Skip to main content

Advertisement

Log in

Population-based nutrikinetic modeling of polyphenol exposure

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The beneficial health effects of fruits and vegetables have been attributed to their polyphenol content. These compounds undergo many bioconversions in the body. Modeling polyphenol exposure of humans upon intake is a prerequisite for understanding the modulating effect of the food matrix and the colonic microbiome. This modeling is not a trivial task and requires a careful integration of measuring techniques, modeling methods and experimental design. Moreover, both at the population level as well as the individual level polyphenol exposure has to be quantified and assessed. We developed a strategy to quantify polyphenol exposure based on the concept of nutrikinetics in combination with population-based modeling. The key idea of the strategy is to derive nutrikinetic model parameters that summarize all information of the polyphenol exposure at both individual and population level. This is illustrated by a placebo-controlled crossover study in which an extract of wine/grapes and black tea solids was administered to twenty subjects. We show that urinary and plasma nutrikinetic time-response curves can be used for phenotyping the gut microbial bioconversion capacity of individuals. Each individual harbours an intrinsic microbiota composition converting similar polyphenols from both test products in the same manner and stable over time. We demonstrate that this is a novel approach for associating the production of two gut-mediated γ-valerolactones to specific gut phylotypes. The large inter-individual variation in nutrikinetics and γ-valerolactones production indicated that gut microbial metabolism is an essential factor in polyphenol exposure and related potential health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Rahman, S. M., & Kauffman, R. E. (2004). The integration of pharmacokinetics and pharmacodynamics: Understanding dose-response. Annual Review of Pharmacology and Toxicology, 44, 111–136.

    Article  CAS  PubMed  Google Scholar 

  • Actis-Goretta, L., Leveques, A., Rein, M., Teml, A., Schafer, C., Hofmann, U., et al. (2013). Intestinal absorption, metabolism, and excretion of (−)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. American Journal of Clinical Nutrition, 98, 924–933.

    Article  CAS  PubMed  Google Scholar 

  • Ariano, R. E., Duke, P. C., & Sitar, D. S. (2012). The influence of sparse data sampling on population pharmacokinetics: A post hoc analysis of a pharmacokinetic study of morphine in healthy volunteers. Clinical Therapeutics, 34, 668–676.

    Article  CAS  PubMed  Google Scholar 

  • Blaut, M., Schoefer, L., & Braune, A. (2003). Transformation of flavonoids by intestinal microorganisms. International Journal for Vitamin and Nutrition Research, 73, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Combes, F. P., Retout, S., Frey, N., & Mentre, F. (2013). Prediction of shrinkage of individual parameters using the bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharmaceutical Research, 30, 2355–2387.

    Article  CAS  PubMed  Google Scholar 

  • Dall’Asta, M., Calani, L., Tedeschi, M., Jechiu, L., Brighenti, F., & Del Rio, D. (2012). Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources. Nutrition, 28, 197–203.

    Article  PubMed  Google Scholar 

  • Davidian, M., & Giltinan, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural Biological and Environmental Statistics, 8, 387–419.

    Article  Google Scholar 

  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, 18, 1818–1892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donovan, J. L., Bell, J. R., Kasim-Karakas, S., German, J. B., Walzem, R. L., Hansen, R. J., et al. (1999). Catechin is present as metabolites in human plasma after consumption of red wine. Journal of Nutrition, 129, 1662–1668.

    CAS  PubMed  Google Scholar 

  • Donovan, J. L., Crespy, V., Manach, C., Morand, C., Besson, C., Scalbert, A., et al. (2001). Catechin is metabolized by both the small intestine and liver of rats. Journal of Nutrition, 131, 1753–1757.

    CAS  PubMed  Google Scholar 

  • Gross, G., Jacobs, D. M., Peters, S., Possemiers, S., van Duynhoven, J., Vaughan, E. E., et al. (2010). In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. Journal of Agriculture and Food Chemistry, 58, 10236–10246.

    Article  CAS  Google Scholar 

  • Grün, C. H., Van Dorsten, F. A., Jacobs, D. M., Le Belleguic, M., van Velzen, E. J. J., Bingham, M. O., et al. (2008). GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies. Journal of Chromatography B, 871, 212–219.

  • Jacobs, D. M., Fuhrmann, J. C., Van Dorsten, F. A., Rein, D., Peters, S., van Velzen, E. J. J., et al. (2012). Impact of short-term intake of red wine and grape polyphenol extract on the human metabolome. Journal of Agriculture and Food Chemistry, 60, 3078–3085.

    Article  CAS  Google Scholar 

  • Jalanka-Tuovinen, J., Salonen, A., Nikkila, J., Immonen, O., Kekkonen, R., Lahti, L., et al. (2011). Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One, 6, e23035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay, C. D. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19, 137–146.

    Article  CAS  PubMed  Google Scholar 

  • Kay, C. D. (2010). The future of flavonoid research. British Journal of Nutrition, 104(Suppl 3), 91–95.

    Article  Google Scholar 

  • Kemperman, R. A., Bolca, S., Roger, L. C., & Vaughan, E. E. (2010). Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology, 156, 3224–3231.

    Article  CAS  PubMed  Google Scholar 

  • Kemperman, R. A., Gross, G., Mondot, S., Possemiers, S., Marzorati, M., van de Wiele, T., et al. (2013). Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International, 53, 659–669.

    Article  CAS  Google Scholar 

  • Kohri, T., Suzuki, M., & Nanjo, F. (2003). Identification of metabolites of (−)-epicatechin gallate and their metabolic fate in the rat. Journal of Agricultural and Food Chemistry, 51, 5561–5566.

    Article  CAS  PubMed  Google Scholar 

  • Kutschera, M., Engst, W., Blaut, M., & Braune, A. (2011). Isolation of catechin-converting human intestinal bacteria. Journal of Applied Microbiology, 111, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Lahti, L., Salonen, A., Kekkonen, R. A., Salojarvi, J., Jalanka-Tuovinen, J., Palva, A., et al. (2013). Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ, 1, e32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, M. J., Maliakal, P., Chen, L., Meng, X., Bondoc, F. Y., Prabhu, S., et al. (2002). Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiology Biomarkers and Prevention, 11, 1025–1032.

    CAS  Google Scholar 

  • Loke, W. M., Jenner, A. M., Proudfoot, J. M., McKinley, A. J., Hodgson, J. M., Halliwel, B., et al. (2009). A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. Journal of Nutrition, 139, 2309–2314.

    Article  CAS  PubMed  Google Scholar 

  • Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 79, 727–747.

    CAS  PubMed  Google Scholar 

  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Remesy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. American Journal of Clinical Nutrition, 81, 230–242.

    Google Scholar 

  • Marotti, I., Bonetti, A., Biavati, B., Catizone, P., & Dinelli, G. (2007). Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. Journal of Agriculture and Food Chemistry, 55, 3913–3919.

    Article  CAS  Google Scholar 

  • Mata-Bilbao, M. D., Andres-Lacueva, C., Roura, E., Jauregui, O., Escribano, E., Torre, C., et al. (2008). Absorption and pharmacokinetics of green tea catechins in beagles. British Journal of Nutrition, 100, 496–502.

    Article  CAS  Google Scholar 

  • Matsukawa, N., Matsumoto, M., & Hara, H. (2009). High biliary excretion levels of quercetin metabolites after administration of a quercetin glycoside in conscious bile duct cannulated rats. Bioscience, Biotechnology, and Biochemistry, 73, 1863–1865.

    Article  CAS  PubMed  Google Scholar 

  • McGhie, T. K., & Rowan, D. D. (2012). Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science. Molecular Nutrition and Food Research, 56, 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X. F., Sang, S. M., Zhu, N. Q., Lu, H., Sheng, S. Q., Lee, M. J., et al. (2002). Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chemical Research in Toxicology, 15, 1042–1050.

    Article  CAS  PubMed  Google Scholar 

  • Moco, S., Martin, F. P., & Rezzi, S. (2012). Metabolomics view on gut microbiome modulation by polyphenol-rich foods. Journal of Proteome Research, 11, 4781–4790.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Gonzalez, I., Jimenez-Giron, A., Martin-Alvarez, P. J., Bartolome, B., & Moreno-Arribas, M. V. (2013). Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. Journal of Agriculture and Food Chemistry, 61, 9470–9479.

    Article  CAS  Google Scholar 

  • Olthof, M. R., Hollman, P. C. H., Buijsman, M. N. C. P., Van Amelsvoort, J. M. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. Journal of Nutrition, 133, 1806–1814.

    CAS  PubMed  Google Scholar 

  • Pandey, K. B., & Rizvi, S. I. (2010). Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytotherapy Research, 24, S11–S14.

    Article  PubMed  Google Scholar 

  • Perez-Jimenez, J., Fezeu, L., Touvier, M., Arnault, N., Manach, C., Hercberg, S., et al. (2011). Dietary intake of 337 polyphenols in French adults. American Journal of Clinical Nutrition, 93, 1220–1228.

    Article  CAS  PubMed  Google Scholar 

  • Rajilic-Stojanovic, M., Heilig, H. G. H. J., Molenaar, D., Kajander, K., Surakka, A., Smidt, H., et al. (2009). Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environmental Microbiology, 11, 1736–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renouf, M., Redeuil, K., Longet, K., Marmet, C., Dionisi, F., Kussmann, M., et al. (2011). Plasma pharmacokinetics of catechin metabolite 4′-O-Me-EGC in healthy humans. European Journal of Nutrition, 50, 575–580.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Patan, F., Cueva, C., Monagas, M., Walton, G. E., Gibson, G. R., Monagas, M., et al. (2012a). Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry, 131, 337–347.

    Article  CAS  Google Scholar 

  • Sanchez-Patan, F., Cueva, C., Monagas, M., Walton, G. E., Gibson, G. R., Quintanilla-Lopez, J. E., et al. (2012b). In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. Journal of Agriculture and Food Chemistry, 60, 2136–2147.

    Article  CAS  Google Scholar 

  • Scalbert, A., Morand, C., Manach, C., & Remesy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine and Pharmacotherapy, 56, 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Seeram, N. P., Henning, S. M., Zhang, Y., Suchard, M., Li, Z., & Heber, D. (2006). Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. The Journal of Nutrition, 136, 2481–2485.

    CAS  PubMed  Google Scholar 

  • Selma, M. V., Espin, J. C., & Tomas-Barberan, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. Journal of Agriculture and Food Chemistry, 57, 6485–6501.

    Article  CAS  Google Scholar 

  • Sies, H. (2010). Polyphenols and health: Update and perspectives. Archives of Biochemistry and Biophysics, 501, 2–5.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, J. P. E., Mohsen, M. M. A., Minihane, A. M., & Mathers, J. C. (2008). Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition, 99, 12–22.

    CAS  PubMed  Google Scholar 

  • Van den Abbeele, P., Grootaert, C., Marzorati, M., Possemiers, S., Verstraete, W., Gerard, P., et al. (2010). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Applied and Environmental Microbiology, 76, 5237–5246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Bogert, B., de Vos, W. M., Zoetendal, E. G., & Kleerebezem, M. (2011). Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Applied and Environmental Microbiology, 77, 2071–2080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dorsten, F. A., Peters, S., Gross, G., Gomez-Roldan, V., Klinkenberg, M., de Vos, R. C., et al. (2012). Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. Journal of Agriculture and Food Chemistry, 60, 11331–11342.

    Article  Google Scholar 

  • Van Duynhoven, J. P. M., Van Velzen, E. J. J., Westerhuis, J. A., Foltz, M., Jacobs, D. M., & Smilde, A. K. (2012). Nutrikinetics: Concept, technologies, applications, perspectives. Trends in Food Science and Technology, 26, 4–13.

    Article  Google Scholar 

  • Van Duynhoven, J. P. M., Vaughan, E. E., Jacobs, D. M., Kemperman, A., Van Velzen, E. J. J., Gross, G., et al. (2011). The metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences, 108, 4531–4538.

    Article  Google Scholar 

  • Van Duynhoven, J. P. M., Vaughan, E. E., van Dorsten, F., Gomez-Roldan, V., de Vos, R., Vervoort, J., et al. (2013). Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. The American Journal of Clinical Nutrition, 98, 1631–1641.

    Article  Google Scholar 

  • Van Ommen, B., Bouwman, J., Dragsted, L. O., Drevon, C. A., Elliott, R., de, G. P., et al. (2010). Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes and Nutrition, 5, 189–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Velzen, E. J. J., Westerhuis, J. A., Van Duynhoven, J. P. M., Van Dorsten, F. A., Grun, C. H., Jacobs, D. M., et al. (2009). Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. Journal of Proteome Research, 8, 3317–3330.

    Article  PubMed  Google Scholar 

  • Van Velzen, E. J. J., Westerhuis, J. A., Van Duynhoven, J. P. M., Van Dorsten, F. A., Hoefsloot, H. C., Smit, S., et al. (2008). Multilevel data analysis in crossover-designed human intervention studies. Journal of Proteome Research, 7, 4483–4491.

    Article  PubMed  Google Scholar 

  • Williamson, G., & Clifford, M. N. (2010). Colonic metabolites of berry polyphenols: The missing link to biological activity? British Journal of Nutrition, 104(Suppl 3), 48–66.

    Article  Google Scholar 

  • Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. American Journal of Clinical Nutrition, 81, 243–255.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the European Community under the Framework 6 Marie-Curie Host Fellowships for the Transfer of Knowledge Industry-Academia Strategic Partnership scheme, specifically GUTSYSTEM project (MTKI-CT-2006-042786). Part of this project was carried out within the research program of the Netherlands Metabolomics Centre (NMC) which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Age K. Smilde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Velzen, E.J.J., Westerhuis, J.A., Grün, C.H. et al. Population-based nutrikinetic modeling of polyphenol exposure. Metabolomics 10, 1059–1073 (2014). https://doi.org/10.1007/s11306-014-0645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0645-y

Keywords

Navigation