,mch4,mco2) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]      (0.1 < p < 400)  
            T       - temperature [degC]  
            S       - practical salinity  (0 < S < 350) 
            mch4    - molality of dissolved CH4 [mol/kg] 
            mco2    - molality of dissolved CO2 [mol/kg] 
     
        Output parameter: 
            f       - fugacity of water in seawater with CO2 and CH4 [MPa] 
  
        References: 
        Jager et al. (2003) Fluid Phase Equilibria 211, 85-107. 
  
        Comments:  

    Pressure range reduced from 5000 bar to 4000 bar to avoid handling of different cases during 
    integration. The activity of the solvent water is calculated and used to modify the pure water 
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    fugacity as derived from the Wagner & Pruss EOS. 
 
 
  fugacity_h2ssw  -  calculates the fugacity of dissolved H2S gas in equilibrium with seawater 
  
      Usage: f = fugacity_h2ssw(p,T,S,m) 
  
      Input parameters (scalars or vectors, m: scalar/matrix of size pxtxS):  
            p      -  pressure [MPa]      (0.1 < p < 20) 
            T      -  temperature [degC]  (0 < T < 127) 
            S      -  practical salinity  (0 < S < 350) 
            m      -  molality of dissolved H2S in seawater [mol/kg], 
                        default is saturation concentration 
 
      Output parameter:  
           f       - fugacity of H2S in seawater [MPa] 
 
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 2779-2795. (partial molar volume of H2S) 
      Duan et al (2007) Energy & Fuels 21, 2056-2065. (gamma term) 
  
      Comments:  
      Formalism is not valid for pT conditions where pure H2S is liquid. 
 
 
  fugacity_n2sw  -  calculates the fugacity of dissolved N2 gas in equilibrium with seawater 
  
      Usage: f = fugacity_n2sw(p,T,S,m) 
  
      Input parameters (scalars or vectors, m: scalar/matrix of size pxtxS):  
            p      - pressure [MPa] (0.1 < p < 35) 
            T      - temperature [degC]     (0 < T < 317) 
            S      - practical salinity     (S < 350) 
            m     -  molality of dissolved N2 in seawater [mol/kg], 
                        default is saturation concentration 
  
      Output parameters:  
           f      - fugacity of N2 in seawater [MPa] 
   
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of N2) 
      Mao & Duan (2006) Fluid Phase Equilibria 248, 103-114. 
 
 
  fugacity_o2sw  -  calculates the fugacity of dissolved O2 gas in equilibrium with seawater 
  
       Usage: f = fugacity_o2sw(p,T,S,m) 
  
       Input parameters (scalars or vectors, m: scalar/matrix of size pxTxS):  
            p      - pressure [MPa]      (0.1 < P <20) 
            T      - temperature [degC]  (0 < T < 127) 
            S      - practical salinity  (0 < S < 350) 
            m      - molality of dissolved O2 in seawater [mol/kg], 
                        default is saturation concentration 
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       Output parameters:  
            f      - fugacity of O2 in seawater [MPa] 
   
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of O2) 
      Geng & Duan (2010) GCA 74, 5631-5640. (for gamma term) 
 
 
 
E.5.  Solubilities 
 
  solu_ch4  -  calculates the equilibrium concentration of CH4 in seawater with a gas phase or hydrate 

phase. The phase at given parameters p,T,S is determined and the appropriate function for the 
calculation of the solubility is called. 

  
      Usage:  m = solu_ch4(p,T,S) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa],  
            T        -  temperature [degC] 
            S        -  practical salinity  
       
      Output parameter:  
            m        - molality of CH4 in seawater [mol/kg] 
 
 
  solu_ch4gas  -  calculates the equilibrium concentration of CH4 in seawater with respect to the gas 

phase as well as the resulting mole fraction of water in the CH4 gas phase 
  
      Usage:   [mCH4sw xsw] = solu_ch4gas(p,T,S) 
  
      Input parameters (scalars or vectors):  
          p        -  pressure [MPa]     (0.1 < P < 200) 
          T        -  temperature [degC] (0 < T < 250) 
          S        -  practical salinity (S < 350) 
       
      Output parameter:  
          mCH4sw   - molality of CH4 in seawater [mol/kg] 
          xsw           - mole fraction of H2O in gas phase 
  
      References: 
      Duan & Mao(2006) GCA 70, 3369-3386. 
      Duan et al. (1992) GCA 56, 2605-2617. 
      Wagner & Pruss (1993) J.Phys.Chem.Ref.Data 22,783-787 
      Shibue (2003) Fluid Phase Equilibria 213, 39-51. 
  
      Comments:  

  This script does not check, if the pressure and temperature conditions are within the hydrate 
  stability zone. Use solu_ch4 to discriminate between 2 phase and 3 phase solubilities. 

       No solubility for gaseous CH4 in SO4-free porewater available so far. 
 
 
  solu_ch4gh  -  calculates the solubility of CH4 in seawater and SO4-free porewater in equilibrium with 

methane hydrate (no gas phase) 
  
      Usage:   [mch4sw,mch4pw] = solu_ch4gh(p,T,S) 
  
      Input parameters (scalars or vectors):  
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            p        -  pressure [MPa]     (0.1 < P < 50) 
            T        -  temperature [degC] (0 < T < 20) 
            S        -  practical salinity (S < 70) 
       
      Output parameter:  
            mch4sw    - molality of CH4 in seawater [mol/kg] 
            mch4pw    - molality of CH4 in SO4-free porewater [mol/kg] 
  
      References: 
      Tishchenko et al. (2005) Chem. Geol. 219, 35-52. 
                  
      Comments:  

 This script does not check, if the pressure and temperature conditions are outside the hydrate 
 stability zone. Use solu_ch4 to discriminate between 2-phase and 3-phase solubilities. 

 
 
  solu_co2  - calculates the CO2 equilibrium concentration in seawater with respect to gas phase, liquid 

phase or hydrate phase. The phase at given parameters p,T,S is determined and the appropriate 
function for the calculation of the solubility is called. 

  
      Usage: m = solu_co2(p,T,S) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa] 
            T        -  temperature [degC]  
            S        -  practical salinity 
       
      Output parameter:  
            m        - molality of CO2 in seawater [mol/kg] 
 
 
  solu_co2gl  -  calculates the CO2 equilibrium concentration in seawater with respect to gas and liquid 

phase 
  
      Usage: m = solu_co2gl(p,T,S) 
  
      Input parameters (scalars or vectors):  
          p        -  pressure [MPa]     (0.1 < P < 100) 
          T        -  temperature [degC] (0 < T < 162) 
          S        -  practical salinity (S < 263) 
       
      Output parameter:  
          m        -  molality of CO2 in seawater [mol/kg] 
  
      References:  
      Duan & Sun (2003) Chemical Geology 193, 257-271.            
      Duan et al. (2006) Marine Chemistry 98, 131-139.    
  
      Comments:  
      This script does not check, if the pressure and temperature conditions are inside the hydrate stability 
      zone. Use solu_co2 to discriminate between 2-phase and 3-phase solubilities. 
  
      Deviation of solubility values from those of Wong et al. (2005) (J.Chem.Eng.Data 50, 822-831) is 
      <5% for pressures up to 250 bar. 
  
      No dissociation pressure for pore water available so far. 
      No solubility of liquid/gaseous CO2 in SO4-free porewater available so far. 
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  solu_co2gh  -  calculates the solubility of CO2 in seawater and SO4-free porewater in equilibrium with 
CO2 hydrate (no gas phase). 

       
      Usage: [mco2pw,mco2sw] = solu_co2gh(p,T,S,pgh) 
  
      Input parameters (scalars or vectors):  
          p        -  pressure [MPa]     (0.1 < P < 50) 
          T        -  temperature [degC] (0 < T < 12) 
          S        -  practical salinity (S < 40) 
       
 
      Output parameter:  
          mco2sw     - molality of CO2 in seawater [mol/kg] 
          mco2pw     - molality of CO2 in SO4-free porewater [mol/kg] 
  
      References:  
      Tishchenko et al. (2009) 8th International CO2 Conference, Jena. 
  
      Comments:  
      This script does not check, if the pressure and temperature conditions are outside the hydrate 
      stability zone. Use solu_co2 to discriminate between 2-phase and 3-phase solubilities. 
      The equations are valid up to 10 degC. Extrapolation to 12 degC has been allowed to cover the full 
      parameter range of the hydrate model. 
 
 
  solu_h2ssw  -  calculates the equilibrium concentration of H2S in seawater 
     
      Usage:   m = solu_h2ssw(p,T,S) 
  
      Input parameters (scalars or vectors):  
          p        - pressure [MPa]     (0.1 < P < 20) 
          T        - temperature [degC] (0 < T < 127) 
          S        - practical salinity (S < 350) 
       
      Output parameter:  
          m        - molality of H2S in seawater [mol/kg] 
  
      References:  
      Duan et al. (2007) Energy & Fuels 21, 2056-2065. 
      Duan et al. (1996) Chemical Geology 130, 15-20. (H2S-EOS) 
      Shibue (2003) Fluid Phase Equilibria 213, 39-51. (water saturation pressure) 
      Velasco et al. (2008) J.Chem.Thermo. 40, 789-797. (H2S vapor pressure) 
 
 
solu_n2sw -  calculates the equilibrium concentration of N2 in seawater 
     
      Usage:   m = solu_n2sw(p,T,S) 
  
      Input parameters (scalars or vectors):  
          p        -  pressure [MPa]     (0.1 < P < 60) 
          T        -  temperature [degC] (0 < T < 317) 
          S        -  practical salinity (S < 350) 
       
      Output parameter:  
          m        - molality of N2 in seawater [mol/kg] 
  
      References:  
      Mao & Duan (2006) Fluid Phase Equilibria 248, 103-114. 
      Shibue (2003) Fluid Phase Equilibria 213, 39-51. 
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      Comments:  
      The mole fraction of N2 in gas phase is set to 1.  
      At high temperatures and low pressures, the equation to calculate the H2O mole fraction in the 
      vapor phase as given by Duan results in fractions >1. The formalism to calculate yH2O is still 
      implemented, but has been marked as comment. 
 
 
solu_o2sw  -  calculates the equilibrium concentration of O2 in seawater 
     
      Usage:   m = solu_o2sw(p,T,S) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa]     (0.1 < P < 20) 
            T        -  temperature [degC] (0 < T < 127) 
            S        -  practical salinity (S < 350) 
       
      Output parameter:  
            m        - molality of O2 in seawater [mol/kg] 
  
      References:  
      Geng & Duan (2010) GCA 74, 5631-5640. 
      Shibue (2003) Fluid Phase Equilibria 213, 39-51. 
 
 
  solu_co2ch4  -  calculates the partial pressure of CO2 in a methane gas bubble in seawater 
       
      Usage: pp = solu_co2ch4(p,T,S) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa]     (3.5 < P < 50) 
            T        -  temperature [degC] (0 < T < 25)  
            S        -  practical salinity (S < 40) 
       
      Output parameter:  
            pp       - partial pressure of CO2 in CH4-dominated gas [MPa] 
    
      References: 
      Wong et al. (2005) J.Chem.Eng.Data 50, 822-831. 
      Tishchenko et al. (2009) 8th International CO2 Conference, Jena. 
      Duan et al. (2008) Energy & Fuels 22, 1666-1674. 
      Comments:  
      If the pTS values are within the range of gaseous CO2, the function output is set to NaN. 
 
 
  solu_ch4co2  -  calculates the solubility of CH4 in (liquid) CO2 by a "brute force" strategy (slow!). 

The feed composition is varied until the density as calculated by a Peng Robinson EOS is 
returned as a 2-component vector indicating a 2-phase system. 

  
       Usage: m = solu_ch4co2(p,T) 
   
       Input parameters (scalars!):  
            p       - pressure [MPa] 
            T       - temperature [degC]  
  
       Output parameter: 
            m       - solubility of CH4 in liquid CO2 [mol/kg]              
  
       References: 
       Al-Sahhaf et al. (1983) Ind.Eng.Chem.Fund. 22, 372-380. 
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  solu_n2co2  -  calculates the solubility of N2 in (liquid) CO2 by a "brute force" strategy (slow!). 
The feed composition is varied until the density as calculated by a Peng Robinson EOS is 
returned as a 2-component vector indicating a 2-phase system. 

  
       Usage: m = solu_n2co2(p,T) 
   
       Input parameters (scalars!):  
            p       - pressure [MPa] 
            T       - temperature [degC]  
  
       Output parameter: 
            m       - solubility of N2 in liquid CO2 [mol/kg]              
  
       References: 
       Al-Sahhaf et al. (1983) Ind.Eng.Chem.Fund. 22, 372-380. 
 
 
  solu_swco2  -  calculates the solubility of water in liquid CO2 as a function of pressure, temperature 

and salinity from a multiparameter equation. 
  
       Usage: [cw xw] = solu_swco2(p,T,S) 
  
       Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (5 < p < 20) 
            T       - temperature [degC] (10 < T < 40) 
            S       - practical salinity (0 < S < 40) 
  
       Output parameters: 
            cw      - molality of H2O dissolved in CO2 [mol/kg{solution}] 
            xw      - mole fraction of H2O in liquid CO2  
  
       References: 
       Tishchenko et al. (unpublished). 
 
 
solu_nacl  -  calculates the saturation concentration of NaCl in seawater from a multiparametric 

   equation 
  
        Usage: m = solu_nacl(p,T) 
  
        Input parameters (vectors or scalars):  
            p     - pressure [MPa]       (0 < P < 500) 
            T     - temperature [degC]   (0 < T < 1000) 
  
        Output parameter: 
            m     - molality of NaCl at saturation [mol/kg] 
  
        References: 
        Driesner & Heinrich (2007) GCA 71, 4880-4901. 
 
 
  solu_caso4  -  calculates the solubility product  Ksp = m_Ca * m_SO4 for gypsum (CaSO4*2H2O), 

anhydrite (CaSO4), ad hemihydrate (CaSO4*0.5H2O) in seawater 
  
      Usage: [ka kg kh] = solu_caso4(p,T,sal) 
  
      Input parameters (scalars or vectors):  
          p      - pressure [MPa]       (0.1 < p < 100) 
          T      - temperature [degC]   (30 < T < 300) 
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          S      - practical salinity   (0 < S < 250) (see comments!) 
  
      Output parameter: 
          ka     - solubility product of anhydrite  
          kg     - solubility product of gypsum  
          kh     - solubility product of hemihydrate  
  
      References: 
      Marshall & Slusher (1968) J.Chem.Eng.Data 13, 83-93. (solubility at constant pressure)  
      Blount & Dickson (1973) Amer.Mineral. 58, 323-331. (pressure correction) 
  
      Comments:  
      Ionic strength refers to NaCl in NaCl solutions.  
      For seawater, the solubility product is assumed to equal the solubility product in NaCl solutions of 
      the same ionic strength. However, this is true only for moderate temperatures (T < 100 degC) 
      and low or moderate ionic strengths. 
      Equations are valid for: 
      p = 0.1 - 100 MPa 
      T = 60 - 95 degC (Gypsum) 
      T = 100 - 200 degC (Anhydrite) 
      S = 0 - 250 (==> I = 0 - 5 mol/kg) 
 
 
  solu_opal  -  calculates the solubility of opal in seawater 
        The user can choose 2 formalisms for different temperature ranges. 
  
        Usage: m = solu_opal(p,T,S,c) 
  
        Input parameters (scalars or vectors):  
            p     - pressure [MPa]       (10 < p < 120) 
            T     - temperature [degC] 
            S     - practical salinity   (0 < S < 80)  
            c     - choice of algorithm 
                     'WALTHER' (default) (0 < T < 350) 
                     'FOURNIER'          (150 < T < 350) 
         Output parameters:  
           m      - solubility of opal [mol/kg] 
 
 
  solu_opalFournier  -  calculates the solubility of amorphous silica in seawater 
  
       Usage: m = solu_opalFournier(p,T,S) 
  
       Input parameters (scalars or vectors):  
           p      - pressure [MPa]       (10 < p < 120) 
           T      - temperature [degC]   (150 < T < 350) 
           S      - practical salinity   (0 < S < 80)  
     
       Output parameter: 
           m      - solubility of silica [mol/kg] 
  
       References: 
       Fournier & Marshall (1983) GCA 47, 587-596. (solubility at p=1000 bar) 
       Willey (1974) Mar.Chem. 2, 239-250. (pressure correction)  
       Fournier (1983) GCA 47, 579-586. (salinity correction of m) 
       Sun et al. (2008) DSR I 55, 1304-1310. (salinity correction density) 
  
       Comments:  
       The temperature dependency has been evaluated by Fournier & Marshall for data in the range of 
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       150-350 degC at 1000 bar. 
       The pressure dependency has been evaluated by Willey for data in the range of 100-200 atm at 
   0 degC. 
       A salinity correction for the solubility as proposed for the solubility of quarz by Fournier (1983) is 
       implemented, assuming that hydration numbers for quartz and amorphous silica are identical. 
 
 
  solu_opalWalther  -  calculates the solubility of amorphous slica in seawater 
  
       Usage: m = solu_opalWalther(p,T,S) 
  
       Input parameters (scalars or vectors):  
            p     - pressure [MPa]       (10 < p < 120) 
            T     - temperature [degC]   (0 < T < 350) 
            S     - practical salinity   (0 < S < 80)  
     
       Output parameter: 
           m      - solubility of silica [mol/kg] 
  
       References: 
       Walther & Helgeson (1977) AJS 277, 1315-1351. 
       Helgeson & Kirkham (1974) AJS 274, 1089-1198. 
       Fournier & Marshall (1983) GCA 47, 579-586. (salinity correction m) 
       Sun et al. (2008) DSR I 55, 1304-1310. (salinity correction density) 
  
       Comments:  
       The regression in the paper was done on data from T=0-350 degC and p=100-1200 bar. A salinity 
       correction for the solubility as proposed for the solubility of quarz by Fournier (1983) is 
       implemented, assuming that hydration numbers for quartz and amorphous silica are identical. 
 
 
  solu_quartz  -  calculates the solubility of quartz in seawater 
        The user can choose 2 formalisms for different pTS conditions. 
  
        Usage: m = solu_quartz(p,T,S,c) 
         Input parameters (scalars or vectors):  
            p     - pressure [MPa]        
            T     - temperature [degC]    
            S     - practical salinity  
            c     - choice of algorithm 
                    'FOURNIER' (default) (T=0-350 degC, p=0.1-100 MPa) 
                    'DAMM' (for higher pT)  
  
        Output parameters:  
           m      - solubility of quartz [mol/kg] 
 
 
  solu_quartzDamm  -  calculates the solubility of quartz in seawater for hydrothermal conditions 
  
       Usage: m = solu_quartzDamm(p,T,S) 
  
       Input parameters (scalars or vectors):  
           p      - pressure [MPa]       (0.1 < p < 986) 
           T      - temperature [degC]   (45 < T < 900) 
           S      - practical salinity   (0 < S < 80)  
     
       Output parameter: 
           m      - solubility of quartz [mol/kg] 
  



Appendix E 

 

139 

       References: 
       von Damm et al. (1991) AJS 291, 977-1007. 
       Sun et al. (2008) DSR I 55, 1304-1310. (salinity correction density) 
  
       Comments: 
       The equation does not include salinity effects. Von Damm et al. state that salinity effects are within 
       the range of uncertainty for moderate pressures and temperatures. For high p and T, non-neglible 
       salinity effects are expected. According to Newton & Manning (2000) GCA 64, 2993-3005, the 
       salinity dependence of the solubility at high pressures (> 10000 bar) is an exponential function, but 
       they do not provide an equation. Von Damm et al. suggest to correct parameter 'a' in their equation 
       for the amount of water that is immobilzed as a hydration layer around the salt ions.  
       The salinity correction for the density is valid in the liquid phase only for 0.1 < p < 100, 0 < T < 374, 
       0 < S < 40 (Von Damm et al. state that extrapolation up to S = 80 is ok). 
       The calculated density values for T < 350 degC compare well with the data from Fontaine et al. 
       (2007) EPSL 275, 132-145. Data deviate for higher temperatures. 
 
 
  solu_quartzFournier  -  calculates the solubility of quartz in seawater 
  
       Usage: m = solu_quartzFournier(p,T,S) 
  
       Input parameters (scalars or vectors):  
           p      - pressure [MPa]       (0.1 < p < 100) 
           T      - temperature [degC]   (0 < T < 350) 
           S      - practical salinity   (0 < S < 80)  
     
       Output parameter: 
           m      - solubility of quartz [mol/kg] 
  
       References: 
       Fournier (1983) GCA 47, 579-586. (solubility) 
       Sun et al. (2008) DSR I 55, 1304-1310. (salinity correction density) 
  
       Comments:  
       The solubility is derived from the general formula 
        log(m)= log(K) + n log(rho_e) - log(gamma) + log (Gamma) 
       with the last two terms set to zero.  
       rho_e is the density of free water, defined as  
        rho_e = rho F (1 - (h m(NaCl))/55.51). 
       The hydration number h of NaCl in solution is unknown, therefore Rho_e is approximated by  
        rho_e = rho F 
       with F being the weight fraction of water. Log(K) and n are calculated from multi-parameter 
       equations. 
       The equation is valid for T = 350 degC. There is only a weak pressure dependency (in the density) 
       and a weak dependency on salt concentration (in density and F). The salinity correction for the 
       density is valid in the liquid phase only for 0.1 < p < 100, 0 < T < 374, 0 < S < 40 (authors state, that 
       extrapolation up to S=80 is ok). The calculated density values for T < 350 degC compare well with 
       the data from Fontaine et al. (2007) EPSL 275, 132-145. Data deviate for higher temperatures.  
       Calculation of rho_e requires the hydration number of NaCl ions. Fournier sets the hydration 
       number to zero and states that this is a good approximation for temperatures > 200 degC. 
       Therefore, equations may be less accurate for lower temperatures. 
 
 
  soluhenry_ch4sw  -  calculates the equilibrium concentration of CH4 in seawater from Henry's law 
     
      Usage:  [m KH KHx]  = soluhenry_ch4sw(p,T,S,pp) 
  
      Input parameters (scalars or vectors, pp: scalar or matrix of size p x T x S):  
                        p         - overall pressure [MPa] (0.1 < p < 200) 
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            T         - temperature [degC]     (0 < T < 250) 
            S         - practical salinity     (S < 350) 
            pp       - partial pressure of CH4 [MPa] (pp < p) 
                        pp is set to p if no input value is provided  
       
      Output parameter:  
            m        - molality of CH4 in seawater [mol/kg] 
            KH      - pressure and salinity corrected Henry constant [mol/kg/MPa] 
            KHx    - pressure and salinity corrected Henry constant [1/MPa] 
 
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of CH4) 
      Duan & Mao (2006) GCA 70, 3369-3386. (gamma term) 
  
      Comments:  
      Henry's law is not well suited for high pressures and should be used with care at high pressures: 
      Keep in mind that results are expected to be inaccurate. 
 
 
  soluhenry_co2sw  -  calculates the equilibrium concentration of CO2 in seawater from Henry's law 
     
      Usage:  [m KH KHx]  = soluhenry_co2sw(p,T,S,pp) 
  
      Input parameters (scalars or vectors, pp: scalar or matrix of size p x T x S):  
            p         - overall pressure [MPa] (0.1 < p < 35 or gas/liquid phase boundary) 
            T         - temperature [degC]     (0 < T < 162) 
            S         - practical salinity     (S < 263) 
            pp       - partial pressure of CO2 [MPa] (pp < p) 
                        pp is set to p if no input value is provided  
       
      Output parameter:  
            m        - molality of CO2 in seawater [mol/kg] 
            KH      - pressure and salinity corrected Henry constant [mol/kg/MPa] 
            KHx    - pressure and salinity corrected Henry constant [1/MPa] 
 
  
      References: 
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. (vapor pressure of water) 
      Duan et al. (2006) Mar.Chem. 98, 131-139. (gamma term) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of CO2) 
  
      Comments:  
      The solubility of CO2 in (sea)water as function of pressure, temperature and salinity is related to 
      Henry's constant KH by the equation:  
       m = f*KH0(T)/(gamma(S,T)*exp(integral(V_mol(P,T)/R/T) dP))) 
         f:     fugacity 
         gamma: activity coefficient,  
         V_mol: apparent molar volume of dissolved gas 
  
      Henry's law is not well suited for high pressures and should be used with care at high pressures: 
      Keep in mind that results are expected to be inaccurate. 
 
 
  soluhenry_h2ssw  -  calculates the equilibrium concentration of H2S in seawater from Henry's law 
     
      Usage:  [m KH KHx]  = soluhenry_h2ssw(p,T,S,pp) 
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      Input parameters (scalars or vectors, pp: scalar or matrix of size p x T x S):  
           p         -  overall pressure [MPa]      (0.1 < p < 20) 
           T         -  temperature [degC]  (0 < T < 127) 
           S         -  practical salinity  (0 < S < 350) 
           pp       -  partial pressure of H2S [MPa] (pp < p) 
                        pp is set to p if no input value is provided  
       
      Output parameter:  
            m        - molality of H2S in seawater [mol/kg] 
            KH       - pressure and salinity corrected Henry constant [mol/kg/MPa] 
            KHx      - pressure and salinity corrected Henry constant [1/MPa] 
 
  
      References: 
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 2779-2795 (partial molar volume of H2S) 
      Duan et al. (2007) Energy & Fuels 21, 2056-2065. (gamma term) 
  
      Comments:  
      Henry's law is not well suited for high pressures and should be used with care at high pressures: 
      Keep in mind that results are expected to be inaccurate. 
 
 
  soluhenry_n2sw  -  calculates the equilibrium concentration of N2 in seawater from Henry's law 
     
      Usage:   [m KH KHx] = soluhenry_n2sw(p,T,S,pp) 
  
      Input parameters (scalars or vectors, pp: scalar or matrix of size p x T x S):  
            p         - overall pressure [MPa] (0.1 < p < 35) 
            T         - temperature [degC]     (0 < T < 317) 
            S         - practical salinity     (S < 350) 
            pp       -  partial pressure of N2 [MPa] (pp < p) 
                        pp is set to p if no input value is provided  
       
      Output parameter:  
            m        - molality of N2 in seawater [mol/kg] 
            KH       - pressure and salinity corrected Henry constant [mol/kg/MPa] 
            KHx      - pressure and salinity corrected Henry constant [1/MPa] 
 
  
      References:  
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of N2) 
      Mao & Duan (2006) Fluid Phase Equilib. 248, 103-114. (gamma term) 
          
      Comments:  
      Henry's law is not well suited for high pressures and should be used with care at high pressures: 
      Keep in mind that results are expected to be inaccurate. 
 
 
  soluhenry_o2sw  -  calculates the equilibrium concentration of O2 in seawater from Henry's law 
     
      Usage:  [m KH KHx] = soluhenry_o2sw(p,T,S,pp) 
  
      Input parameters (scalars or vectors, pp: scalar or matrix of size p x T x S):  
            p         - overall pressure [MPa]      (0.1 < P <20) 
            T         - temperature [degC]  (0 < T < 127) 
            S         - practical salinity  (0 < S < 350) 
            pp       -  partial pressure of O2 [MPa] (pp < p) 
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                        pp is set to p if no input value is provided  
       
      Output parameter:  
            m        - molality of O2 in seawater [mol/kg] 
            KH       - pressure and salinity corrected Henry constant [mol/kg/MPa] 
            KHx      - pressure and salinity corrected Henry constant [1/MPa] 
 
  
      References: 
      Harvey (1996) AIChE 42, 1491-1494. (Henry constant) 
      Plyasunov et al. (2000) GCA 64, 495-512. (partial molar volume of O2) 
      Geng & Duan (2010) GCA 74, 5631-5640. (gamma term) 
  
      Comments:  
      Henry's law is not well suited for high pressures and should be used with care at high pressures: 
      Keep in mind that results are expected to be inaccurate. 
 
 
 
E.6.  Viscosities 
 
  visco_ch4  - calculates the viscosity of pure CH4 from a multiparametric equation, including real gas 

effects 
  
        Usage: eta = visco_ch4(p,T) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (0 < P < 50) 
            T       - temperature [degC] (-178 < T < 227) 
     
        Output parameter: 
            eta     -   viscosity of methane [Pa*s] 
             
        References: 
        Hanley et al. (1977) J.Phys.Chem.Ref.Data 6, 597-609. 
  
        Comments:  
        The equation for eta_r was corrected for a misplaced paranthesis (see deviation between Eq. 4 in 
        the paper and the corresponding equation in Hanley et al. (1975) Cryogenics). 
 
 
  visco_co2  - calculates the dynamic viscosity of CO2 from a multiparametric equation 
  
      Usage: eta = visco_co2(p,T) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa]     (0.1-300 MPa),  
            T        -  temperature [degC] ((-56) - 827 degC)  
  
      Output parameter:  
            eta      - dynamic viscosity [Pa*s] 
  
      References: 
      Fenghour et al. (1998) J.Phys.Chem.Ref.Data 27(1), 31-44. 
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  visco_h2o  -  calculates the viscosity of pure water as function of pressure and temperature based on a 
multiparametric equation 

  
       Usage: eta = visco_h2o(p,T) 
  
       Input parameters (scalars or vectors):  
            p       - pressure [MPa]       (0.1 < p < 167.5 ) 
            T       - temperature [degC]   (0.1 < T < 800 ) 
  
       Output parameter: 
           eta      - dynamic viscosity [Pa*s] 
  
       Range of validity in the original paper: 
            for   p <= 300 MPa              and     T <= 900 degC 
            for   300 MPa < p <= 350 MPa    and     T <= 600 degC 
            for   350 MPa < p <= 500 MPa    and     T <= 160 degC 
            for   500 MPa < p <=1000 MPa    and     T <= 100 degC 
       The calculation of the viscosity requires the density of H2O. Since the current script for density 
       calculation is valid only up to 167.5 MPa, the range of validity for the viscosity calculation is reduced 
       to 167.5 MPa. 
  
       Equations are not valid for ice phase (at temperatures below the melting point temperature). 
  
       References: 
       Release on the IAWPS Formulation 2008 for the Viscosity of Ordinary Water Substance. 
           http://iapws.org  
  
       Comments: 
       The critical enhancement close to the critical point (645.91 < T < 650.77 [K], 245.8 < rho < 405.3 
       [kg/m^3]) is omitted to save computation time. For calculations close to the critical point the 
       viscosity shows a singularity and the critical enhancement term as given in the reference has to be 
       considered. 
 
 
  visco_n2  - calculates the dynamic viscosity of N2 from a multiparametric equation 
  
       Usage: eta = visco_n2(p,T) 
  
       Input parameters (scalars or vectors):  
            p        -  pressure [MPa] (0.1-100 MPa),  
            T        -  temperature [degC] ((-120) - 727 degC)  
  
       Output parameter:  
            eta      - dynamic viscosity [Pa*s] 
        References: 
       Lemmon & Jacobsen (2004) Int.J.Thermophys 25(1), 21-69. 
 
 
  visco_sw  - calculates the dynamic viscosity of seawater 

The user can choose from 4 formalisms for different pTS ranges. If no choice is given, the 
formalism is chosen based on pTS input. 

  
       Usage: eta = visco_sw(p,T,S,c)  
  
       Input parameters (scalars or vectors):  
           p     -  pressure [MPa]     (0 < p < 100)  
           T     -  temperature [degC] (0 < T < 30)  
           S     -  practical salinity (0 < S < 36.1)  
           c     -  user choice for algorithm 
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                    'KUKULKA' (default) 
                    'SPIVEY' 
                    'MAO' 
                    'PALLISER' 
  
       Output parameter:  
           eta  -   dynamic viscosity [Pa*s] 
  
       References: 
       Kukulka et al. (1987) Adv. Heat Transfer 18, 325-363. 
       Spivey & McCain (2004) J.Can.Petrol.Tech. 43, 52-61. 
       Mao & Duan (2009) Int.J.Thermophys. 30, 1510-1523. 
       Palliser & McKibbin (1998) Transport in Porous Media 33, 155-171. 
 
 
  visco_swSpivey  -  calculates the dynamic viscosity of seawater at elevated pressure, temperature, 

and salinity 
  
        Usage: eta = visco_swSpivey(p,T,S) 
  
        Input parameters (scalars or vectors):  
            p        - pressure [MPa]       (0 < p < 200) 
            T        - temperature [degC]   (0 < T < 275) 
            S        - practical salinity   (0 < S < 290)  
  
        Output parameter: 
            eta      - dynamic viscosity [Pa*s] 
  
        References: 
        Spivey & McCain (2004) J.Can.Petrol.Tech. 43, 52-61. 
        Kestin et al. (1978) J.Chem.Eng.Data 23, 328-336. 
 
 
  visco_swMao  -  calculates the dynamic viscosity of seawater at elevated (pressure), temperature, and 

salinity based on a parametric equation 
  
        Usage: eta = visco_swMao(p,T,S) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (0.1 < p < 100) 
            T       - temperature [degC] (0 < T < 350) 
            S       - practical salinity (0 < S < 300)  
  
        Output parameter: 
           eta      - dynamic viscosity [Pa*s] 
  
        References: 
        Mao & Duan (2009) Int.J.Thermophys. 30, 1510-1523. 
 
 
  visco_swPalliser  -  calculates the dynamic viscosity of NaCl as function of pressure temperature and 

salinity based on a parametric equation. 
The equations were fit to few available experimental data and include several assumptions and 
extrapolations. The accuracy might be limited, but no other paper on viscosity of brine in the 
supercritical region could be found. 

  
        Usage: eta = visco_swPalliser(p,T,S) 
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        Input parameters (scalars or vectors):  
            p        - pressure [MPa]        (0.1 < p < ?) 
            T        - temperature [degC]    (0.1 < T < 727) 
            S        - practical salinity    (0   < S < 1000(?)) 
  
        Output parameter: 
            eta      - dynamic viscosity [Pa*s] 
  
        References: 
        Palliser & McKibbin (1998) Transport in Porous Media 33, 155-171. 
 
 
  visco_co2sw  - calculates the dynamic viscosity of CO2-seawater solutions 
  
        Usage: eta = visco_co2_sw(p,T,S)  
  
        Input parameters  
            scalars or vectors:  
            p        -  pressure [MPa]     (10 < p < 20) 
            T        -  temperature [degC] (20 < T < 60) 
            S        -  practical salinity 
            scalar or matrix of size p x T x S 
            mco2   -  molality of CO2 in solution [mol/kg] (CO2 saturation is assumed if no value is provided) 
  
        Output parameter:  
            eta  -   dynamic viscosity [Pa*s] 
  
        References:      
        Bando et al. (2004) J. Chem. Eng. Data 49, 1328-1332. 
  
        Comments:  
        The valid parameter range is very restricted (p=10-20 MPa, T=30-60 degC, NaCl mass fractions of 
        0-0.03 and mole fractions of CO2 < 0.02), hence exclusion of pTS values outside this range is not 
        feasible. 
        Experimental data of Kumagi & Yokoyama (1998) (Int.J.Thermophys. 19, 1315-1323) show a 
        deviation of up to 10% for temperatures of 0-5 degC compared to values calculated with this script. 
 
 
 
E.7.  Thermal Properties 
 
  heatcap_ch4gh  - calculates the heat capacity of CH4 hydrate 
  
        Usage: cp = heatcap_ch4gh(T) 
  
        Input parameter (scalar or vector):  
            T    - temperature [degC] (-25 < T < 11) 
     
        Output parameter: 
            cp    - heat capacity of methane hydrate [J/kg/K] 
             
        The heat capacity of methane hydrate is calculated from an empirical equation as function of 
        temperature. The effect of pressure is assumed negligible (see e.g. the heat capacity of ice 
        tabulated in Feistel & Wagner(2006) J.Phys.Chem.Ref.Data 35, 1021–1047. 
        Heat capacities for hydrates and ice are generally believed to be similar in values. 
  
        References: 
        Gupta (2007) PhD thesis, Colorado School of Mines. 
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        Comments: 
        The calculated values seem to deviate from the experimental values of Gupta for temperatures 
        above 11 degC. 
 
 
  heatcond_ch4  - calculates the thermal conductivity of pure CH4  

The thermal conductivity of methane is calculated from a multi-parametric equation, including real 
gas effects. 

  
        Usage: lambda = heatcond_ch4(p,T) 
  
        Input parameters (scalars or vectors):  
            p       - pressure [MPa]     (0 < p < 50) 
            T       - temperature [degC] (-5 < T < 227) 
     
        Output parameter: 
            lambda  -   thermal conductivity of CH4 [W/m/K] 
             
        References: 
        Hanley et al. (1977) J.Phys.Chem.Ref.Data 6, 597-609. 
  
        Comments: 
        The critical term delta_lambda_c is not specified in the paper and is therefore missing in the 
        calculation of this script.  
        The error is largest close to the critical point of methane and is about 1-2% at temperatures above 
        -5 degC. This error is not much larger then the error of the equation itself. As a consequence, the 
        valid parameter range, that originally spanned the temperature range from -178 to 227 degC, was 
        restricted. 
 
 
  heatcond_co2  - calculates the thermal conductivity of CO2 from a multiparameter equation 
  
        Usage: lambda = heatcond_co2(p,T) 
  
        Input parameters (scalars or vectors):  
            p          - pressure [MPa]     (0.1 < p < 200)  
            T          - temperature [degC] (-48 < T < 727) 
     
        Output parameter: 
            lambda     - thermal conductivity [W/m/K] 
  
        References: 
        Scalabrin et al. (2006) J.Phys.Chem.Ref.Data 35, 1549-1575. 
 
 
  heatcond_n2  - calculates the thermal conductivity of N2 from a multiparametric equation 
  
      Usage: lambda = heatcond_n2(p,T) 
  
      Input parameters (scalars or vectors):  
            p        -  pressure [MPa]     (0.1 < p < 100),  
            T        -  temperature [degC] (-120 < T < 727)  
  
      Output parameter:  
            lambda   - thermal conductivity [W/m/K] 
  
      References: 
      Lemmon & Jacobsen (2004) Int.J.Thermophys 25(1), 21-69. 
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  heatcond_sw  - calculates the thermal conductivity of seawater from a multiparameter equation 
  
        Usage: lambda = heatcond_sw(p,T,S) 
  
        Input parameters (scalars or vectors):  
            p           - pressure [MPa]       (0 < p < 140)  
            T           - temperature [degC]   (0 < T < 60) 
            S           - practical salinity   (0 < S < 45) 
     
        Output parameter: 
            lambda      - thermal conductivity [W/m/K] 
  
        Reference: 
        Caldwell (1974) Deep Sea Research 21, 131-137.  
  
        Comments:  
        The estimated accuracy for the equation is 0-5%. 
        The authors recommend their equation for salinities from 25-45, but the calculated values for pure 
        water are well within the accuracy.  
            pure water @ 1 bar / 20 degC:  
            lambda_calc = 0.604 [W/m/K] 
            lambda_ref = 0.598 [W/m/K] (tabulated reference value) 
 
 
 
E.8.  Diffusion Coefficients 
 
  diffcoeff_h2oco2  - calculates the diffusion coefficients of water molecules dissolved in liquid CO2  
  
       Usage: D = diffcoeff_h2oco2(P,T) 
  
       Input parameters (p,T: scalars or vectors): 
          p        - pressure [MPa]     (13.2 < P < 29.8) 
          T        - temperature [degC] (10 < T < 35) 
  
       Output parameter:  
          D        - diffusion coefficient [m^2/s] 
        References:  
       Xu et al. (2003) J. Phys. Chem. A 107, 1-3. 
  
       Comments:  
       The empirical function for the diffusion coefficient was derived by a fit of the data published by Xu et 

  al. (2003). It is based on the form [D = (a + bT)*mu_0/mu] with an addiditional presure-dependent 
  term. The parameter range specified above corresponds to the parameter range of the experimental 
 data. 

 
 
  diffcoeff_sw - calculates the diffusion coefficients of dissolved species (ions, gases, etc.) in seawater 

or seawater with dissolved CO2 
  
          The correction for CO2-rich seawater is implemented via the respective viscosity. No validation by 
          experimental data exists. 
  
       Usage: D = diffcoeff_sw(p,T,S,'species',mco2) 
  
       Input parameters (p,T,S: scalars or vectors, species: string, 
                         mco2: scalar or matrix of size p x T x S):  
           p        - pressure [MPa] 
           T        - temperature [degC]  
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           S        - practical salinity 
           mco2     - molality of dissolved CO2 [mol/kg] (default: mco2=0) 
           'species'- choice of chemical substance for which the diffusion coefficient is calculated: 
    1           O2      'o2' 
    2           NO3-    'no3' 
    3           Mn2+    'mn' 
    4           Fe2+    'fe' 
    5           SO42-   'so4' 
    6           CH4     'ch4' 
    7           HS-     'hs' 
    8           H2S     'h2s' 
    9           NH4+    'nh4' 
    10          NH3     'nh3' 
    11          PO43-   'po4' 
    12          HPO42-  'hpo4' 
    13          H2PO4-  'h2po4' 
    14          H3PO4   'h3po4' 
    15          H2O     'h2o' 
    16          H+      'hp' 
    17          OH-     'oh' 
    18          CO2     'co2' 
    19          HCO3-   'hco3' 
    20          CO32-   'co3' 
    21          B(OH)3  'boh3' 
    22          B(OH)4- 'boh4' 
    23          Mg2+    'mg' 
    24          Ca2+    'ca' 
    25          Ba2+    'ba' 
    26          Sr2+    'sr' 
    27          Cl-     'cl' 
    28          Br-     'br' 
    29          Li+     'li' 
    30          SiO44-  'sio4' 
    31          He      'he' 
    32          Ne      'ne' 
    33          Ar      'ar' 
    34          Kr      'kr' 
    35          Xe      'xe' 
    36          Rn      'rn' 
    37          N2      'n2' 
  
       Output parameter: 
           D        - diffusion coefficient [m^2/s] 
  
       References:  
       Li & Gregory (1974) GCA 38, 703-714. 
       Hayduk & Laudie (1974) Amer.Inst.Chem.Eng.J. 20(3), 611-615. 
       Boudreau (1997) Diagenetic Models and Their Implementation, Springer Verlag. 
 
 
 
E.9.  Acid-Base and Mineral Equilibria 
 
  kco2_sw  -  calculates the equilibrium constants of the carbonic acid system at high CO2 

concentrations 
  
       Usage: keq = kco2_sw(p,T,S,species,mco2) 
  
       Input parameters (p,T,S:scalars or vectors, species: string,  
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                         mco2: scalar or matrix of size p x T x S):  
            p        - pressure [MPa]      (0.1-100)  
            T        - temperature [degC]  (0-45)  
            S        - practical salinity  (0-45) 
            mco2     - concentration of dissolved CO2 [mol/kg] 
            species  - choice of chemical substance for which the equilibrium constant is calculated: 
    1        'co2'      CO2 + H2O <--> H+ + HCO3- [mol/kg] 
    2        'hco3'     HCO3- <--> H+ + CO32- [mol/kg] 
    3        'h2o'      H20 <--> H+ + OH- [(mol/kg)^2] 
    4        'so4'      HSO4- <--> H+ + SO4-- [mol/kg] 
    5        'hf'       HF <--> H+ + F- [mol/kg] 
  
       Output parameter:  
            keq      - equilibrium constant [mol/kg] or [mol/kg^2] 
  
        Default: Default value for mco2 is saturation concentration 
  
        References: 
        Wong et al. (2005), J. Chem. Eng. Data 50, 822-831. 
        Tishchenko, personal communication. (for kw) 
 
 
  kequilib_sw  - calculates the stoichiometric equilibrium constants of various equilibrium reactions in 

seawater 
          The constants are calculated with respect to seawater pH scale. 
          The constants assume concentrations in molality. 
  
       Usage:  keq = kequilib_sw(P,T,S,'species') 
  
       Input parameters (scalars or vectors):  
            p        -  pressure [MPa] (0.1-100 MPa),  
            T        -  temperature [degC] (0-45 °C )  
            S        -  salinity [g/kg] (0-45 g/kg) 
           'species' -  choice of the chemical substance for which the equilibrium constant is calculated: 
    1           'h2o'         H2O <--> H+ + OH- 
    2           'co2'         CO2 + H2O <--> H+ + HCO3- 
    3           'hco3'       HCO3- <--> H+ + CO32- 
    4           'boh4'       [B(OH)4]- <--> H+ + B(OH)3 
    5           'h3po4'     H3PO4 <--> H+ + H2PO4- 
    6           'h2po4'     H2PO4- <--> H+ + HPO42- 
    7           'hpo4'       HPO42- <--> H+ + PO43- 
    8           'hno3'       HNO3 <--> H+ + NO3- 
    9           'nh4'         NH4+ <--> H+ + NH3 
    10          'h2s'        H2S <--> H+ + HS- 
    11          'arag'       aragonite: CaCO3 <--> Ca2+ + CO32- 
    12          'calc'        calcite: CaCO3 <--> Ca2+ + CO32- 
    13          'mnco3'   MnCO3 <--> Mn2+ + CO32- 
    14          'feco3'      FeCO3 <--> Fe2+ + CO32- 
    15          'baso4'     barite: BaSO4 <--> Ba2+ + SO42- 
    16          'srso4'     celestite: SrSO4 <--> Sr2+ + SO42- 
    17          'so4'        HSO4- <--> H+ + SO4--  
    18          'hf'           HF <--> H+ + F- 
    19          'sio2'       H4SiO4 <--> H+ + H3SiO4- 
  
       Output parameter:  
            keq      - equilibrium constant [mol/kg(H2O)] or [(mol/kg(H2O))^2] 
  

    References: 
    Boudreau (1996) Computers & Geosciences 22, 479-496. 
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    Clegg & Whitfield (1995) GCA 59(12), 2403-2421. 
    Fofonoff & Millard (1983) UNESCO Technical Paper in Marine Science 44. 
    Luff et al. (2001) Computers & Geosciences 27, 157-169. 
    Millero (1983) In: Ripley & Chester (eds.) Chemical Oceanography Vol.8, Academic Press, p.1-88. 
    Millero (1995) GCA 59(4), 661-677. 
    Millero et al. (2006) Mar. Chem. 100, 80-94. 
    Millero (2007) Chem. Rev. 107, 308-341. 
    Stumm & Morgan (1996) Aquatic Chemistry, Wiley&Sons. 
    Van Cappellen & Wang (1996) Amer. J. Sci. 296, 197-243. 
    Zeebe & Wolf-Gladrow (2001) CO2 in seawater: Equilibrium, kinetics, isotopes, Elsevier. 

 
 
  ph_analyt  -  calculates the pH of seawater and the equilibrium concentrations of the species H+, CO2, 

HCO3-, CO32-, B(OH)4-, B(OH)3, H2S, and HS- based on their total concentrations (DIC, 
TBOH4, TH2S) and the total alkalinity TALK. 

  
The concentrations of dissolved ammonium, phosphate, silicate, sulfate, and fluoride species are 
only calculated from this pH. To assess their influence on the pH compare with the numerical 
result from the routine PH_MODEL. 

  
       Usage:  [eqsys] = ph_analyt(p,T,S,TA,DIC,TBOH4,TH2S,TNH4,TPO4,TSi,TSO4,TF) 
  
       Input parameters (scalars only): 
            p      -  pressure [MPa],  
            T      -  temperature [degC]  
            S      -  salinity [g/kg] 
            TALK   -  total alkalinity [eq/kg] 
            DIC    -  total dissolved inorganic carbon [mol/kg] 
            TB     -  total dissolved bor [mol/kg] 
            TH2S   -  total dissolved sulfide [mol/kg] 
            TNH4   -  total dissolved ammonium [mol/kg] 
            TPO4   -  total dissolved phosphate [mol/kg] 
            TSi    -  total dissolved silicate [mol/kg] 
            TSO4   -  total dissolved sulfate [mol/kg] 
            TF     -  total dissolved fluoride [mol/kg] 
  
        Output parameter:  
            eqsys  -  structure array of pH and species equilibrium concentrations [mol/kg] 

of the form ('name1',value1,'name2',value2,...) 
  
  

    The analytical solution for the pH is based on the mass action laws of: 
       CO2 + H2O <--> H+ + HCO3-        Kc1 = H * HCO3 / CO2 
       HCO3- <--> H+ + CO32-            Kc2 = H * CO3 / HCO3 
       B(OH)3 + H2O <--> H+ + B(OH)4-   Kb  = H * BOH4 / BOH3 
       H2S <--> H+ + HS-                Ks  = H * HS / H2S 
    and the corresponding equations for alkalinity and mass conservation: 
       TALK = HCO3 + 2*CO3 + BOH4 + HS 
       DIC = CO2 + HCO3 + CO3 
       TBOH4 = BOH4 + BOH3 
       TH2S = H2S + HS 
  

The definition of TALK is a simplified form only considering the major contributing species that 
allows for analytical solutions. 

  
Equilibrium constants are calculated with KEQUILIB_SW and if the CO2 concentration exceeds 
0.01 mol/kg KCO2_SW is used. 
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Note: The analytical solution of the 4th order polynomial produces complex conjugate results and 
thus is solved using FZERO of MATLAB. 
The analytical solution of the cubic or quadratic polynomials, i.e. for TBOH4 = 0 and/or TH2S = 0, 
are solved according to the recipe given in Bronstein & Semendjajew (1989) Taschenbuch der 

     Mathematik. 
  
     Further speciations are calculated from: 
       H2O <--> H+ + OH-                   Kw  = H * OH 
       NH4+ <--> H+ + NH3                 Kn  = H * NH3 / NH4 
       H3PO4 <--> H+ + H2PO4-        Kp1 = H * H2PO4 / H3PO4 
       H2PO4- <--> H+ + HPO42-       Kp2 = H * HPO4 / H2PO4 
       HPO42- <--> H+ + PO43-          Kp3 = H * PO4 / HPO4 
       H4SiO4 <--> H+ + H3SiO4-      Ksi = H * H3SiO4 / H4SiO4 
       HSO4- <--> H+ + SO42-           Kso = H * SO4 / HSO4 
       HF <--> H+ + F-                        Kf  = H * F / HF 
       TNH4 = NH4 + NH3 
       TPO4 = H3PO4 + H2PO4 + HPO4 + PO4 
       TSi = H4SiO4 + H3SiO4 
       TSO4 = HSO4 + SO4 
       TF = HF + F 

 
 
  ph_model  -  calculates the pH and equilibrium concentrations of the acid-base species in seawater as 

well as their total concentrations and the total alkalinity. 
  
       Usage:  eqsys = ph_model(p,T,S,'species1',conc1,'species2',conc2,...) 
  
        Input parameters (scalars):  
            p         -  pressure [MPa],  
            T         -  temperature [degC]  
            S         -  salinity [g/kg] 
            'species' -  input species name 
            conc      -  species concentrations [mol/kg]  
  
        Output parameter:  
            eqsys     -  structure array of pH and species equilibrium concentrations [mol/kg] 

of the form ('species1',conc1,'species2',conc2,...) 
To allow for good solver performance it is desirable to provide one species out of each of the 
following groups, respectively conservation equations: 
'pH','H','OH','TAlk' 
'DIC','CO2','HCO3','CO3' 
'TBOH4','BOH4','BOH3' 
'TH2S','H2S','HS' 
'TNH4','NH4','NH3', 
'TPO4','H3PO4','H2PO4','HPO4','PO4' 
'TSi','H4SiO4','H3SiO3' 
'TSO4','HSO4','SO4' 
'TF','HF','F' 

    Note: The above spelling of species names must be used for the input. 
  
    To exclude a group of species from the pH calculation the respective total concentration, i.e. DIC, 
    TBOH4, TH2S, TNH4, TPO4, TSi, TSO4, TF, must be set explicitely to zero, e.g. 'TF',0. 
    Default values set for unspecified species groups are: 
     TA = 2.3e-3 eq/kg; DIC = 2.0e-3 mol/kg 
     TBOH4, TSO4, TF are calculated from salinity using the function SEASALT 
     TH2S, TNH4, TPO4, TSi are set to zero 
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    Depending on the supplied input array the 21 equations solved are: 
     a) 12 mass-action laws 
        0 = Kw - H * OH                           H2O <--> H+ + OH- 
        0 = Kc1 * CO2 - H * HCO3          CO2 + H2O <--> H+ + HCO3- 
        0 = Kc2 * HCO3 - H * CO3          HCO3- <--> H+ + CO32- 
        0 = Kb * BOH3 - H * BOH4          B(OH)3 + H2O <--> H+ + B(OH)4- 
        0 = Ks * H2S - H * HS                  H2S <--> H+ + HS- 
        0 = Kn * NH4 - H * NH3               NH4+ <--> H+ + NH3 
        0 = Kp1 * H3PO4 - H * H2PO4    H3PO4 <--> H+ + H2PO4- 
        0 = Kp2 * H2PO4 - H * HPO4      H2PO4- <--> H+ + HPO42- 
        0 = Kp3 * HPO4 - H * PO4          HPO42- <--> H+ + PO43- 
        0 = Ksi * H4SiO4 - H * H3SiO4   H4SiO4 <--> H+ + H3SiO4- 
        0 = Kso * HSO4 - H * SO4          HSO4- <--> H+ + SO42- 
        0 = Kf * HF - H * F                       HF <--> H+ + F- 
  
     b) 8 mass conservation and 1 alkalinity conservation equation 
        0 = TALK - HCO3 - 2*CO3 - BOH4 - HS - NH3 - HPO4 - 2*PO4 - H3SiO4 
                 - OH + H + H3PO4 + HSO4 + HF 
        0 = DIC - CO2 - HCO3 - CO3 
        0 = TBOH4 - BOH4 - BOH3 
        0 = TH2S - H2S - HS 
        0 = TNH4 - NH4 - NH3 
        0 = TPO4 - H3PO4 - H2PO4 - HPO4 - PO4 
        0 = TSi - H4SiO4 - H3SiO4 
        0 = TSO4 - HSO4 - SO4 
        0 = TF - HF - F 
  
     The definition of TALK follows that of Dickson (1981) DSR 28A, 609–623. 
     See also discussion in Wolf-Gladrow et al. (2007) Mar.Chem.106, 287-300. 
     Equilibrium constants are calculated with KEQUILIB_SW and if the CO2 concentration exceeds 0.01 
     mol/kg KCO2_SW is used. 
 
 
 
E.10.  Unit Conversions 
 
  cl2salin  - calculates seawater salinity based on known Cl concentration 
  
      Usage: S = cl2salin(mCl) 
  
      Input parameters (scalar,vector or matrix): 
           mCl     - chloride concentration in seawater [mol/kg] 
  
      Output parameter:  
            S      - practical salinity  
  
      Comments:  
      This script takes the true Cl-ion concentration as input. 
      To calculate practical salinity from chlorinity use: S = Cl*1.80655 
 
 
  molal2molar_sw  -  converts solute concentration in molalities [mol/kg] into molarities [mol/l] for 

standard seawater composition  
  
       usage: c = molal2molar_sw(p,T,S,m) 
  
        Input parameters (scalars or vectors): 
            p       - pressure [MPa]  
            T       - temperature [degC]  
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            S       - practical salinity 
            m       - molal concentration of salt component [mol/kg] 
  
        Output parameter:  
            c       - molar concentration of salt component [mol/l] 
 
 
  molar2molal_sw  -  converts solute concentration in molarities [mol/l] into molalities [mol/kg] for 

standard seawater composition 
  
       Usage: m = molar2molal_sw(p,T,S,c) 
  
        Input parameters (scalars or vectors): 
            p       - pressure [MPa]  
            T       - temperature [degC]  
            S       - practical salinity   
            c       - molar concentration of salt component [mol/l] 
  
        Output parameter:  
            m       - molal concentration of salt component [mol/kg] 
 
 
  mkgh2o2mkgsol  -  converts equilibrium constants or concentrations from mol/kg{H2O} to 

mol/kg{solution} 
  
        Usage: k2 = mkgh2o2mkgsol(k1,S) 
  
        Input parameters (scalars, vectors or matrices of SAME size):  
           k1   -   equlilibrium constant or concentration [mol/kg{H2O}] 
           S    -   practical salinity 
     
        Output parameter: 
           k2   -   equlilibrium constant or concentration [mol/kg{solution}] 
 
 
  mkgsol2mkgh2o -  converts equilibrium constants or concentrations from mol/kg{solution} to 

mol/kg{H2O} 
  
        Usage: k1 = mkgsol2mkgh2o(k2,S) 
         Input parameters (scalars, vectors or matrices of SAME size):  
           k2   -   equlilibrium constant or concentration [mol/kg{solution}] 
           S    -   practical salinity 
     
        Output parameter: 
           k1   -   equlilibrium constant or concentration [mol/kg{H2O}] 
 
 
  mol2pp_ch4  - calculates the partial pressure of CH4 for a given CH4 concentration in aqueous 

solution using Henry's law. 
The Henry constant for CH4 gas in water is calculated as a function of pressure, temperature and 
salinity from a multiparametric equation. 

  
       Usage: pp = mol2pp_ch4(p,T,S,m) 
 
       Input parameters (p,T,S: scalars or vectors; m: scalar/matrix of size P x T x S):  
            p      - pressure [MPa] (0.1 < p < 200) 
            T      - temperature [degC]     (0 < T < 250) 
            S      - practical salinity     (S < 350) 
            m      - molal concentration of CH4 [mol/kg] 
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       Output parameter:  
            pp     - partial pressure of CH4 [MPa]  
   
       References: 
       Harvey (1996) AIChE 42, 1491-1494. 
       Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. (water vapor pressure) 
       Plyasunov et al. (2000) GCA 64, 2779-2795. (Poynting-pressure correction) 
       Duan & Sun (2003) Chem. Geol. 193, 257-271. (Pitzer-type salinity correction)     
       

 Comments:  
      No interactions with molecules other than CH4 in the gas phase are considered, because no reliable 

 interaction parameters were found.  
      Change of phase boundary with pressure is not considered in calculation of partial molar volume. 
 
 
  mol2pp_co2  -  calculates the partial pressure of CO2 for a given CO2 concentration in aqueous 

solution using Henry's law 
The Henry constant for CO2 gas in water is calculated as a function of pressure, temperature and 
salinity from a multiparametric equation. 

  
      Usage: pp = mol2pp_co2((p,T,S,m) 
  
      Input parameters (p,T,S: scalars or vectors; m: scalar/matrix of size(p x T x S)):  
            p     - pressure [MPa] (0.1 < p < 35 or gas/liquid phase boundary) 
            T     - temperature [degC]     (0 < T < 162) 
            S     - practical salinity     (S < 263) 
            m     - molal concentration of CO2 [mol/kg] 
 
      Output parameter:  
            pp    - partial pressure of CO2 [MPa]  
   
      References: 
      Harvey (1996) AIChE 42, 1491-1494. 
      Wagner & Pruss (2002) J.Phys.Chem.Ref.Data 31, 387-535. (water vapor pressure) 
      Plyasunov et al. (2000) GCA 64, 2779-2795. (Poynting-pressure correction) 
      Duan & Sun (2003) Chem. Geol. 193, 257-271. (Pitzer-type salinity correction) 
  
      Comments:  

  No interactions with molecules other than CO2 in the gas phase are considered, because no 
  reliable interaction parameters were found.  

       Change of phase boundary with pressure is not considered in calculation of partial molar volume. 
 
 
mol2pp_h2s  -  calculates the partial pressure of H2S for a given H2S concentration in aqueous solution 

using Henry's law 
The Henry constant for CO2 gas in water is calculated as a function of pressure, temperature and 
salinity from a multiparametric equation. 

  
     Usage: pp = mol2pp_h2s(p,T,S,m) 
  
     Input parameters (p,T,S: scalars or vectors; m: scalar/matrix of size P x T x S):  
          p      -  pressure [MPa]      (0.1 < p < 20) 
          T      -  temperature [degC]  (0 < T < 127) 
          S      -  practical salinity  (0 < S < 350) 
          m      - molal concentration of H2S [mol/kg] 
  
     Output parameter:  
          pp     - partial pressure of H2S [MPa]  
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mol2pp_n2  -  calculates the partial pressure of N2 for a given N2 concentration in aqueous solution 
using Henry's law 
The Henry constant for CO2 gas in water is calculated as a function of pressure, temperature and 
salinity from a multiparametric equation. 

  
     Usage: pp = mol2pp_n2(p,T,S,m) 
 
     Input parameters (p,T,S: scalars or vectors; m: scalar/matrix of size P x T x S):  
          p      - pressure [MPa] (0.1 < p < 35) 
          T      - temperature [degC]     (0 < T < 317) 
          S      - practical salinity     (S < 350) 
          m      - molal concentration of N2 [mol/kg] 
  
     Output parameter:  
          pp     - partial pressure of N2 [MPa]  
 
 
mol2pp_o2  -  calculates the partial pressure of O2 for a given O2 concentration in aqueous solution 

using Henry's law 
The Henry constant for CO2 gas in water is calculated as a function of pressure, temperature and 
salinity from a multiparametric equation. 

  
     Usage: pp = mol2pp_o2(p,T,S,m) 
  
     Input parameters (p,T,S: scalars or vectors; m: scalar/matrix of size P x T x S):  
          p      - pressure [MPa]      (0.1 < P <20) 
          T      - temperature [degC]  (0 < T < 127) 
          S      - practical salinity  (0 < S < 350) 
          m      - molal concentration of O2 [mol/kg] 
  
     Output parameter:  
          pp     - partial pressure of O2 [MPa]  
 
 
  pp2pv_ch4  - converts the partial pressure of CH4 in a gas mixture into partial volume 
  
      Usage: pv = pp2pv_ch4(p,T,pp) 
  
      Input parameter (p, T: scalars or vectors; pp: scalar or vector of same size as p):  
            p      - overall pressure [MPa]        (0.012 < p < 1000) 
            T      - temperature [degC]            (-183 < T < 347) 
            pp     - partial pressure of CH4 [MPa] (0 < pp < p) 
             
      Output parameter:  
           pv      - partial volume of CH4 [ppmV] 
 
 
  pp2pv_co2  - converts the partial pressure of CO2 in a gas mixture into partial volume 
  
      Usage: pv = pp2pv_co2(p,T,pp) 
  
      Input parameter (p,T: scalars or vectors; pp: scalar or vector of same size as p):  
            p      - overall pressure [MPa]        (0.1 < p < 800) 
            T      - temperature [degC]            (-57 < T < 827) 
            pp     - partial pressure of CO2 [MPa] (0 < pp < p) 
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      Output parameter:  
           pv      - partial volume of CO2 [ppmV] 
 
   Comments:  
      Equations are only valid for pressures below the vapor pressure of CO2. 
 
 
pp2pv_h2s  - converts the partial pressure of H2S in a gas mixture into partial volume 
  
    Usage: pv = pp2pv_h2s(p,T,pp) 
  
    Input parameter (p, T: scalars or vectors; pch2s: scalar or vector of same size as p):  
          p      - overall pressure [MPa]        (0.1 < p < 35) 
          T      - temperature [degC]            (0 < T < 137.7) 
          pp     - partial pressure of H2S [MPa] (0 < pp < p) 
           
    Output parameter:  
         pv      - partial volume of H2S [ppmV] 
  
     Comments:  
     Equations are only valid for pressures below the vapor pressure of H2S. 
 
 
pp2pv_n2  - converts the partial pressure of N2 in a gas mixture into partial volume 
  
    Usage: pv = pp2pv_n2(p,T,pp) 
  
    Input parameter (p, T: scalars or vectors; pp: scalar or vector of same size as p):  
          p      - overall pressure [MPa]        (0 < p < 1000) 
          T      - temperature [degC]            (-73 < T < 727) 
          pp     - partial pressure of N2 [MPa] (0 < pp < p) 
           
    Output parameter:  
         pv      - partial volume of N2 [ppmV] 
 
 
pp2pv_o2  - converts the partial pressure of O2 in a gas mixture into partial volume 
  
    Usage: pv = pp2pv_o2(p,T,pp) 
  
    Input parameter (p, T: scalars or vectors; pco2: scalar or vector of same size as p):  
          p      - overall pressure [MPa]        (0 < p < 81.8) 
          T      - temperature [degC]            (-219 < T < 127) 
          pp     - partial pressure of O2 [MPa] (0 < pp < p) 
           
    Output parameter:  
         pv      - partial volume of O2 [ppmV] 
 
 
 
E.11.  Auxiliary Functions 
 
  i_sw  -  calculates the ionic strength of seawater I = 0.5*sum(m_i*z_i^2) 
  
      Usage: I = i_sw(S) 
  



Appendix E 

 

157 

      Input parameter (scalars or vectors): 
           S     - practical salinity 
  
      Output parameter:  
           I     - ionic strength [mol/kg] 
  
      Comments:  
       For contribution of total borate (mTBOh4) and dissolved inorganic carbon (DIC) to the ionic 
       strength, the composition at a pH of ~8 is assumed, where B(OH)4- is ~50% of the total borate, 

  HCO3- is ~90% of the DIC and CO32- is ~5% of the DIC. 
 
 
  permeab -  derives the permeability of the sediment from the porosity and the grain size 
  
       Usage: k = permeab(po,dp,'method') 
  
       Input parameters (poros, dp: scalars or vectors, method: string of SAME size):  
            po       - porosity 
            dp       - mean particle diameter [m] 
            'method' - choice of empirical relationship between porosity and permeability to be used. 
            The following 'methods' are included: 
                'ck'    Carman-Kozeny:  k= dp^2/180*(po^3/(1-po)^2)) 
                'bk'    Blake-Kozeny:      k= dp^2/150*(po^3/(1-po)^2)) 
                'rg'     Rumpf-Gupte:      k= dp^2*po^5.5/5.6 
                'hc'    Hsu-Cheng:         k= dp^2*po^2/(18*(1-po)) 
                'bhc'  blended H-C:       k= dp^2*po^3/(180*(1-po)^2)*(1-exp(-10*(1-po)/po)) 
  
       Output parameter: 
            k        - permeability [m^2]  
  
       Default values:  
       A value for porosity has to be provided. The default value for dp is 1*10^(-6) m (the particle size in 
       mud) and the default method is the blended Hsu-Cheng formula. 
     
       References:  
       Boudreau (1997) Diagenetic Models and Their Implementation, Springer Verlag. 
 
 
  seasalt  -  calculates the major salt concentrations in seawater based on its salinity 
  
       Usage: [mNa,mMg,mCa,mK,mSr,mLi,mCl,mBr,mF,mSO4,mTBOH4,mDIC,mOH] = seasalt(S) 
  
       Input parameters (scalar, vector or matrix): 
            S      - practical salinity of seawater (absolute salinity = S*1.005 [g/kg]) 
  
        Output parameters:  
            mI     - molality of salt component I [mol/kg] 
  
       References:  
       Millero (2008) Deep-Sea Research I 55, 50–72. 
       Stoffyn-Egly & MacKenzie (1984) GCA 48, 859-872. 
 
 
  seasalt_molarity  -  calculates the major salt concentrations in seawater based on its salinity and 

density (which is also a function of pressure and temperature) 
  
       Usage: [cNa,cMg,cCa,cK,cSr,cLi,cCl,cBr,cF,cSO4,cTBOH4,cDIC,cOH] = seasalt_molarity(p,T,S)  
  
       Input parameters (scalar, vector or matrix): 
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           p       - pressure [MPa] 
           T       - temeperature [degC] 
           S       - practical salinity of seawater (absolute salinity = S*1.005 [g/kg]) 
  
       Output parameters:  
           cI      - molarity of salt component I [mol/l] 
  
       References:  
       Millero (2008) Deep-Sea Research I 55, 50–72. 
       Stoffyn-Egly & MacKenzie (1984) GCA 48, 859-872. 
 
 
  tortuos  -  calculates the tortuosity correction (to)^2 for diffusion coefficients in sediments 
            Ds = D0 / (to)^2   where   D0 = molecular diffusion coefficient 
              to = tortuosity 
  
        Usage: tort2 = tortuos(poros,'method',aa) 
  
        Input parameters: 
            poros   - porosity (scalar or vector) 
            aa      - fitting parameter for equations (scalar) 
                      recommended values are: 
                         'wb': aa = 2.02 
                         'ar': aa = 2.14 
                         'bf': aa = 3.79 
           'method' - determines the empirical relationship between porosity and tortuosity to be used. 
                      'bb'    Boudreau:                    to^2 = 1-2*log(poros) 
                      'wb'    modified Weissberg: to^2 = 1-a*log(poros) 
                      'ar'     Archie:                         to^2 = poros^(1-a) 
                      'bf'     Buerger-Friecke:         to^2 = poros+a*(1-poros) 
  
        Output parameter: 
            tort2   - squared tortuosity 
  
        Default values: 
            Porosity has to be provided at function call.  
            Default for aa is 0 and default for method is 'bb'. 
  
    References:  
    Boudreau (1997) Diagenetic Models and Their Implementation, Springer Verlag. 
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Appendix F:  Nomenclature 
 
 
a activity  A Helmholtz free energy 

a interaction parameter in EOS  A area 

b finite molecule size parameter in EOS  Bij
γ binary interaction parameters for 

species i and j 
c concentration  Bn virial coefficients 

c specific heat capacity  Cijk
γ ternary interaction parameters for 

species i, j and k 
d diameter  Cmj Langmuir constant 

d half separation distance between 
bubbles 

 C heat capacity 

f fugacity  Cd drag coefficient 

g gravitational acceleration  D diffusion coefficient 

j type of guest molecule  Deff effective diffusion coefficient 

k permeability  DH  Debye-Hückel limiting law 

k rate constant  E energy 

kB Boltzmann constant  F Faraday constant 

kd mass transfer coefficient  G Gibbs energy 

kS Setchenov constant  H enthalpy 

ksol dissolution rate  J mass flux 

m molarity  J nucleation rate 

m mass    Jq heat flux 

n number of moles  K equilibrium constant 

p pressure  K hydraulic conductivity 

r radius  KH Henry's law constant 

t time  L length of shortest path 

ut terminal rise velocity  M molar mass 

v fluid advection velocity  P probability 

v reaction rate  Q thermal energy 

x mole fraction  R gas constant 

x, y, z cartesian coordinates  Rt production rate of methane 

z valency  Re Reynold's number 

z film thickness  S entropy 

   T temperature 

   U internal energy  

   V volume 

   Vm molar volume 

   Z compressibility factor 
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Greek characters  

γ activity coefficient  ν kinematic viscosity 

η dynamic viscosity  νi stoichiometric coefficient 

θ tortuosity  ξNac tertiary interaction parameter 

Θ cage occupancy  ρ density 

κ compressibility  σ surface tension 

λ thermal conductivity  φ particle size distribution 

λNa/c binary interaction parameter  Φ fugacity coefficient 

Λ equivalent ion conductivity  Φ porosity 

µ chemical potential    

νm number of cages of type m per water 
molecule in the hydrate lattice 

   

     

     

superscripts  

0 reference state  if gas-liquid interface 

bub bubble  l, L liquid phase 

bulk bulk phase (water with dissolved gas)  n hydration number 

DBL diffusive boundary layer  p (gas hydrate) particle 

drop droplet  pw pore water 

eq equilibrium  sfc surface energy 

g, G vapour phase  νi stoichiometric coefficient 

h, H, 
hyd 

hydrate phase    

     

     

subscripts  

0 reference state  MH methane hydrate 

3 gas hydrate liquid 3 phase boundary  N neutral species 

a anion  p particle 
A activation  p constant pressure 
B gas hydrate formation  PF pore fluid 
c cation  r reaction 
C carbon dioxide  sat saturation 

CSW seawater with carbon dioxide  sol solution, dissolution 

d diffusion  S sediment matrix 

dis dissociation  SW seawater 

diss dissolution  v vaporization 

F formation  v void 

i,j,k gas species, component  v constant volume 

ind induction  vap vaporization 

L pore fluid  W water 

m type of hydrate cage (large or small)  β hypothetical empty hydrate lattice 

m molar  ∞ infinite dilution 

min mineral    
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