Skip to main content
Log in

Dilute Al-Mn Alloys for Low-Temperature Device Applications

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We discuss results on the superconducting, electron-transport, and tunneling properties of Al doped with Mn in the range of 1000 to 3000 ppm. We demonstrate that the critical temperature of Al can be systematically reduced to below 50 mK. Films are prepared by sputter deposition, and show values of d(ln R)/d(ln T) of ∼500, indicating sharp superconducting transitions. Al-Mn/I/Al-Mn tunnel junctions show low sub-gap conductance and BCS-like characteristics. Our results in general suggest that the material is of interest for transition-edge sensors operating in the 100 mK regime and superconductor/insulator/superconductor (S/I/S) and normal/insulator/ superconductor (N/I/S) devices, in the latter case where heavily doped Al-Mn can replace the normal metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Cabrera, R. Clarke, A. Miller, S. W. Nam, R. Romani, T. Saab, and B. Young, in Proceedings of the LT22: 22nd International Conference on Low Temperature Physics, Espoo and Helsinki, Finland (4–11 August 1999), pp. 1-6.

  2. J. A. Chervenak, E. N. Grossman, C. D. Reintsema, K. D. Irwin, S. H. Moseley, and C. A. Allen, IEEE Trans. Appl. Supercon. 11, 593-596 (2000).

    Google Scholar 

  3. D. T. Chow, A. Loshak, M. L. van den Berg, M. Frank, T. W. Barbee, Jr., and S. E. Labov, Proc. SPIE 4141, 67-75 (2000).

    Google Scholar 

  4. K. D. Irwin, G. C. Hilton, J. M. Martinis, S. Deiker, N. Bergren, S. W. Nam, D. A. Rudman, and D. A. Wollman, Nucl. Instrum. Methods Phys. Res. A 444, 184-187 (2000).

    Google Scholar 

  5. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, Appl. Phys. Lett. 73, 735-737 (1998).

    Google Scholar 

  6. J. M. Gildemeister, A. T. Lee, and P. L. Richards, Appl. Phys. Lett. 74, 868-870 (1999).

    Google Scholar 

  7. D. J. Benford, C. A. Allen, J. A. Chervenak, M. M. Freund, E. N. Grossman, G. C. Hilton, K. G. Irwin, A. S. Kutyrev, J. M. Martinis, S. H. Moseley, S. W. Nam, C. D. Reintsema, R. A. Shafer, and J. G. Staguh, Int. J. IR MM Wav. 21, 1909-1916 (2000).

    Google Scholar 

  8. K. D. Irwin, Appl. Phys. Lett. 66, 1998-2000 (1995).

    Google Scholar 

  9. A. T. Lee, P. L. Richards, S. W. Nam, B. Cabrera, and K. D. Irwin, Appl. Phys. Lett. 69, 1801-1803 (1996).

    Google Scholar 

  10. A. Zehnder, Phys. Rev. B 52, 12858-12866 (1991).

    Google Scholar 

  11. J. A. Chervenak, K. D. Irwin, E. N. Grossman, J. M. Martinis, C. D. Reintsema, and M. E. Huber, Appl. Phys. Lett. 74, 4043-4045 (1999).

    Google Scholar 

  12. B. A. Young, S. W. Nam, P. L. Brink, B. Cabrera, B. Chugg, R. M. Clark, A. K. Davies, K. D. Irwin, IEEE Trans. Appl. Supercond. 7, 3367-3370 (1997).

    Google Scholar 

  13. A. T. Lee, Shih-Fu Lee, J. M. Gildemeister, and P. L. Richards, Proc. LTD-7 (1997), pp. 123-6.

  14. H. Pressler, M. Koike, M. Ohkubo, D. Fukuda, Y. Noguchi, M. Ohno, H. Takahashi, and M. Nakazawa, Appl. Phys. Lett. 18, 331-333 (2002).

    Google Scholar 

  15. see M. Tinkham, Introduction to Superconductivity, McGraw–Hill, New York (1996).

    Google Scholar 

  16. See S. Trowell, A. D. Holland, G. W. Fraser, D. Goldie, and E. Gu, in Low Temperature Detectors, Ninth International Workshop on Low Temperature Detectors, Madison, WI, F. S. Porter, D. McCammon, M. Galeazzi, and C. K. Stahle (eds.), AIP Conference Proceedings, Vol.605, AIP, Melville, New York (2002), pp. 267-270, and references therein.

    Google Scholar 

  17. J. J. Hauser, H. C. Thuerer, and N. R. Werthamer, Phys. Rev. 136, A637-A641 (1964).

    Google Scholar 

  18. J. M. Martinis, G. C. Hilton, K. D. Irwin, and D. A. Wollman, Nucl. Instr. Meth. A 444, 23-27 (2000).

    Google Scholar 

  19. Ya. V. Fominov and M. V. Feigel'man, Phys. Rev. B 63, 094518-1-094518-13.

  20. G. Brammertz, A. Poelaert, A. A. Golubov, P. Verhoeve, A. Peacock, and H. Rogalla, J. Appl. Phys. 90, 355-364 (2001).

    Google Scholar 

  21. G. Ventura, M. Barucci, E. Pasca, E. Monticone, and M. Rajteri, World Scientific (2002).

  22. M. Ukibe, T. Kimura, T. Nagaoka, H. Pressler, and M. Ohkubo, in Low Temperature Detectors, Ninth International Workshop on Low Temperature Detectors, Madison, WI, F. S. Porter, D. McCammon, M. Galeazzi, and C. K. Stahle (eds.), AIP Conference Proceedings, Vol. 605, AIP, Melville, New York (2002), pp. 207-210.

    Google Scholar 

  23. G. C. Hilton, John M. Martinis, K. D. Irwin, N. F. Bergren, D. A. Wollman, M. E. Huber, S. Deiker, and S. W. Nam, IEEE Trans. Appl. Supercon. 11, 739-742 (2001).

    Google Scholar 

  24. N. Tralashawala, Nucl. Instr. and Meth. A 444, 1888-191 (1999).

    Google Scholar 

  25. E. Figueroa-Feliciano, J. Chervenak, F. M. Fikbeiner, M. Li, M. A. Lindeman, C. K. Stahle, and C. M. Stahle, Low Temperature Detectors, Ninth International Workshop on Low Temperature Detectors, Madison, WI, F. S. Porter, D. McCammon, M. Galeazzi, and C. K. Stahle (eds.), AIP Conference Proceedings, Vol.605, AIP, Melville, New York (2002), pp. 239-242.

    Google Scholar 

  26. J. Schnagl, G. Angloher, F. V. Feilitzsch, M. Huber, J. Jochum, J. Lanfranchi, M. L. Sarsa, and S. Wanninger, Nucl. Instr. and Methods in Phys. Research A 444, 245-248 (2000).

    Google Scholar 

  27. B. A. Young, T. Saab, B. Cabrera, J. J. Cross, R. M. Clarke, and R. A. Abusaidi, J. Appl. Phys. 86, 6975-6978 (1999).

    Google Scholar 

  28. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Theor. Fiz. 39, 1781(1960). [English trans.: Soviet Phys.-JETP 12, 1243-1253 (1961)].

    Google Scholar 

  29. P. G. de Gennes and G. Sarma, J. Appl. Phys. 34, 1380-1385 (1963).

    Google Scholar 

  30. See discussion by K. Maki, in Superconductivity, R. D. Parks (ed.), Marcel Dekker, Inc., New York (1969), pp. 1035-1105.

    Google Scholar 

  31. M. B. Maple, in Superconductivity in d-and f-Band Metals, D. H. Douglas (ed.), AIP Conf. Proc., No. 4, American Institute of Physics, New York, (1972), pp. 175-203.

    Google Scholar 

  32. T. H. Geballe, B. T. Matthias, E. Corenzwit, and G. W. Hull, Jr., Phys. Rev. Lett. 8, 313(1962).

    Google Scholar 

  33. W. A. Roshen and J. Ruvalds, Phys. Rev. B 31, 2929-2940 (1985).

    Google Scholar 

  34. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders, Philadelphia (1976), p. 687.

    Google Scholar 

  35. M. Galeazzi and D. McCammon, J. Appl. Phys. 93, 4856-4869 (2003).

    Google Scholar 

  36. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, Philadelphia, PA, (1976), p. 8.

  37. http://www.goodfellow.com/csp/active/static/A/MO00.HTML

  38. E. Monticone, M. Rajteri, M. L. Rastello, V. Lacquaniti, C. Gandini, E. Pasca, and G. Ventura, Low Temperature Detectors, Ninth International Workshop on Low Temperature Detectors, Madison, WI, F. S. Porter, D. McCammon, M. Galeazzi, and C. K. Stahle (eds.), AIP Conference Proceedings, Vol. 605, AIP, Melville, New York (2002), pp. 181-4.

    Google Scholar 

  39. E. Babic, P. J. Ford, C. Rizzuto, and E. Salamoni, Solid State Commun. 11, 519-523 (1972).

    Google Scholar 

  40. R. P. Elloit, Constitution of Binary Alloys, First Supplement, McGraw–Hill, New York (1965), p. 43.

    Google Scholar 

  41. A. Karpov, D. Miller, J. Zmuidzinas, J. Stern, B. Bumble, and H. Le Duc, in Proceedings of the Far-IR, Sub-MM Detector Technology Workshop, J. Wolf and J. Davison (eds.) (2002) (in press).

  42. P. H. Siegel, IEEE Trans. Microwave Theory and Techniques 50, 910-928 (2002).

    Google Scholar 

  43. Q. Hu and P. L. Richards, in Superconducting Devices, S. T. Ruggiero and D. A. Rudman (eds.), Academic, New York (1990).

    Google Scholar 

  44. C. K. Walker, J. W. Kooi, M. Chan, H. G. Leduc, P. L. Schaffer, J. E. Carlstrom, and T. G. Phillips, Int. J. IR and MM Waves 13, 785-798 (1992).

    Google Scholar 

  45. S. Imai, IEEE Trans. on. Magn. MAG-21, 906(1985).

    Google Scholar 

  46. K. Seko, Y. Ichikawa, R. Terajima, J. Sakai, and Syozo Imai, Physica C 378–381, 1310-1313 (2002).

    Google Scholar 

  47. J. N. Ullom, in Low Temperature Detectors, Ninth International Workshop on Low Temperature Detectors, Madison, WI, F. S. Porter, D. McCammon, M. Galeazzi, and C. K. Stahle (eds.), AIP Conference Proceedings, Vol. 605, AIP, Melville, New York (2002), pp. 135-40.

    Google Scholar 

  48. A. M. Clark, A. Williams, S. T. Ruggiero, M. L. van den Berg, and J. N. Ullom, (accepted, Appl. Phys. Lett.)

  49. J. N. Ullom and P. A. Fisher, Physica B 284–288, 2036-2038 (2000).

    Google Scholar 

  50. P. A. Fisher, J. N. Ullom, and M. Nahum, Appl. Phys. Lett. 74, 2705-2707 (1999).

    Google Scholar 

  51. F. Pobell in Matter and Methods at Low Temperature, Springer-Verlag, Berlin (1992), p. 44.

    Google Scholar 

  52. N. E. Phillips, Phys. Rev. 114, 676-685 (1959).

    Google Scholar 

  53. D. L. Martin, Phys. Rev. B 21, 1906-1910 (1980).

    Google Scholar 

  54. M. Maurer, J. van den Berg, and J. A. Mydosh, Europhys. Lett. 3, 1103-1108 (1987).

    Google Scholar 

  55. D. L. Martin, Phys. Rev. B 20, 368-374 (1979).

    Google Scholar 

  56. D. L. Martin, Phys. Rev. B 31, 4708-4709 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggiero, S.T., Williams, A., Rippard, W.H. et al. Dilute Al-Mn Alloys for Low-Temperature Device Applications. Journal of Low Temperature Physics 134, 973–984 (2004). https://doi.org/10.1023/B:JOLT.0000013212.61515.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000013212.61515.56

Keywords

Navigation