Skip to main content
Log in

Recent progress in the concurrent atomistic-continuum method and its application in phonon transport

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work presents the recent progress in the development of the concurrent atomistic-continuum (CAC) method for coarse-grained space- and time-resolved atomistic simulations of phonon transport. Application examples, including heat pulses propagating across grain boundaries and phase interfaces, as well as the interactions between phonons and moving dislocations, are provided to demonstrate the capabilities of CAC. The simulation results provide visual evidence and reveal the underlying physics of a variety of phenomena, including phonon focusing, wave interference, dislocation drag, interfacial Kapitza resistance caused by quasi-ballistic phonon transport, etc. A new method to quantify fluxes in transient transport processes is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. U.S.D.o.E. Office of Science: Computational Materials Science and Chemistry - Accelerating Discovery and Innovation through Simulation-Based Engineering and Science (2010).

    Google Scholar 

  2. S.V.J. Narumanchi, J.Y. Murthy, and C.H. Amon: Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics. Heat Mass Transf. 42, 478 (2006).

    Google Scholar 

  3. A.J. Minnich: Advances in the measurement and computation of thermal phonon transport properties. J. Phys. Condens. Matter 27, 053202 (2015).

    CAS  Google Scholar 

  4. G. Chen: Multiscale simulation of phonon and electron thermal transport. Annu. Rev. Heat Transf. 17, 1 (2014).

    Google Scholar 

  5. N. Mingo and L. Yang: Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003).

    Google Scholar 

  6. S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, and T.S. Fisher: The atomistic Green’s function method for interfacial phonon transport. Annu. Rev. Heat Transf. 17, 89 (2014).

    Google Scholar 

  7. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot: Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).

    CAS  Google Scholar 

  8. A. Chernatynskiy, D. R. Clarke, and S. R. Phillpot: Thermal transport in nanostructured materials, in Handbook of Nanoscience, Engineering, and Technology, 3rd ed., edited by W.A. Goddard III, D.W. Brenner, S.E. Lyshevski and G.J. Iafrate (CRC Press, Boca Raton, 2012), p. 545.

    Google Scholar 

  9. Y. Chalopin, A. Rajabpour, H. Han, Y. Ni, and S. Volz: Modeling heat conduction from first principles. Annu. Rev. Heat Transf. 17, 147 (2014).

    Google Scholar 

  10. Y. Chen and A. Diaz: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E: Stat. Phys. Plasmas Fluids 94, 053309 (2016).

    Google Scholar 

  11. P. Jund and R. Jullien: Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 59, 13707 (1999).

    CAS  Google Scholar 

  12. A. Bagri, S.-P. Kim, R.S. Ruoff, and V.B. Shenoy: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 11, 3917 (2011).

    CAS  Google Scholar 

  13. M. Hu and D. Poulikakos: Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487 (2012).

    CAS  Google Scholar 

  14. Y.K. Koh, Y. Cao, D.G. Cahill, and D. Jena: Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 19, 610 (2009).

    CAS  Google Scholar 

  15. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen: Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013).

    Google Scholar 

  16. Y. Chen, J. Zimmerman, A. Krivtsov, and D.L. McDowell: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1337 (2011).

    CAS  Google Scholar 

  17. M.T. Dove: Introduction to Lattice Dynamics (Cambridge University Press, Cambridge; New York, 1993).

    Google Scholar 

  18. B.E.S.A. Committee: From Quanta to the Continuum: Opportunities for Mesoscale Science, edited by U. S. D. o. Energy (2012).

    Google Scholar 

  19. C. Kittel: Introduction to Solid State Physics (Wiley, New York, 1966).

    Google Scholar 

  20. J.H. Irving and J.G. Kirkwood: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950).

    CAS  Google Scholar 

  21. J.G. Kirkwood: The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180 (1946).

    CAS  Google Scholar 

  22. A.C. Eringen: Mechanics of Micromorphic Continua (Defense Technical Information Center, Ft. Belvoir, 1967).

    Google Scholar 

  23. A.C. Eringen: Microcontinuum Field Theories: I. Foundations and Solids (Springer, New York, 2012).

    Google Scholar 

  24. Y. Chen and J.D. Lee: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A: Stat. Mech. Appl. 322, 359 (2003).

    Google Scholar 

  25. Y. Chen and J.D. Lee: Connecting molecular dynamics to micromorphic theory. (II). Balance laws. Phys. A: Stat. Mech. Appl. 322, 377 (2003).

    Google Scholar 

  26. Y. Chen, J.D. Lee, and A. Eskandarian: Atomistic counterpart of micromorphic theory. Acta Mech. 161, 81 (2003).

    Google Scholar 

  27. Y. Chen and J.D. Lee: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871 (2003).

    CAS  Google Scholar 

  28. Y. Chen: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).

    Google Scholar 

  29. Y. Chen and J. Lee: Atomistic formulation of a multiscale theory for nano/micro physics. Philos. Mag. A 85, 4095 (2005).

    CAS  Google Scholar 

  30. Y. Chen: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006).

    Google Scholar 

  31. Y. Chen, J.D. Lee, and A. Eskandarian: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085 (2004).

    Google Scholar 

  32. Y. Chen, J.D. Lee, and A. Eskandarian: Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41, 61 (2003).

    Google Scholar 

  33. Q. Deng, L. Xiong, and Y. Chen: Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int. J. Plast. 26, 1402 (2010).

    CAS  Google Scholar 

  34. Q. Deng and Y. Chen: A coarse-grained atomistic method for 3D dynamic fracture simulation. Int. J. Multiscale Comput. Eng. 11, 227 (2013).

    Google Scholar 

  35. Q. Deng: Coarse-graining Atomistic Dynamics of Fracture by Finite Element Method: Formulation, Parallelization and Applications (University of Florida, Gainesville, Florida, 2011), p. 124.

    Google Scholar 

  36. L. Xiong and Y. Chen: Coarse-grained simulations of single-crystal silicon. Model. Simul. Mater. Sci. Eng. 17, 035002 (2009).

    Google Scholar 

  37. L. Xiong, S. Xu, D.L. McDowell, and Y. Chen: Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. 65, 33 (2015).

    CAS  Google Scholar 

  38. S. Yang, L. Xiong, Q. Deng, and Y. Chen: Concurrent atomistic and continuum simulation of strontium titanate. Acta Mater. 61, 89 (2013).

    CAS  Google Scholar 

  39. L. Xiong, D.L. McDowell, and Y. Chen: Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633 (2012).

    CAS  Google Scholar 

  40. L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160 (2011).

    CAS  Google Scholar 

  41. L. Xiong, Q. Deng, G.J. Tucker, D.L. McDowell, and Y. Chen: Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 38, 86 (2012).

    CAS  Google Scholar 

  42. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, and Y. Chen: A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60, 899 (2012).

    CAS  Google Scholar 

  43. L. Xiong and Y. Chen: Coarse-grained atomistic modeling and simulation of inelastic material behavior. Acta Mech. Solida Sinica 25, 244 (2012).

    Google Scholar 

  44. S. Yang, N. Zhang, and Y. Chen: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 2697 (2015).

    CAS  Google Scholar 

  45. J.P. Wolfe: Imaging Phonons: Acoustic Wave Propagation in Solids (Cambridge University Press, Cambridge, U.K.; New York, 1998).

    Google Scholar 

  46. A.J. Schmidt: Optical Characterization of Thermal Transport from the Nanoscale to the Macroscale, in Mechanical Engineering (Massachusetts Institute of Technology, Cambridge, Massachusetts, 2008).

    Google Scholar 

  47. R.J. Stoner and H.J. Maris: Picosecond optical study of the Kapitza Conductance between metals and dielectrics at high temperature, in Phonon Scattering in Condensed Matter VII, edited by M. Meissner and R. Pohl (Springer, Berlin Heidelberg, 1993), p. 401.

    Google Scholar 

  48. P.E. Hopkins, R.J. Stevens, and P.M. Norris: Influence of inelastic scattering at metal-dielectric interfaces. J. Heat Transf. 130, 022401 (2008).

    Google Scholar 

  49. A.N. Smith, J.L. Hostetler, and P.M. Norris: Thermal boundary resistance measurements using a transient thermoreflectance technique. Microscale Thermophys. Eng. 4, 51 (2000).

    Google Scholar 

  50. D.H. Hurley, S.L. Shinde, and V.E. Gusev: Lateral-looking time-resolved thermal wave microscopy. J. Korean Phys. Soc. 57, 384 (2010).

    Google Scholar 

  51. D. Hurley, S.L. Shindé, and E.S. Piekos: Interaction of thermal phonons with interfaces, in Length-Scale Dependent Phonon Interactions, edited by L.S. Shindé and P.G. Srivastava (Springer, New York, 2014), p. 175.

    Google Scholar 

  52. M.N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M.T. Bulsara, A.J. Schmidt, A.J. Minnich, S. Chen, M.S. Dresselhaus, Z. Ren, E.A. Fitzgerald, and G. Chen: Coherent phonon heat conduction in superlattices. Science 338, 936 (2012).

    CAS  Google Scholar 

  53. X. Chen, A. Chernatynskiy, L. Xiong, and Y. Chen: A coherent phonon pulse model for transient phonon thermal transport. Comput. Phys. Commun. 195, 112 (2015).

    CAS  Google Scholar 

  54. Y. Kogure, T. Tsuchiya, and Y. Hiki: Simulation of dislocation configuration in rare gas crystals. J. Phys. Soc. Jpn. 56, 989 (1987).

    CAS  Google Scholar 

  55. G. Chen: Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transf. 124, 320 (2001).

    Google Scholar 

  56. X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, and Y. Chen: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355 (2017).

    CAS  Google Scholar 

  57. J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. Ramesh, and M.A. Zurbuchen: Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168 (2014).

    CAS  Google Scholar 

  58. A. Chernatynskiy, R.W. Grimes, M.A. Zurbuchen, D.R. Clarke, and S.R. Phillpot: Crossover in thermal transport properties of natural, perovskite-structured superlattices. Appl. Phys. Lett. 95, 161906 (2009).

    Google Scholar 

  59. J. Garg and G. Chen: Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 140302 (2013).

    Google Scholar 

  60. D. Churochkin, F. Barra, F. Lund, A. Maurel, and V. Pagneux: Multiple scattering of elastic waves by pinned dislocation segments in a continuum. Wave Motion 60, 220 (2016).

    Google Scholar 

  61. M.V. Simkin and G.D. Mahan: Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927 (2000).

    CAS  Google Scholar 

  62. J.R. Lukes and H. Zhong: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf. 129, 705 (2006).

    Google Scholar 

  63. J.D. Eshelby: Dislocations as a cause of mechanical damping in metals. Proc. R. Soc. London, Ser. A 197, 396 (1949).

    CAS  Google Scholar 

  64. F.R.N. Nabarro: The interaction of screw dislocations and sound waves. Proc. R. Soc. London, Ser. A 209, 278 (1951).

    Google Scholar 

  65. P.G. Klemens: The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. 68, 1113 (1955).

    Google Scholar 

  66. A. Granato and K. Lücke: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27, 583 (1956).

    Google Scholar 

  67. M. Peach and J.S. Koehler: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436 (1950).

    Google Scholar 

  68. A. Maurel, V. Pagneux, F. Barra, and F. Lund: Wave propagation through a random array of pinned dislocations: velocity change and attenuation in a generalized Granato and Lucke theory. Phys. Rev. B 72, 174111 (2005).

    Google Scholar 

  69. A. Maurel, J.-F. Mercier, and F. Lund: Elastic wave propagation through a random array of dislocations. Phys. Rev. B 70, 024303 (2004).

    Google Scholar 

  70. L. Xiong, J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, and Y. Chen: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143 (2016).

    CAS  Google Scholar 

  71. X. Chen, L. Xiong, D.L. McDowell, and Y. Chen: Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 22 (2017).

    CAS  Google Scholar 

  72. H. Koizumi, H.O.K. Kirchner, and T. Suzuki: Lattice wave emission from a moving dislocation. Phys. Rev. B 65, 214104 (2002).

    Google Scholar 

  73. S.G. Volz and G. Chen: Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651 (2000).

    CAS  Google Scholar 

  74. X.W. Zhou, R.E. Jones, and S. Aubry: Molecular dynamics prediction of thermal conductivity of GaN films and wires at realistic length scales. Phys. Rev. B 81, 155321 (2010).

    Google Scholar 

  75. W.G. Hoover: Computational Statistical Mechanics (Elsevier Science, Burlington, 2012).

    Google Scholar 

  76. W.G. Hoover: Molecular Dynamics (Springer Berlin, Berlin, 2013).

    Google Scholar 

  77. R.J. Hardy: Formulas for determining local properties in molecular dynamics simulations: shock waves. J. Chem. Phys. 76, 622 (1982).

    Google Scholar 

  78. C. Youping: The origin of the distinction between microscopic formulas for stress and Cauchy stress. Europhys. Lett. 116, 34003 (2016).

    Google Scholar 

  79. B.D. Todd, P.J. Daivis, and D.J. Evans: Heat flux vector in highly inhomogeneous nonequilibrium fluids. Phys. Rev. E 51, 4362 (1995).

    CAS  Google Scholar 

  80. J.A. Zimmerman, E.B. Webb III, J.J. Hoyt, R.E. Jones, P.A. Klein, and D.J. Bammann: Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 12, S319 (2004).

    CAS  Google Scholar 

  81. I. Edmund, B. Webb, J.A. Zimmerman, and S.C. Seel: Reconsideration of continuum thermomechanical quantities in atomic scale simulations. Math. Mech. Solids 13, 221 (2008).

    Google Scholar 

  82. K. Esfarjani, J. Garg, and G. Chen: Modeling Heat Conduction from First Principles (Annual Review of Heat Transfer, 2014), p. 9.

    Google Scholar 

  83. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi: Nanoscale thermal transport. II. 2003-2012. Appl. Phys. Rev. 1, 011305 (2014).

    Google Scholar 

Download references

Acknowledgments

This material is based upon research supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0006539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, W., Diaz, A. et al. Recent progress in the concurrent atomistic-continuum method and its application in phonon transport. MRS Communications 7, 785–797 (2017). https://doi.org/10.1557/mrc.2017.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.116

Navigation