Skip to main content

Advertisement

Log in

Antimicrobial and Antibiofilm Effect of Inulin-Type Fructans, Used in Synbiotic Combination with Lactobacillus spp. Against Candida albicans

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

There is great interest in the search for new alternatives to antimicrobial drugs, and the use of prebiotics and probiotics is a promising approach to this problem. This study aimed to assess the effect of inulin-type fructans, used in synbiotic combinations with Lactobacillus paracasei or Lactobacillus plantarum, on the production of short-chain fatty acids and antimicrobial activity against Candida albicans. The inhibition assay using the L. paracasei and L. plantarum supernatants resulting from the metabolization of inulin-type fructans displayed growth inhibition and antibiofilm formation against C. albicans. Inhibition occurred at concentrations of 12.5, 25, and 50% of the L. paracasei supernatant and at a concentration of 50% of the L. plantarum supernatant. The analysis of short-chain fatty acids by gas chromatography showed that lactic acid was the dominating produced metabolite. However, acetic, propionic, and butyric acids were also detected in supernatants from both probiotics. Therefore, the synbiotic formulation of L. paracasei or L. plantarum in the presence of inulin-type fructans constitutes with anticandidal effect is a possible option to produce antifungal drugs or antimicrobial compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Frassinetti S, Gabriele M, Moccia E et al (2020) Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. LWT-Food Sci Technol 124:109149. https://doi.org/10.1016/j.lwt.2020.109149

    Article  CAS  Google Scholar 

  2. Senés-Guerrero C, Gradilla-Hernández MS, García-Gamboa R, García-Cayuela T (2020) Dietary fiber and gut microbiota. In: Science and Technology of Fibers in food systems. Springer International Publishing, pp 277–298. https://doi.org/10.1007/978-3-030-38654-2_12

    Chapter  Google Scholar 

  3. Márquez-Aguirre AL, Camacho-Ruíz RM, Gutiérrez-Mercado YK et al (2016) Fructans from Agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mice. Plant Foods Hum Nutr 71:416–421. https://doi.org/10.1007/s11130-016-0578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. García-Gamboa R, Basurto RIO, Santoyo MC et al (2018) In vitro evaluation of prebiotic activity, pathogen inhibition and enzymatic metabolism of intestinal bacteria in the presence of fructans extracted from agave: a comparison based on polymerization degree. LWT-Food Sci Technol 92:380–387. https://doi.org/10.1016/j.lwt.2018.02.051

    Article  CAS  Google Scholar 

  5. García-Gamboa R, Gradilla-Hernández MS, Ortiz-Basurto RI et al (2020) Assessment of intermediate and long chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Rev Mex Ing Quim 19:827–838. https://doi.org/10.24275/rmiq/Bio842

    Article  Google Scholar 

  6. Zhao C, Lv X, Fu J et al (2016) In vitro inhibitory activity of probiotic products against oral Candida species. J Appl Microbiol 121:254–262. https://doi.org/10.1111/jam.13138

    Article  CAS  PubMed  Google Scholar 

  7. Aarti C, Khusro A, Varghese R et al (2018) In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1. Arch Oral Biol 89:99–106. https://doi.org/10.1016/j.archoralbio.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Kang S-S (2019) Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch Oral Biol 99:113–119. https://doi.org/10.1016/j.archoralbio.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  9. García-Gamboa R, Kirchmayr MR, Gradilla-Hernández MS et al (2021) The intestinal mycobiota and its relationship with overweight, obesity and nutritional aspects. J Hum Nutr Diet 34:645–655. https://doi.org/10.1111/jhn.12864

    Article  PubMed  Google Scholar 

  10. Williams DW, Jordan RPC, Wei X-Q et al (2013) Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol 5:22434. https://doi.org/10.3402/jom.v5i0.22434

    Article  CAS  Google Scholar 

  11. Bhattacharya S, Sae-Tia S, Fries BC (2020) Candidiasis and mechanisms of antifungal resistance. Antibiotics 9:312. https://doi.org/10.3390/antibiotics9060312

    Article  CAS  PubMed Central  Google Scholar 

  12. Atriwal T, Azeem K, Husain FM et al (2021) Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front Microbiol 12:932. https://doi.org/10.3389/fmicb.2021.638609

    Article  Google Scholar 

  13. Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L (2019) Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 110:857–868. https://doi.org/10.1016/j.biopha.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  14. Popp C, Ramírez-Zavala B, Schwanfelder S et al (2019) Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination. MBio 10:02740–02718. https://doi.org/10.1128/mBio.02740-18

    Article  Google Scholar 

  15. Rossoni RD, de Barros PP, do Carmo Mendonça I et al (2020) The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris. Front Cell Infect Microbiol 10:397. https://doi.org/10.3389/fcimb.2020.00397

    Article  PubMed  PubMed Central  Google Scholar 

  16. Valero-Cases E, Frutos MJ (2017) Effect of inulin on the viability of L. plantarum during storage and in vitro digestion and on composition parameters of vegetable fermented juices. Plant Foods Hum Nutr 72:161–167. https://doi.org/10.1007/s11130-017-0601-x

    Article  CAS  PubMed  Google Scholar 

  17. Siedler S, Balti R, Neves AR (2019) Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr Opin Biotechnol 56:138–146. https://doi.org/10.1016/j.copbio.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  18. Roobab U, Batool Z, Manzoor MF et al (2020) Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 32:17–28. https://doi.org/10.1016/j.cofs.2020.01.003

    Article  Google Scholar 

  19. Petrov K, Popova L, Petrova P (2017) High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei. Appl Microbiol Biotechnol 101:4433–4445. https://doi.org/10.1007/s00253-017-8238-0

    Article  CAS  PubMed  Google Scholar 

  20. Okano K, Hama S, Kihara M et al (2017) Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 101:1869–1875. https://doi.org/10.1007/s00253-016-7976-8

    Article  CAS  PubMed  Google Scholar 

  21. Parolin C, Marangoni A, Laghi L et al (2015) Isolation of vaginal lactobacilli and characterization of anti-Candida activity. PLoS One 10:e0131220. https://doi.org/10.1371/journal.pone.0131220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asadpoor M, Ithakisiou G-N, Henricks PAJ et al (2021) Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against enterotoxin-producing bacteria and their toxins. Toxins 13:175. https://doi.org/10.3390/toxins13030175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng S, Song J, Zeng W et al (2021) A broad-spectrum novel bacteriocin produced by Lactobacillus plantarum SHY 21–2 from yak yogurt: purification, antimicrobial characteristics and antibacterial mechanism. LWT-Food Sci Technol 142:110955. https://doi.org/10.1016/j.lwt.2021.110955

    Article  CAS  Google Scholar 

  24. de Barros PP, Scorzoni L, de Camargo RF et al (2018) Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis elegans. Microb Pathog 117:80–87. https://doi.org/10.1016/j.micpath.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  25. Salari S, Ghasemi Nejad Almani P (2020) Antifungal effects of Lactobacillus acidophilus and Lactobacillus plantarum against different oral Candida species isolated from HIV/AIDS patients: an in vitro study. J Oral Microbiol 12:1769386. https://doi.org/10.1016/j.micpath.2018.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim S, Covington A, Pamer EG (2017) The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 279:90–105. https://doi.org/10.1111/imr.12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cronin SJF, Nehme NT, Limmer S et al (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343. https://doi.org/10.1126/science.1173164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Healey KR, Nagasaki Y, Zimmerman M et al (2017) The gastrointestinal tract is a major source of echinocandin drug resistance in a murine model of Candida glabrata colonization and systemic dissemination. Antimicrob Agents Chemother 61:e01412–e01417. https://doi.org/10.1128/AAC.01412-17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sanders ME, Merenstein DJ, Reid G et al (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16:605–616. https://doi.org/10.1038/s41575-019-0173-3

    Article  PubMed  Google Scholar 

  30. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92. https://doi.org/10.1146/annurev-micro-091014-104330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ribeiro FC, Rossoni RD, de Barros PP et al (2020) Action mechanisms of probiotics on Candida spp. and candidiasis prevention: an update. J Appl Microbiol 129:175–185. https://doi.org/10.1111/jam.14511

    Article  CAS  PubMed  Google Scholar 

  32. Ceresa C, Tessarolo F, Caola I et al (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118:1116–1125. https://doi.org/10.1111/jam.1276

    Article  CAS  PubMed  Google Scholar 

  33. Higashi B, Mariano TB, de Abreu Filho BA et al (2020) Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohydr Polym 248:116832. https://doi.org/10.1016/j.carbpol.2020.116832

    Article  CAS  PubMed  Google Scholar 

  34. Guinan J, Wang S, Hazbun TR et al (2019) Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-45467-7

    Article  CAS  Google Scholar 

  35. van Leeuwen PT, van der Peet JM, Bikker FJ et al (2016) Interspecies interactions between Clostridium difficile and Candida albicans. Msphere 1:e00187–e00116. https://doi.org/10.1128/mSphere.00187-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support granted by CONACYT (CVU number 662891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela González-Avila.

Ethics declarations

Conflict of Interest

The authors confirm that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 106 kb)

ESM 2

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gamboa, R., Domínguez-Simi, M.Á., Gradilla-Hernández, M.S. et al. Antimicrobial and Antibiofilm Effect of Inulin-Type Fructans, Used in Synbiotic Combination with Lactobacillus spp. Against Candida albicans. Plant Foods Hum Nutr 77, 212–219 (2022). https://doi.org/10.1007/s11130-022-00966-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00966-3

Keywords

Navigation