Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 12, 2021

Potential predators of Dolichotis patagonum in the surroundings of its burrows, in Sierra de las Quijadas National Park, San Luis, Argentina

  • Ailin Gatica EMAIL logo , Ana C. Ochoa and Antonio M. Mangione
From the journal Mammalia

Abstract

Dolichotis patagonum (common name: mara) is a large sized rodent, endemic of Argentina, which raises its juveniles in burrows. It has recently been categorized as vulnerable. This is the first study to evaluate D. patagonum interactions with potential predators in the surroundings of the dens. We monitored 20 burrows, using camera-traps, with a total of 5644 camera-days, obtained over two years (2015 and 2016). Five potential predator species were detected (Lycalopex griseus, Puma concolor, Leopardus geoffroyi, Salvator sp. and Chaetophractus villosus). L. griseus and L. geoffroyi were the species with the highest frequency of visits. Both species were photographed attacking the juveniles. Four out of five potential predator species registered presented agonistic interactions with adults of mara. Overlap between all species analyzed and mara was low to moderate, and potential predator visits to the surrounding of the burrows did not vary according to the presence of juveniles. Our results suggest that in this system, predators behave as opportunistic predators of mara’s juveniles. Mara’s social and reproductive behavior varies along the distribution range of the species, therefore it is of great ecological value to analyze and understand the variations of its interactions with predators in different regions and environments.


Corresponding author: Ailin Gatica, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), CCT San Luis CONICET, Avenida Ejército de los Andes 950 (5700), San Luis, Argentina, E-mail:

Award Identifier / Grant number: PROICO 2-2818

Acknowledgements

We thank the many volunteers, who collaborated in the data collection; the staff of Sierra de las Quijadas National Park, especially Park Ranger Daniel Figueroa for his unconditional support and helpful advice; Lorena Tribe for her assistance. Thanks are also due to the Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO)-CCT San Luis; the PPBio Argentina collaborative research network; and to the Universidad Nacional de San Luis.

  1. Author contributions: Ailin Gatica was responsible for the main idea, and contributed with the general design, execution, coordination of field activities, data ordering and analysis, and writing of the manuscript. Ana Ochoa contributed by aiding in the conceptual design, data gathering, data analysis and writing of the manuscript. Antonio Mangione contributed with the assessment of experimental design and revisions of the manuscript.

  2. Research funding: This study was supported by PROICO 2-2818 from the Secretaría de Ciencia y Tecnología -Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Research ethics: This research has been approved and authorized by Argentinian National Parks Administration (APN) of Argentina, which is the competent authority in our country for the authorization of research works in these territories. Permissions numbers giving by APN: DRC262 and DRC 315.

References

Abba, A. and Cassini, M. (2008). Ecology and conservation of three species of armadillos in the Pampas region, Argentina. In: Loughry, W. and Vizcaíno, S. (Eds.), The biology of the Xenarthra. University Press of Florida, Gainesville, pp. 300–305.Search in Google Scholar

Abba, A.M., Nabte, M.J., and Udrizar Sauthier, D.E. (2010). New data on armadillos (Xenarthra: Dasypodidae) for Central Patagonia, Argentina. Edentata 11: 11–17, https://doi.org/10.1896/020.011.0103.Search in Google Scholar

Alonso Roldán, V., Bossio, L., and Galván, D.E. (2015). Sources of variation in a two-step monitoring protocol for species clustered in conspicuous points: Dolichotis patagonum as a case study. PloS One 10: e0128133, https://doi.org/10.1371/journal.pone.0128133.Search in Google Scholar

Alonso Roldán, V. and Udrizar Sauthier, D.E. (2016). Madrigueras de Dolichotis patagonum como recurso para otros vertebrados en Península Valdés. Mastozool. Neotrop. 23: 515–520.Search in Google Scholar

Alonso Roldán, V., Udrizar Sauthier, D.E., Giannoni, S.M., and Campos, C.M. (2019). Dolichotis patagonum. Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción, Available at: <http://cma.sarem.org.ar>.Search in Google Scholar

APN. (2017). Actualización del Plan de Gestión del Parque Nacional Sierra de las Quijadas. Administración de Parques Nacionales, Available at: <https://sib.gob.ar/archivos/PG_PNSQ_2017_VERSION_FINAL.pdf>.Search in Google Scholar

Azevedo, F.C., Lemos, F.G., Freitas-Junior, M.C., Rocha, D.G., and Azevedo, F.C.C. (2018). Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. J. Zool. 305: 246–255, https://doi.org/10.1111/jzo.12558.Search in Google Scholar

Baldi, R. (2007). Breeding success of the endemic mara Dolichotis patagonum in relation to habitat selection: conservation implications. J. Arid Environ. 68: 9–19, https://doi.org/10.1016/j.jaridenv.2006.03.025.Search in Google Scholar

Blumstein, D.T. (1998). Quantifying predation risk for refuging animals: a case study with golden marmots. Ethology 104: 501–516.10.1111/j.1439-0310.1998.tb00086.xSearch in Google Scholar

Camp, M.J., Rachlow, J.L., Woods, B.A., Johnson, T.R., and Shipley, L.A. (2012). When to run and when to hide: the influence of concealment, visibility, and proximity to refugia on perceptions of risk. Ethology 118: 1–8, https://doi.org/10.1111/eth.12000.Search in Google Scholar

Campos, C.M., Tognelli, M.F., and Ojeda, R.A. (2001). Dolichotis patagonum. Mamm. Species 652: 1–5, https://doi.org/10.1644/1545-1410(2001)652<0001:dp>2.0.co;2.10.1644/1545-1410(2001)652<0001:DP>2.0.CO;2Search in Google Scholar

Canevari, M. and Vaccaro, O. (2007). Guía de mamíferos del sur de América del Sur. L.O.L.A., Buenos Aires.Search in Google Scholar

Castillo Sánchez, L.L., Álvarez, M.C., Nuñez, M.B., Kaufmann, C.A., Alcaraz, A.P., Ochoa, A.C., and Gatica, A. (2021). ¿Potencial depredación intragremio? Puma concolor y Lycalopex gymnocercus en el ecotono Chaco-Monte, San Luis, República Argentina. Notas sobre Mamíferos Sudamericanos, Available at: <https://www.sarem.org.ar/wp-content/uploads/2021/04/SAREM_NotasMamSud_3-2021_CastilloSanchez.pdf>.10.31687/saremNMS.21.3.3Search in Google Scholar

Craig, C.L. and Freeman, C.R. (1991). Effects of predator visibility on prey encounter: a case study on aerial web weaving spiders. Behav. Ecol. Sociobiol. 29: 249–254, https://doi.org/10.1007/bf00163981.Search in Google Scholar

Del Vitto, L.A., Petenatti, E.M., Nellar, M.M., and Petenatti, M.E. (1994). Las áreas naturales protegidas de San Luis, Argentina. Multequina 3: 141–156.Search in Google Scholar

Di Bitetti, M.S., Di Blanco, Y.E., Pereira, J.A., Paviolo, A.N., and Jimenez Perez, I. (2009). Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and pampas foxes (Lycalopex gymnocercus). J. Mammal. 90: 479–490, https://doi.org/10.1644/08-mamm-a-113.1.Search in Google Scholar

Donadio, E., Novaro, A.J., Buskirk, S.W., Wurstten, A., Vitali, M.S., and Monteverde, M.J. (2010). Evaluating a potentially strong trophic interaction: pumas and wild camelids in protected areas of Argentina. J. Zool. 280: 33–40, https://doi.org/10.1111/j.1469-7998.2009.00638.x.Search in Google Scholar

Emsens, W.J., Hirsch, B.T., Kays, R., and Jansen, P.A. (2014). Prey refuges as predator hotspots: ocelot (Leopardus pardalis) attraction to agouti (Dasyprocta punctata) dens. Acta Theriol. 59: 257–262, https://doi.org/10.1007/s13364-013-0159-4.Search in Google Scholar

Faria-Corrêa, M., Balbueno, R.A., Vieira, E.M., and Freitase, T.R.O. (2009). Activity, habitat use, density, and reproductive biology of the crab-eating fox (Cerdocyon thous) and comparison with the pampas fox (Lycalopex gymnocercus) in a Restinga area in the southern Brazilian Atlantic Forest. Mamm. Biol. 74: 220–229, https://doi.org/10.1016/j.mambio.2008.12.005.Search in Google Scholar

Fitzgerald, L.A. (1992). La Historia Natural de Tupinambis. Rev. Un. Nac. Asunción 3: 71–72.Search in Google Scholar

Gatica, A. and Mangione, A.M. (2018). Behavioral response of the mara (Dolichotis patagonum) to food density in Argentina. Rev. Mex. Mastozool. 8: 40–47.10.22201/ie.20074484e.2018.1.2.259Search in Google Scholar

Gatica, A., Denkiewicz, N.M., and Ochoa, A.C. (2019). Breeding behavior of mara [Dolichotis patagonum (Zimmermann, 1780)] in the Monte-Chaco ecotone of Argentina. Mamm. Stud. 44: 233–241, https://doi.org/10.3106/ms2019-0006.Search in Google Scholar

Gatica, A., Ochoa, A.C., Denkiewicz, N.M., and Mangione, A.M. (2020). Wildlife associated with burrows of Dolichotis patagonum in central west Argentina. Neotrop. Biol. Conserv. 15: 399–407, https://doi.org/10.3897/neotropical.15.e54979.Search in Google Scholar

Genovart, M., Negre, N., Tavecchia, G., Bistuer, A., Parpal, L., and Oroet, D. (2010). The young, the weak and the sick: evidence of natural selection by predation. PloS One 5: e9774, https://doi.org/10.1371/journal.pone.0009774.Search in Google Scholar PubMed PubMed Central

Gómez, H., Wallace, R.B., Ayala, G., and Tejada, R. (2005). Dry season activity periods of some Amazonian mammals. Stud. Neotrop. Fauna Environ. 40: 91–95, https://doi.org/10.1080/01650520500129638.Search in Google Scholar

Grillet, P., Cheylan, M., Thirion, J.M., Dore, F., Bonnet, X., Dauge, C., Chollet, S., and Marchand, M.A. (2010). Rabbit burrows or artificial refuges are a critical habitat component for the threatened lizard, Timon lepidus (Sauria, Lacertidae). Biol. Conserv. 19: 2039–2051, https://doi.org/10.1007/s10531-010-9824-y.Search in Google Scholar

Guerisoli, M.M., Caruso, N., Vidal, E.M.L., and Lucherini, M. (2019). Habitat use and activity patterns of Puma concolor in a human dominated landscape of Central Argentina. J. Mammal. 100: 202–211, https://doi.org/10.1093/jmammal/gyz005.Search in Google Scholar

Haitao Yang, H.D., Smith, J.L.D., Feng, L., Wang, T., and Ge, J. (2019). Prey selection of Amur tigers in relation to the spatiotemporal overlap with prey across the Sino–Russian border. Wildl. Biol. 2019: 1–11, https://doi.org/10.2981/wlb.00508.Search in Google Scholar

Harmsen, B.J., Foster, R.J., Silver, S.C., Ostro, L.E.T., and Doncaster, C.P. (2011). Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76: 320–324, https://doi.org/10.1016/j.mambio.2010.08.007.Search in Google Scholar

Holling, C.S. (1959). Some characteristics of simple types of predation and parasitism. Can. Entomol. 91: 385–397, https://doi.org/10.4039/ent91385-7.Search in Google Scholar

Houngbégnon, F.G.A., Cornelis, D., Vermeulen, C., Sonké, B., Ntie, S., Fayolle, A., Fonteyn, D., Lhoest, S., Evrard, Q., Yapi, F., et al.. (2020). Daily activity patterns and co-occurrence of duikers revealed by an intensive camera trap survey across Central African rainforests. Animals 10: 2200, https://doi.org/10.3390/ani10122200.Search in Google Scholar PubMed PubMed Central

Lima, S.L. and Dill, L.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68: 619–640, https://doi.org/10.1139/z90-092.Search in Google Scholar

Mares, M.A. and Ojeda, R.A. (1982). Patterns of diversity and adaptation in South American hystricognath rodents. In: Mares, M.A. and Genoways, H.H. (Eds.), Mammalian biology in South America. Special Publications Series Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh, pp. 393–432.Search in Google Scholar

Meredith, M. and Ridout, M. (2020). Overview of the overlap package, Available at: <https://cran.r-project.org/web/packages/overlap/vignettes/overlap.pdf>.Search in Google Scholar

Montaño, R.R., Cuéllar, R.L., Fitzgerald, L.A., Mendoza, F., Soria, F., Fiorello, C.V., Deem, S.L., and Noss, A.J. (2013). Activity and ranging behavior of the red tegu lizard Tupinambis rufescens in the bolivian chaco. South Am. J. Herpetol. 8: 81–88, https://doi.org/10.2994/sajh-d-13-00016.1.Search in Google Scholar

Núñez, M.B. and Mangione, A. (2008). Determining micro- and mesofaunal composition through the analysis of South American grey fox’s feces in two different semiarid habitats. Ecol. Austral 18: 205–212.Search in Google Scholar

Otto, S., Rall, B., and Brose, U. (2007). Allometric degree distributions facilitate food- web-stability. Nature 450: 1226–1229, https://doi.org/10.1038/nature06359.Search in Google Scholar PubMed

Palacios, R., Walker, R.S., and Novaro, A.J. (2012). Differences in diet and trophic interactions of Patagonian carnivores between areas with mostly native or exotic prey. Mamm. Biol. 77: 183–189, https://doi.org/10.1016/j.mambio.2012.01.001.Search in Google Scholar

Pankhurst, S.H. (1998). The social organisation of the mara at Whipsnade Wild Animal Park, Ph.D. thesis. Cambridge, University of Cambridge.Search in Google Scholar

Pereira, J.A. (2010). Activity pattern of Geoffroy’s cats (Leopardus geoffroyi) during a period of food shortage. J. Arid Environ. 74: 1106–1109, https://doi.org/10.1016/j.jaridenv.2010.03.017.Search in Google Scholar

Pereira, J.A., Di Bitetti, M.S., Fracassi, N.G., Paviolo, A., De Angelo, C.D., Di Blanco, Y.E., and Novaro, A.J. (2011). Population density of Geoffroy’s cat in scrublands of Central Argentina. J. Zool. 283: 37–44, https://doi.org/10.1111/j.1469-7998.2010.00746.x.Search in Google Scholar

Preisser, E.L. and Orrock, J.L. (2012). The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3: 1–27, https://doi.org/10.1890/es12-00084.1.Search in Google Scholar

R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: <https://www.R-project.org/>.Search in Google Scholar

Sazima, I. and D’Angelo, G.B. (2013). Range of animal food types recorded for the tegu lizard (Salvator merianae) at an urban park in South-Eastern Brazil. Herpetol. Notes 6: 427–430.Search in Google Scholar

Scognamillo, D., Maxit, I.E., Sunquist, M., and Polisar, J. (2003). Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J. Zool. 259: 269–279, https://doi.org/10.1017/s0952836902003230.Search in Google Scholar

Sidell, B.P. (2002). Moonrise 3.5 software (32 bit), Available at: <https://moonrise.informer.com/3.5/>.Search in Google Scholar

Sih, A. (1984). The behavioral response race between predator and prey. Am. Nat. 123: 143–150, https://doi.org/10.1086/284193.Search in Google Scholar

Sinclair, A., Mduma, S., and Brashares, J. (2003). Patterns of predation in a diverse predator-prey system. Nature 425: 288–290, https://doi.org/10.1038/nature01934.Search in Google Scholar

Srbek-Araujo, A.C., Jardim Guimarães, L., and Costa-Braga, D. (2020). Activity pattern of the black-and-white Tegu, Salvator merianae (Squamata, Teiidae), in an Atlantic Forest remnant in Southeastern Brazil. Herpetol. Notes 13: 93–99.Search in Google Scholar

Stevenson, R.D. (1985). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126: 362–386, https://doi.org/10.1086/284423.Search in Google Scholar

Taber, A.B. (1987). The behavioral ecology of the mara Dolichotis patagonum, Ph.D. thesis. Oxford, University of Oxford.Search in Google Scholar

Taber, A.B. and Macdonald, D.W. (1992a). Communal breeding in the mara, Dolichotis patagonum. J. Zool. 227: 439–452, https://doi.org/10.1111/j.1469-7998.1992.tb04405.x.Search in Google Scholar

Taber, A.B. and Macdonald, D.W. (1992b). Spatial organization and monogamy in the mara Dolichotis patagonum. J. Zool. 227: 417–438, https://doi.org/10.1111/j.1469-7998.1992.tb04404.x.Search in Google Scholar

Turner, A.M. and Montgomery, S.L. (2003). Spatial and temporal scales of predator avoidance: experiments with fish and snails. Ecology 84: 616–622, https://doi.org/10.1890/0012-9658(2003)084[0616:satsop]2.0.co;2.10.1890/0012-9658(2003)084[0616:SATSOP]2.0.CO;2Search in Google Scholar

Vieira, E.M. and Port, D. (2007). Niche overlap and resource partitioning between two sympatric fox species in Southern Brazil. J. Zool. 272: 57–63, https://doi.org/10.1111/j.1469-7998.2006.00237.x.Search in Google Scholar

Received: 2021-01-11
Accepted: 2021-07-01
Published Online: 2021-08-12
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.5.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2020-0194/html
Scroll to top button