Skip to main content
Log in

Crustal structure beneath Yinggehai basin and adjacent Hainan Island, and its tectonic implications

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Two NE-SW trending wide-angle seismic profiles were surveyed across the Chinese side of the Yinggehai (莺歌海) basin (YGHB) with ocean bottom hydrophones (OBHs) and piggyback recorded by onshore stations located on the Hainan (海南) Island. Detailed velocity-depth models were obtained through traveltime modeling and partially constrained by amplitude calculations. More than 15 km Tertiary sedimentary infill within the YGHB can be divided in to three layers with distinct velocity-depth distribution. Overall, the upper layer has a high velocity gradient with 3.8–4.1 km/s at its bottom, consistent with progressive compaction and diagenesis. Its thickness increases gradually towards the basin center, reaching 4.5 km along the southern profile. The middle layer is characterized in its most part as a pronounced low velocity zone (LVZ) with average velocity as low as 3.0 km/s. Its thickness increases from 3.0 to over 4.5 km from NW towards SE. The primary causes of the velocity inversion are high accumulation rate and subsequent under-compaction of sediments. The velocity at the top of the lower layer is estimated at about 4.5 km/s. Despite strong energy source used (4 × 12L airgun array), no reflections can be observed from deeper levels within the basin. Towards NE the basin is bounded sharply by a clear and deep basement fault (Fault No. 1), which seems to cut through the entire crust. A typical continental crust with low-velocity middle crust is found beneath the coast of the western Hainan Island. Its thickness is determined to be 28 km and shows no sign of crustal thinning towards the basin. The sharp change in crustal structure across Fault No. 1 indicates that the fault is a strike-slip fault. The crustal structure obtained in this study clearly favors the hypothesis that the YGHB is a narrow pull-apart basin formed by strike-slip faulting of the Red River fault zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Basile, C., Brun, J. P., 1999. Transtensional Faulting Patterns Ranging from Pull-Apart Basins to Transform Continental Margins: An Experimental Investigation. Journal of Structural Geology, 21(1): 23–37

    Article  Google Scholar 

  • Chung, S. L., Lee, T. Y., Lo, C. H., et al., 1997. Intraplate Extension Prior to Continental Extrusion along the Ailao Shan-Red River Shear Zone. Geology, 25: 311–314

    Article  Google Scholar 

  • Clift, P. D., Lin, J., 2001. Variations in Extensional Deformation with Depth during Continental Break-up in the South China Sea. Mar. Petrol. Geol., 18: 929–945

    Article  Google Scholar 

  • Flueh, E. R., Bialas, J., 1996. A Digital, High Data Capacity Ocean Bottom Recorder for Seismic Investigations. Int. Underwater Systems Design, 18: 18–20

    Google Scholar 

  • Fuchs, K., Muller, G., 1971. Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations. Geophys. J. R. Astr. Soc., 23: 417–433

    Google Scholar 

  • Gajewski, D., Holbrook, W. S., Prodehl, C., 1987. A Three-Dimensional Crustal Model of Southwest Germany Derived from Seismic Refraction Data. Tectonophysics, 142(1): 49–70

    Article  Google Scholar 

  • Gong, Z., Li, S., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing. 510 (in Chinese)

    Google Scholar 

  • Harrison, T. M., Chen, W., Leloup, P. H., et al., 1992. An Early Miocene Transition in Deformation Regime within the Red River Fault Zone, Yunnan, and Its Significance for Indo-Asian Tectonics. Journal of Geophysical Research, 97(B5): 7159–7182

    Article  Google Scholar 

  • Holbrook, W. S., Mooney, W. D., 1987. The Crustal Structure of the Axis of the Great Valley, California, from Seismic Refraction Measurements. Tectonophysics, 140(1): 49–63

    Article  Google Scholar 

  • Leloup, P. H., Harrison, T. M., Ryerson, F., et al., 1993. Structural, Petrological and Thermal Evolution of a Tertiary Ductile Strike-Slip Shear Zone, Diancang Shan, Yunnan. Journal of Geophysical Research, 98(B4): 6715–6743

    Article  Google Scholar 

  • Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1–4): 3–84

    Article  Google Scholar 

  • Li, S. T., Lin, C. S., Zhang, Q. M., et al., 1998. Dynamic Process of the Periodic Rifting and Tectonic Events since 10 Ma in the Marginal Basins North of the South China Sea. Chinese Science Bulletin, 43(8): 797–810 (in Chinese)

    Article  Google Scholar 

  • Li, S. T., Mooney, W. D., 1998. Crustal Structure of China from Deep Seismic Sounding Profiles. Tectonophysics, 288(1–4): 105–113

    Article  Google Scholar 

  • Liao, Q., Wang, Z., Zhu, Z., et al., 1988. Crust and Upper Mantle Structure in the Quanzhou-Shantou Region of China. In: China Earthquake Administration ed., Developments in the Research of Deep Structures of China Continent. Geological Publishing House, Beijing. 227–235 (in Chinese)

    Google Scholar 

  • Luetgert, L. J., 1992. MacRay: Interactive Two-Dimensional Seismic Raytracing for the Macintosh. Open File Report 92-356, USGS, Menlo Park, California. 44

    Google Scholar 

  • Mueller, S., 1977. A New Model of the Continental Crust. In: Heacock, J. G., ed., The Earth’s Crust. Am. Geophys. Union Geophys. Monogr., 20: 28–317

    Google Scholar 

  • Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research, 100(B11): 22407–22434

    Article  Google Scholar 

  • Qiu, X. L., Ye, S., Wu, S. M., et al., 2001. Crustal Structure across the Xisha Trough, Northwestern South China Sea. Tectonophysics, 341(1–4): 179–193

    Article  Google Scholar 

  • Qiu, X. L., Shi, X., Wu, S. M., 2003. Recent Progress of Deep Seismic Experiments and Studies of Crustal Structure in Northern South China Sea. Progress in Natural Science, 13(7): 481–488

    Google Scholar 

  • Rangin, C., Klein, M., Roques, D., et al., 1995. The Red River Fault System in the Tonkin Gulf, Vietnam. Tectonophysics, 243(3–4): 209–222

    Article  Google Scholar 

  • Roques, D., Matthews, S. J., Rangin, C., 1997. Constraints on Strike-Slip Motion from Seismic and Gravity Data along the Vietnam Margin Offshore Da Nang: Implications for Hydrocarbon Prospectivity and Opening of the East Vietnam Sea. Geological Society Special Publications, 126: 341–353

    Article  Google Scholar 

  • Ru, K., 1988. The Development of Superimposed Basin on the Northern Margin of the South China Sea and Its Tectonic Significance. Oil and Gas Geology, 9(1): 22–31 (in Chinese with English Abstract)

    Google Scholar 

  • Sage, F., Basile, C., Mascle, J., et al., 2000. Crustal Structure of the Continent-Ocean Transition off the Cote d’Ivoire-Ghana Transform Margin: Implications for Thermal Exchanges across the Palaeotransform Boundary. Geophys. J. Int., 143(3): 662–678

    Article  Google Scholar 

  • Schaerer, U., Zhang, L., Tapponnier, P., 1994. Duration of Strike-Slip Movements in Large Shear Zones: The Red River Belt, China. Earth and Planetary Science Letters, 126(4): 379–397

    Article  Google Scholar 

  • Sun, Z., Zhou, D., Zhong, Z. H., et al., 2003. Experimental Evidence for the Dynamics of the Formation of the Yinggehai Basin, NW South China Sea. Tectonophysics, 372(1–2): 41–58

    Article  Google Scholar 

  • Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. In: Coward, M. P., Ries, A. C., eds., Collision Tectonics. Geol. Soc. Spec. Publ., 19: 115–157

  • Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437

    Article  Google Scholar 

  • Wang, H., Zhu, W. L., Wang, Y., 1999. Characteristics of Middle- Deep Reservoir and Sedimentray History in Yinggehai Basin. Oil and Gas Geology, 20(1): 55–61 (in Chinese with English Abstract)

    Google Scholar 

  • Wu, S. M., Zhou, D., Qiu, X. L., et al., 2001. Chacteristics and Genesis of Low Velocity Layer in Yinggehai Basin, NW South China Sea. Journal of Tropical Oceanography, 20(3): 8–14 (in Chinese with English Abstract)

    Google Scholar 

  • Xia, K., Zhou, D., Su, D., et al., 1998. The Velocity Structure of the Yinggehai Basin and Its Hydrocarbon Implication. Chinese Science Bulletin, 43(24): 2047–2059 (in Chinese)

    Article  Google Scholar 

  • Xie, X. N., Li, S. T., Dong, W. L., et al., 2001. Evidence for Episodic Expulsion of Hot Fluids along Faults near Diapiric Structures of the Yinggehai Basin, South China Sea. Marine and Petroleum Geology, 18(6): 715–728

    Article  Google Scholar 

  • Yan, P., Zhou, D., Liu, Z., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338(1): 1–21

    Article  Google Scholar 

  • Ye, S., Ansorge, J., Kissling, E., et al., 1995. Crustal Structure beneath the Eastern Swiss Alps Derived from Seismic Refraction Data. Tectonophysics, 242(3–4): 199–221

    Article  Google Scholar 

  • Ye, S., 1997. Cruise Report “Shiyan 2”: Wide-Angle Reflection Seismic Survey in the Northwestern South China Sea, Guangzhou-Shekou, Sept. 17–Oct. 8 1996. GEOMAR

  • Ye, S., Flueh, E. R., Klaeschen, D., et al., 1997. Crustal Structure along the EDGE Transect beneath the Kodiak Shelf off Alaska Derived from OBH Seismic Refraction Data. Geophys. J. Int., 130(2): 283–302

    Article  Google Scholar 

  • Ye, S., Canales, J. P., Rihm, R., et al., 1999. A Crustal Transect through the Northern and Northeastern Part of the Volcanic Edifice of Gran Canaria, Canary Islands. J. Geodynamics, 28(1): 3–26

    Article  Google Scholar 

  • Zhang, Q. M., Zhang, Q. X., 1993. A Distinctive Hydrocarbon Basin—Yinggehai Basin. In: Zhang, Q. M., ed., A Collection on Petroleum Geology of Yinggehai Basin, South China. Seismic Press, Beijing. 10–17 (in Chinese)

    Google Scholar 

  • Zhang, Q. M., 1999. Evolution of Yinggehai-Qiongdongnan Basin and Its Tectonic-Thermal System. Natural Gas Industry, 19(1): 12–18 (in Chinese)

    Google Scholar 

  • Zhou, D., Ru, K., Chen, H., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1–4): 161–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Wu  (吴世敏).

Additional information

This study was supported by the National Basic Research Program of China (No. 2007CB411706-05) and the National Natural Science Foundation of China (No. 40576025).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Qiu, X., Zhou, D. et al. Crustal structure beneath Yinggehai basin and adjacent Hainan Island, and its tectonic implications. J. Earth Sci. 20, 13–26 (2009). https://doi.org/10.1007/s12583-009-0002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-009-0002-7

Key Words

Navigation