On dynamically consistent eddy fluxes

Thumbnail Image
Date
2004-11-04
Authors
Berloff, Pavel S.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Eddy fluxes
Dynamical decomposition
Mesoscale oceanic eddies
Abstract
The role of mesoscale oceanic eddies in driving the large-scale currents is studied in an eddy-resolving, double-gyre ocean model. The new diagnostic method is proposed, which is based on dynamical decomposition of the flow into the large-scale and eddy components. The method yields the time history of the eddy forcing, which can be used as additional, external forcing in the corresponding non-eddy-resolving model of the gyres. The main strength of this approach is in its dynamical consistency: the non-eddy-resolving solution driven by the eddy forcing history correctly approximates the original large-scale flow component. It is shown that statistical decompositions, which are based on space-time filtering diagnostics, are dynamically inconsistent. The diagnostics algorithm is formulated and tested, and the diagnosed eddies are analysed, both statistically and dynamically. It is argued that the main dynamic role of the eddies is to maintain the eastward-jet extension of the subtropical western boundary current (WBC). This is done largely by both the time–mean isopycnal-thickness flux and the relative-vorticity eddy flux fluctuations. The fluctuations drive large-scale flow through the nonlinear rectification mechanism. The relative-vorticity flux contributes mostly to the eastward jet meandering. Finally, eddy fluxes driven by both the eddies and the large-scale flow are found to be important. The latter is typically neglected in the analysis, but here it corresponds to important large-scale feedback on the eddies.
Description
Author Posting. © The Author, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 38 (2005): 123-146, doi:10.1016/j.dynatmoce.2004.11.003.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name