Skip to main content

Advertisement

Log in

Potential of Biogas Production in Anaerobic Co-digestion of Opuntia ficus-indica and Slaughterhouse Wastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study assessed the co-digestion of slaughterhouse wastewater (SWW) with Opuntia fícus-indica (OFI) under semi-continuous conditions.

Methods

Four different mixing ratios were studied at mesophilic temperature (38 ± 1°C): 100% SWW, 75% SWW/25% OFI, 25% SWW/75% OFI and 100% OFI. Process parameters such as biogas production, methane content, redox potential, pH, alkalinity, NH4-N, and VFA were used to infer differences in the bioreactors.

Results

Biodigester 2 (75% SWW and 25% OFI) presented the best cumulative biogas yield and methane content with 86 L and 57% (v/v), respectively. Inhibition of the biogas production process was observed in the remaining reactors.

Conclusion

The results showed that the co-digestion of SWW with OFI residues improved process performance in terms of biogas production. This improvement demonstrated that OFI could be applied as a novel co-substrate in systems digesting wastewaters that contain high levels of nitrogen compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Júnior, L.J., Glbiatti, J.A., Ortolani, A.F.: Produção de biogás a partir de estrume de ruminantes e monogástricos com e sem inóculo (1987)

  2. Ware, A., Power, N.: What is the effect of mandatory pasteurisation on the biogas transformation of solid slaughterhouse wastes? Waste Manag. 48, 503–512 (2016). https://doi.org/10.1016/j.wasman.2015.10.013

    Article  Google Scholar 

  3. Labatut, R.A., Angenent, L.T., Scott, N.R.: Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 102, 2255–2264 (2011). https://doi.org/10.1016/j.biortech.2010.10.035

    Article  Google Scholar 

  4. Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., Flotats, X.: Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour. Technol. 102, 2219–2227 (2011). https://doi.org/10.1016/j.biortech.2010.09.121

    Article  Google Scholar 

  5. Lienen, T., Kleyböcker, A., Verstraete, W., Würdemann, H.: Foam formation in a downstream digester of a cascade running full-scale biogas plant: influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella. Bioresour. Technol. 153, 1–7 (2014). https://doi.org/10.1016/j.biortech.2013.11.017

    Article  Google Scholar 

  6. Bayr, S., Ojanperä, M., Kaparaju, P., Rintala, J.: Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp. Waste Manag. 34, 1853–1859 (2014). https://doi.org/10.1016/j.wasman.2014.06.005

    Article  Google Scholar 

  7. Borowski, S., Kubacki, P.: Co-digestion of pig slaughterhouse waste with sewage sludge. Waste Manag. 40, 119–126 (2015). https://doi.org/10.1016/j.wasman.2015.03.021

    Article  Google Scholar 

  8. Edström, M., Nordberg, Å., Thyselius, L.: Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale. Appl. Biochem. Biotechnol. A 109, 127–138 (2003). https://doi.org/10.1385/ABAB:109:1-3:127

    Article  Google Scholar 

  9. Caldereiro, G.: Caracterização da digestão de resíduos agroindustriais em biodigestor de fluxo contínuo operado em escala real (2015)

  10. Ramos-Suárez, J.L., Martínez, A., Carreras, N.: Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers. Manag. 88, 1263–1270 (2014). https://doi.org/10.1016/j.enconman.2014.02.064

    Article  Google Scholar 

  11. Godoy, F.S.: Pontencial del Cultivo de la chumbera (Opuntia ficus-indica (L.)Miller) para la Obtención de Biocombustibles. 285 (2012)

  12. Gebrekidan, T., Egigu, M.C., Muthuswamy, M.: Efficiency of biogas production from cactus fruit peel co-digestion with cow dung. Int. J. Adv. Res. 2, 916–923 (2014)

    Google Scholar 

  13. Vidal, J., Carvajal, A., Huiliñir, C., Salazar, R.: Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-Fenton process performed in semicontinuous operation. Chem. Eng. J. 378, 122097 (2019). https://doi.org/10.1016/j.cej.2019.122097

    Article  Google Scholar 

  14. Páramo-Vargas, J., Granados, S.G., Maldonado-Rubio, M.I., Peralta-Hernández, J.M.: Up to 95 % reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation. Environ. Chem. Lett. 14, 149–154 (2016). https://doi.org/10.1007/s10311-015-0534-2

    Article  Google Scholar 

  15. Jigar, E., Sulaiman, H., Asfaw, A., Bairu, A.: Study on renewable biogas energy production from cladodes of Opuntia ficus indica. Science (80-) 1, 44–48 (2011)

    Google Scholar 

  16. Rajagopal, R., Massé, D.I., Singh, G.: A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 143, 632–641 (2013). https://doi.org/10.1016/j.biortech.2013.06.030

    Article  Google Scholar 

  17. Chen, C., Zheng, D., Liu, G.J., Deng, L.W., Long, Y., Fan, Z.H.: Continuous dry fermentation of swine manure for biogas production. Waste Manag. 38, 436–442 (2015). https://doi.org/10.1016/j.wasman.2014.12.024

    Article  Google Scholar 

  18. Pereira, E.L., Campos, C.M.M., Moterani, F.: Efeitos do pH, acidez e alcalinidade na microbiota de um reator anaeróbio de manta de lodo (UASB) tratando efluentes de suinocultura. Arq. Bras. Psicol. 66, 17–35 (2014). https://doi.org/10.4136/1980-993X

    Article  Google Scholar 

  19. Leonardo, M.S.F.: Caracterização do Digestor Anaeróbio de Lamas Biológicas da ETAR do Choupal, em Coimbra (2012)

  20. Belli Filho, P.: Stockage et odeur des dejections animales- cas du lisier de porc (1995)

  21. Hunting, E.R., Kampfraath, A.A.: Contribution of bacteria to redox potential (Eh) measurements in sediments. Int. J. Environ. Sci. Technol. 10, 55–62 (2013). https://doi.org/10.1007/s13762-012-0080-4

    Article  Google Scholar 

  22. de Oliveira, R.A., Foresti, E.: Balanço de massa de reatores anaeróbicos de fluxo ascendente com manta de lodo (UASB) tratando águas residuárias de suinocultura. Eng. Agrícola 24, 807–820 (2004). https://doi.org/10.1590/S0100-69162004000300035

    Article  Google Scholar 

  23. Gerardi, M.H.: The Microbiology of Anaerobic Digesters. Wiley, Hoboken (2003)

    Book  Google Scholar 

  24. Venkatesh, M.: Appraisal of the carbon to nitrogen (C/N) ratio in the bed sediment of the Betwa River, Peninsular India. Int. J. Sediment Res. (2019).https://doi.org/10.1016/j.ijsrc.2019.07.003

    Article  Google Scholar 

  25. Xu, R., Zhang, K., Liu, P., Khan, A., Xiong, J., Tian, F., Li, X.: Bioresource Technology: a critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour. Technol. 247, 1119–1127 (2018). https://doi.org/10.1016/j.biortech.2017.09.095

    Article  Google Scholar 

  26. Medri, W.: Modelagem e otimização de sistemas de estabilização para tratamento de dejetos de suínos. 230 (1997)

  27. Eryuruk, K., Tezcan, U., Bak, U.: Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes. J. Clean. Prod. 172, 1089–1095 (2018). https://doi.org/10.1016/j.jclepro.2017.10.254

    Article  Google Scholar 

  28. Reilly, M., Cooley, A.P., Tito, D., Tassou, S.A., Theodorou, M.K.: Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia 161, 343–351 (2019). https://doi.org/10.1016/j.egypro.2019.02.106

    Article  Google Scholar 

  29. Kobya, M., Senturk, E., Bayramoglu, M.: Treatment of poultry slaughterhouse wastewaters by electrocoagulation. 133, 172–176. https://doi.org/10.1016/j.jhazmat.2005.10.007

  30. Chakchouk, I., Elloumi, N., Belaid, C., Mseddi, S., Chaari, L., Kallel, M.: A combined electrocoagulation–electrooxidation treatment for dairy wastewater. Braz. J. Chem. Eng. 34, 109–117 (2017). https://doi.org/10.1590/0104-6632.20170341s20150040

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support given to the Project 0330_IDERCEXA_4_E-Renewable Investment, Development and Energy for the Improvement of the Entrepreneurial Fabric in the Region Centro, Estremadura and Alentejo co-financed by INTERREG-European Regional Development Fund through the FEDER. G. Lourinho also acknowledges FCT - Fundação para a Ciêcia e Tecnologia - for financial support under the Grant SFRH/BDE/111878/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Mota Panizio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panizio, R.M., Calado, L.F.d., Lourinho, G. et al. Potential of Biogas Production in Anaerobic Co-digestion of Opuntia ficus-indica and Slaughterhouse Wastes. Waste Biomass Valor 11, 4639–4647 (2020). https://doi.org/10.1007/s12649-019-00835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00835-2

Keywords

Navigation