Skip to main content
Log in

Temporal patterns of alpha and beta diversities of microzooplankton in a eutrophic tidal river in the eastern Amazon

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Tidal rivers are peculiar, yet vastly unknown. These rivers are characterized by dynamic tides without saline intrusion. This unusual environmental configuration should affect the biological communities present in these habitats. Therefore, our main goal was to identify the temporal patterns of the zooplankton communities in tidal rivers and the influence of the environment on these patterns. We applied an approach that investigates the local diversity and turnover of species (i.e., alpha and temporal beta diversities, respectively) to disentangle the temporal dynamics of individual taxonomic groups at tidal rivers. Our findings evidenced that periods of high diversity are always followed by periods of low diversity. We suggest that the temporal variation in the resources exploited by zooplankton, specifically algal biomass, is the major factor driving this temporal pattern. Periods of high rainfall led to species homogenization, whereas periods of high insolation and wind speed (i.e., dry periods) led to heterogenization. Moreover, we evidenced that protozoa was the group with the highest alpha diversity, and its species turnover was constrained by seasonality in a similar way to that of rotifers, with both groups undergoing homogenization during rainy periods. Here, we describe the zooplankton community dynamics in tidal rivers over time, which is a scale often disregarded in ecological studies, and suggest that future research should consider temporal variation associated with extensive spatial replication to disentangle ecological patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agasild H, Zingel P, Tonno I, Haberman J, Noges T (2007) Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Vortsjaev (Estonia). Hydrobiologia 584:167–177

    Google Scholar 

  • Algarte VM, Dunck B, Leandrini JA, Rodrigues L (2016) Periphytic diatom ecological guilds in floodplain: ten years after dam. Ecol Ind 69:407–414

    Google Scholar 

  • Allan JD (1976) Life history patterns in zooplankton. Am Nat 110:165–180. https://www.jstor.org/stable/2459885

    Google Scholar 

  • Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics reference online. Wiley, pp 1–15. https://doi.org/10.1002/9781118445112.stat07841

    Chapter  Google Scholar 

  • Anyanwu JC, Onyedilefu UG, Nwobu EA (2020) Study of physicochemical properties and zooplankton diversity of oguta lake in oguta local government area of imo state. Int j Eng Technol Manag Appl Sci 4:328–336

    Google Scholar 

  • Araújo HMP, Nascimento-Vieira S, Neumann-Leitão Schwamborn R, Lucas APO, Alves JPH (2008) Zooplankton community dynamics in relation to the seasonal cycle and nutrient inputs in an urban tropical estuary in Brazil. Braz J Biol 68:751–762. https://doi.org/10.1590/S1519-69842008000400009

    Article  PubMed  Google Scholar 

  • Baselga A, Orme D (2012) Betapart: a R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Google Scholar 

  • Bastos TX, Pacheco NA, Nechet D, Abreu TD (2002) Aspectos climáticos de belém nos últimos 100 anos (In Portuguese). Boletim da pesquisa e desenvolvimento. Documentos. Embrapa Amazônia Oriental, Belém

    Google Scholar 

  • Basu BK, Pick FR (1996) Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol Oceanogr 41:1572–1577

    CAS  Google Scholar 

  • Beaver JR, Scotese KC, Manis EE, Juul STJ, Carroll J, Renicker TR (2015) Variation in water residence time is the primary determinant of phytoplankton and zooplankton composition in a Pacific Northwest reservoir ecosystem (Lower Snake River, USA). River Systems 21:241–255

    Google Scholar 

  • Bomfim FF, Lansac-Tôha FM, Bonecker CC, Lansac-Tôha FA (2021) Determinants of zooplankton functional dissimilarity during years of El Niño and La Niña in floodplain shallow lakes. Aquatic Sci. https://doi.org/10.1007/s00027-021-00796-6

    Article  Google Scholar 

  • Bonecker C, Aoyagui A, Santos R (2009) The impact of impoundment on the rotifer communities in two tropical floodplain environments: interannual pulse variations. Braz J Biol 69:529–537

    CAS  PubMed  Google Scholar 

  • Bonecker CC, Simões NR, Minte-Vera CV, Lansac-Tôha FA, Velho LFM, Agostinho AA (2013) Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica 43:114–121. https://doi.org/10.1016/j.limno.2012.07.007

    Article  Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska TA (1976) Review of some problems in zooplankton production studies. Norweg J Zool 24:419–456

    Google Scholar 

  • Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233–241

    CAS  Google Scholar 

  • Braghin LSM, Figueiredo BRS, Meurer T, Michelan TS, Simões NR, Bonecker CC (2015) Zooplankton diversity in a dammed river basin is maintained by preserved tributaries in a tropical flood-plain. Aquat Ecol 49:175–187. https://doi.org/10.1007/s10452-015-9514-7

    Article  CAS  Google Scholar 

  • Brandão CJ, Botelho MJC, Sato MIZ, Lamparelli MC (2011) Guia nacional de coleta e preservação de amostras: água, sediment, comunidades aquáticas e efluentes líquidas (in Portuguese). CETESB, São Paulo

    Google Scholar 

  • Brito SL, Maia-Barbosa PM, Pinto-Coelho RM (2011) Zooplankton as an indicator of trophic conditions in two large reservoirs in Brazil. Lakes Reserv Res Manag 16:253–264

    CAS  Google Scholar 

  • Brito SAC, Camargo M, Melo NFAC, Estupiñan RA (2015) A checklist for the zooplankton of the Middle Xingu – an Amazon River system. Braz J Biol 75:55–64. https://doi.org/10.1590/1519-6984.03014BM

    Article  CAS  PubMed  Google Scholar 

  • Bundy MH, Vanderploeg HA, Lavrentyev PJ, Kovalcilk PA (2005) The importance of microzooplankton versus phytoplankton to copepod populations during late winter and early spring in Lake Michigan. Can J Fish Aquat Sci 62:2371–2385

    CAS  Google Scholar 

  • Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    CAS  PubMed  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366:2351–2363

    Google Scholar 

  • Companhia de Tecnologia de Saneamento Ambiental (CETESB) (2014) Determinação de Clorofila ae Feofitina a: método espectrofotométrico (In Portuguese). Diário Oficial do Estado de São Paulo—Caderno Executivo I, São Paulo

    Google Scholar 

  • Connelly KA, Rollwagen-Bollens G, Bollens SM (2020) Seasonal and longitudinal variability of zooplankton assemblages along a river-dominated estuarine gradient. Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106980

    Article  Google Scholar 

  • Cook SC, Housley L, Back JA, King RS (2018) Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology 99:47–56

    PubMed  Google Scholar 

  • Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134. https://doi.org/10.1016/j.ecoleng.2013.07.058

    Article  Google Scholar 

  • Dahmsa HU, Fornshell JÁ, Fornshell BJ (2006) Key for the identification of crustacean nauplii. Org Divers Evol 6:47–56

    Google Scholar 

  • Dana JD (1849) Conspectus crustaceorum, quae in orbis terrarum circumnavigatione, Carolo Wilkes, e classe Reipublicae foederatae duce, lexit et descripsit Jacobus D. Dana. Amer J Sci Arts 8:276–285

    Google Scholar 

  • Devarajan K, Morelli TL, Tenan S (2020) Multi-species occupancy models: review, roadmap, and recommendations. Ecography 43:1612–1624. https://doi.org/10.1111/ecog.04957

    Article  Google Scholar 

  • Emeka NC, Antia VI, Ukpong AJ, Amah EA, Ntekim EEU (2010) A study on the Sedimentology of tidal rivers: calabar and Great Kwa, S. E Nigeria Eur J Scient Res 47:370–386

    Google Scholar 

  • Eskinazi-Sant’Anna EM, Menezes R, Costa IS, Araújo M, Panosso R, Attayde JL (2013) Zooplankton assemblages in eutrophic reservoirs of the Brazilian semi-arid. Braz J Biol 73:37–52

    PubMed  Google Scholar 

  • Esteves FA (1998) Fundamentos de Limnologia (In Portuguese). 2ª ediço, Interciência, Rio de Janeiro

    Google Scholar 

  • Ezz SMA, Aziz NEA, Zaid MMA, El Raey M, Abo-Taleb HÁ (2014) Environmental assessment of El-Mex Bay, Southeastern Mediterranean by using Rotifera as a plankton bio-indicator. Egypt J Aquat Res 40:43–57

    Google Scholar 

  • Freitas PTA, Silveira OFM, Asp NE (2012) Tide distortion and attenuation in an Amazonian tidal river. Braz J Oceanogr 60:429–446. https://doi.org/10.1590/S1679-87592012000400003

    Article  Google Scholar 

  • Furness EN, Garwood RJ, Mannion PD, Sutton MD (2021) Productivity, niche availability, species richness, and extinction risk: Untangling relationships using individual-based simulations. Ecol Evol 11:8923–8940

    PubMed  PubMed Central  Google Scholar 

  • García-Chicote J, Armengol X, Rojo C (2019) Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 9:113–123

    Google Scholar 

  • Gregório AMS, Mendes AC (2009) Characterization of sedimentary deposits at the confluence of two tributaries of the Pará River estuary (Guajará Bay, Amazon). Continent Shelf Res 29:609–618

    Google Scholar 

  • Gutierrez MF, Simões NR, Frau D, Saigo M, Licursi M (2020) Responses of stream zooplankton diversity metrics to eutrophication and temporal environmental variability in agricultural catchments. Environ Monit Assess 192:1–17. https://doi.org/10.1007/s10661-020-08766-5

    Article  Google Scholar 

  • Hardy ER (1980) Composição do zooplâncton em cinco lagos da Amazônia Central. Acta Amaz 10:577–609

    Google Scholar 

  • Hobaek A, Manca M, Andersen T (2002) Factors influencing species richness in lacustrine zooplankton. Acta Oecol 23:155–163

    Google Scholar 

  • Hyman JM (1983) Accurate monotonicity preserving cubic interpolation. SIAM J Sci Stat Comput 4:645–654. https://doi.org/10.1137/0904045

    Article  Google Scholar 

  • Jurasinski G, Retzer V, Beierkuhnlein C (2009) Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia 159:15–26. https://doi.org/10.1007/s00442-008-1190-z

    Article  PubMed  Google Scholar 

  • Kosuth P, Calléde J, Laraque A, Filizola N, Guyot JL, Seyler P, Fritsch JM, Guimarães V (2009) Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrol Process 23:3141–3150

    Google Scholar 

  • Krebs CJ (2013) Ecological methodology. Harper & Row, New York, USA

    Google Scholar 

  • Langenheder S, Berga M, Östman O, Székely AJ (2012) Temporal variation of β-diversity and assembly mechanisms in a bacterial metacommunity. ISME J 6:1107–1114

    CAS  Google Scholar 

  • Lansac-Tôha FA, Bonecker CC, Velho LFM, Simões NR, Dias JD, Alves GM, Takahashi EM (2009) Biodiversity of zooplankton communities in the upper Paraná river floodplain: interannual variation from long-term studies. Braz J Biol 69:539–549. https://doi.org/10.1590/S1519-69842009000300009

    Article  PubMed  Google Scholar 

  • Legendre PA (2019) temporal beta-diversity index to identify sites that have changed in exceptional ways in space–time surveys. Ecol Evol 9:3500–3514. https://doi.org/10.1002/ece3.4984

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Andersson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Loureiro LMAE (1996) Manual de identificação de cladóceros límnicos do Brasil (In Portuguese). Editora Universa, Brasília, p 156

    Google Scholar 

  • Lucena LCA, Melo TX, Medeiros ESF (2015) Zooplankton community of Parnaíba River, Northeastern Brazil. Acta Limnol Bras 27:118–129. https://doi.org/10.1590/S2179-975X3214

    Article  Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, Dick JMP, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Tree 25:574–582. https://doi.org/10.1016/j.tree.2010.06.016

    Article  PubMed  Google Scholar 

  • Mangas AP, Silva AC, Ferreira SCG, Palheta GDA, Melo NFAC (2013) Ictioplâncton da baía do Guajará e do estuário do rio Pará, ilha do Marajó, Pará, Brasil (In Portuguese). Bol Téc Cient Cepnor 13:43–54

    Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Google Scholar 

  • Medley KA, Havel JE (2007) Hydrology and local environmental factors influencing zooplankton communities in floodplain ponds. Wetlands 27:864–872

    Google Scholar 

  • Melo NFAC, Paiva RS, Silva MMT (2006) Considerações ecológicas sobre o zooplâncton do lago Bolonha, Belém, Pará, Brasil (In Portuguese). Bol Mus Para Emilio Goeldi Cienc Nat 1:115–125

    Google Scholar 

  • Monteiro SM, El-Robrini M, Alves ICC (2015) Dinâmica sazonal de nutrientes em estuário amazônico (In Portuguese). Mercator 14:151–162

    Google Scholar 

  • Montú M, Gloeden I (1986) Atlas dos Cladocera e Copepoda (Crustacea) do estuário da Lagoa dos Patos (Rio Grande, Brasil) (In Portuguese). Revist Nerít 1:1–134

    Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy-stress gradient. Bioscience 29:344–352

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Vegan: community ecology package. R Package Version 2:4

    Google Scholar 

  • Oliveira PA, Blanco CJC, Mesquita ALA, Lopes DF, Furtado Filho MDC (2021) Estimation of suspended sediment concentration in Guamá River in the Amazon region. Environ Monit Assess. https://doi.org/10.1007/s10661-021-08901-w

    Article  PubMed  Google Scholar 

  • Padial AP, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Toha FA, Rodrigues L, Rodrigues LC, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:e111227

    PubMed  PubMed Central  Google Scholar 

  • Paidere J (2009) Influence of flooding frequency on zooplankton in the floodplains of the Daugava river (Latvia). Acta Zool Litu 19:306–313

    Google Scholar 

  • Perbiche-Neves G, Serafim Junior M, Portinho JL, Shimabukuro EM, Ghidini AR, de Brito L (2012) Effect of atypical rainfall on lotic zooplankton: Comparing downstream of a reservoir and tributaries with free stretches. Trop Ecol 53:149–162

    Google Scholar 

  • Perbiche-Neves G, Saito VS, Previatelli D, Rocha CEF, Nogueira MG (2016) Cyclopoid copepods as bioindicators of eutrophication in reservoirs: do patterns hold for large spatial extents? Ecol Ind 70:340–347

    CAS  Google Scholar 

  • Picapedra PHS, Fernandes C, Baumgartner G, Lansac-Tôha FA (2018) Effect of slackwater areas on the establishment of plankton communities (testate amoebae and rotifers) in a large river in the semi-arid region of northeastern Brazil. Limnetica 37:19–31

    Google Scholar 

  • Picapedra PHS, Fernandes C, Baumgartner G (2019) Structure and ecological aspects of zooplankton (Testate amoebae, Rotifera, Cladocera and Copepoda) in highland streams in southern Brazil. Acta Limnol Bras. https://doi.org/10.1590/s2179-975x2917

    Article  Google Scholar 

  • Picapedra PHS, Fernandes C, Taborda J, Baumgartner G, Sanches PV (2020) A long-term study on zooplankton in two contrasting cascade reservoirs (Iguaçu River, Brazil): effects of inter-annual, seasonal, and environmental factors. PeerJ 8:e8979. https://doi.org/10.7717/peerj.8979

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2013) Package ‘mass.’ Cran r 538:113–120

    Google Scholar 

  • Rocha Neto OD, Silva BM, Paiva RS (2016) Variação dos Parâmetros Físico-Químicos, Composição e Biomassa Fitoplanctônica em uma Estação Fixa na Foz do Rio Guamá, Belém, Pará-Brasil (In Portuguese). Bol Téc Cient Cepnor 16:19–28. https://doi.org/10.32519/tjfas.v16i1.2132

    Article  Google Scholar 

  • Rodrigues CCS, Santos E, Ramos BS, Damasceno FC, Correa JAM (2018) PAH Baselines for Amazonic Surficial Sediments: a case of study in Guajará bay and Guamá river (Northern Brazil). Bull Environ Contam Toxicol 100:786–791. https://doi.org/10.1007/s00128-018-2343-3

    Article  CAS  PubMed  Google Scholar 

  • Rosa FR, Orikassa TNF, Lopes IR, Silva WM (2017) Checklist de tecamebas (Testacea) do estado de Mato Grosso do Sul, Brasil (In Portuguese). Iheringia. https://doi.org/10.1590/1678-4766e2017101

    Article  Google Scholar 

  • Santos MLS, Medeiros C, Muniz K, Feitosa FAN, Schwamborn R, Macêdo SJ (2008) Influence of the Amazon and pará rivers on water composition and phytoplankton biomass on the adjacent. Shelf J Coast Res 243:585–593

    Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. PNAS 105:11254–11258. https://doi.org/10.1073/pnas.0805108105

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon CE, Wiener W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shimadzu H, Dornelas M, Magurran AE (2015) Measuring temporal turnover in ecological communities. Methods Ecol Evol 6:1384–1394. https://doi.org/10.1111/2041-210X.12438

    Article  Google Scholar 

  • Silva NJ, Lansac-Tôha FM, Lansac-Tôha FA, Sales PCL, Rocha JRS (2021) Beta diversity patterns in zooplankton assemblages from a semiarid river ecosystem. Int Rev Hydrobiol 106:29–40

    Google Scholar 

  • Simões NR, Dias JD, Leal CM, Braghin LSM, Lansac-Tôha FA, Bonecker CC (2013) Floods control the influence of envi-ronmental gradients on the diversity of zooplankton communities in a neotrop-ical floodplain. Aquat Sci 75:607–617. https://doi.org/10.1007/s00027-013-0304-9

    Article  Google Scholar 

  • Tenebaum DR (2006) Os Dinoflagelados e os Tintinídeos da Região Central da zona econômica exclusiva brasileira: guia de identificação (In Portuguese). Museu Nacional, Rio de Janeiro, p 287

    Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13

    Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22. https://doi.org/10.1111/j.1600-0587.2009.05880.x

    Article  Google Scholar 

  • Varela AWP, Souza AJN, Aviz MD, Pinfildi GV, Santos RM, Sousa PHC, Santos MLS (2020) Qualidade da água e índice de estado trófico no rio Guamá, município de Belém (Pará, Brasil) (In Portuguese). Rev Ambient e Agua 6:305–324

    Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    PubMed  Google Scholar 

  • Viana DS, Figuerola J, Schwenk K, Manca M, Hobæk A, Mjelde M, Preston CD, Gornall RJ, Croft JM, King RA, Green AJ, Santamaría L (2016) Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39:281–288

    Google Scholar 

  • Viroux L (2002) Seasonal and longitudinal aspects of microcrustacean (Cladocera: Copepoda) dynamics in lowland river. J Plankton Res 24:281–292. https://doi.org/10.1093/plankt/24.4.281

    Article  Google Scholar 

  • Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363. https://doi.org/10.1146/annurev.ecolsys.27.1.337

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251. https://doi.org/10.2307/1218190

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Coordination for the Improvement of Higher Education Personnel) for the first and third author's scholarship. This study was partially funded by CAPES—Finance Code 001. We also thank the Graduate Support Program (PROAP) for field trip assistance given to the Graduate Program in Biodiversity and Evolution of the Emilio Goeldi Museum of Pará. We thank the two anonymous reviewers for their careful review and valuable comments. We would like to thank Professor Maria de Lourdes Santos, Pedro Campos Henrique Sousa, Matheus de Aviz and the entire team at the water chemistry laboratory at the rural federal university of amazon for their analysis of chlorophyll-a. To Gabriel Monteiro de Jesus, scholarship holder at the Ichthyology Laboratory of the Emilio Goeldi Museum of Pará for his assistance in identifying and sampling the zooplankton community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewertton S. Gadelha.

Additional information

Handling Editor: Mingbo YIN.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadelha, E.S., Dunck, B., Colares, L.F. et al. Temporal patterns of alpha and beta diversities of microzooplankton in a eutrophic tidal river in the eastern Amazon. Limnology 24, 193–204 (2023). https://doi.org/10.1007/s10201-023-00717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-023-00717-6

Keywords

Navigation