Skip to main content
Log in

The Effects of Microplastics on Dolioletta gegenbauri (Tunicata, Thaliacea)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Oceanographic studies revealed the abundance of minute plastic particles in coastal regions. Such particles, called microplastics, are abundant in sizes smaller than 100 µm ESD (Equivalent Spherical Diameter) and can be collected and ingested by planktonic copepods. Those animals are the most abundant metazoans on our planet. Abundantly co-occurring with planktonic copepods in subtropical and temperate neritic waters are doliolids (Tunicata, Thaliacea), which can dominate subtropical shelves because of their high asexual reproductive performance. Our studies were designed to examine the effects of polystyrene beads at low abundance, compared with phytoplankton, on abundantly occurring gonozooids of Dolioletta gegenbauri. Our findings reveal that such abundance of microplastic particles, in the presence of environmental concentrations of phytoplankton, reduces rates of feeding, growth, and oxygen consumption of this tunicate. Feeding rates on phytoplankton in the presence of beads were reduced by up to 58%, growth rates by up to 85%, and oxygen consumption rates by up to 33%. We conclude that such microplastic particles could limit the often in situ encountered pronounced proliferation of this tunicate species (Deibel in: Bone (ed) The biology of pelagic tunicates, Oxford University Press, Oxford, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrady AL (2011) Microplastics in the marine environment. Mar Poll Bull 62:1596–1605

    Article  CAS  Google Scholar 

  • Arthur C, Baker J, Bamford H (eds) (2009) Proceedings of the international research workshop on the occurrence, effects, and fate of microplastic marine Debris. NOAA Technical Memorandum, NOS-OR & R-30. NOAA, Silver Spring, Sept. 9–11, 2008, 530

  • Ayukai T (1987) Discriminate feeding of the calanoid copepod Acartia clausi in mixtures of phytoplankton and inert particles. Mar Biol 94:579–587

    Article  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137

    Article  CAS  Google Scholar 

  • Cozar A, Echevarria F, Gonzalez-Gordillo I, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Nat Acad Sci 111:10239–10244

    Article  CAS  Google Scholar 

  • Deevey GB (1952) Quantity and composition of the zooplankton of Block Island Sound, 1949. Bull Bingham Oceanogr Coll 13:120–164

    Google Scholar 

  • Deibel D (1985) Blooms of the pelagic tunicate, Dolioletta gegenbauri: Are they associated with Gulf Stream frontal eddies? J Mar Res 43:211–236

    Article  Google Scholar 

  • Deibel D (1998) The abundance, distribution, and ecological impact of doliolids. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 171–186

    Google Scholar 

  • Deibel D, Paffenhöfer G-A (2009) Predictability of patches of neritic salps and doliolids (Tunicata, Thaliacea). J Plankton Res 31:1571–1579

    Article  Google Scholar 

  • Di Mauro R, Kupchik MJ, Benfield MC (2017) Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Environ Pollut 230:798–809

    Article  Google Scholar 

  • Fernandez F (1979) Particle selection in the nauplius of Calanus pacificus. J Plankton Res 1:313–327

    Article  Google Scholar 

  • Foley CJ, Feiner CS, Malinich TD, Höök TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ 631–632:550–559

    Article  Google Scholar 

  • Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Fryer G (1986) Structure, function and behavior and the elucidation of evolution in copepods and other crustaceans. Syllogeus 58:150–157

    Google Scholar 

  • Gibson DM, Paffenhöfer G-A (2000) Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 22:1485–1500

    Article  Google Scholar 

  • Gregory MR, Andrady AL (2003) Plastics in the marine environment. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 379–401

    Google Scholar 

  • Huntley ME, Barthel K-G, Star JL (1983) Particle rejection by Calanus pacificus: discrimination between similarly sized particles. Mar Biol 74:151–160

    Article  Google Scholar 

  • Jørgensen CB (1966) Biology of suspension feeding. Pergamon Press, Oxford, p 357

    Google Scholar 

  • Kautsky H (1939) Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219

    Article  CAS  Google Scholar 

  • Köster M, Krause C, Paffenhöfer G-A (2008) Time-series measurements of oxygen consumption of copepod nauplii. Mar Ecol Prog Ser 353:157–164

    Article  Google Scholar 

  • Köster M, Paffenhöfer G-A, Baker CV, Williams JE (2010) Oxygen consumption of doliolids (Tunicata, Thaliacea). J Plankton Res 32:171–180

    Article  Google Scholar 

  • Lenz R, Enders K, Nielsen T (2016) Microplastic exposure studies should be environmentally realistic. Proc Nat Acad Sci 113:4121–4122

    Article  Google Scholar 

  • Nakamura Y (1998) Blooms of tunicates Oikopleura spp. and Dolioletta gegenbauri in the Seto Inland Sea, Japan, during summer. Hydrobiol 385:183–192

    Article  Google Scholar 

  • Paffenhöfer G-A (1970) Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wiss Meeresunters 20:346–359

    Article  Google Scholar 

  • Paffenhöfer G-A, Gibson DM (1999) Determination of generation time and asexual fecundity of doliolids (Tunicata, Thaliacea). J Plankton Res 21:1183–1189

    Article  Google Scholar 

  • Paffenhöfer G-A, Lee TN (1987) Development and persistence of patches of Thaliacea. S Afr J Mar Sci 5:305–318

    Article  Google Scholar 

  • Paffenhöfer G-A, Lewis KD (1990) Perceptive performance and feeding behavior of calanoid copepods. J Plankton Res 12:933–946

    Article  Google Scholar 

  • Paffenhöfer G-A, Van Sant KB (1985) The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar Ecol Prog Ser 27:55–65

    Article  Google Scholar 

  • Paffenhöfer G-A, Strickler JR, Alcaraz M (1982) Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Mar Biol 57:193–199

    Article  Google Scholar 

  • Paffenhöfer G-A, Sherman BK, Lee TN (1987) Summer upwelling on the southeastern continental shelf of the U.S.A. during 1981. Distribution and abundance of particulate matter. Prog Oceanogr 19:373–401

    Article  Google Scholar 

  • Paffenhöfer G-A, Atkinson LP, Lee TN, Verity PG, Bulluck LR III (1995) Distribution and abundance of thaliaceans and copepods off the southeastern U.S.A. during winter. Cont Shelf Res 15:255–280

    Article  Google Scholar 

  • Takahashi K, Ichikawa T, Fukugama C, Yamane M, Kakehi S, Okazaki Y, Kubota H, Furuya K (2015) In situ observations of a doliolid bloom in a warm water filament using a video plankton recorder: bloom development, fate, and effect on biogeochemical cycles and planktonic food webs. Limnol Oceanogr 60:1763–1780

    Article  Google Scholar 

  • Tebeau CM, Madin LP (1994) Grazing rates for three life history stages of the doliolid Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 16:1075–1081

    Article  Google Scholar 

  • Vroom RJE, Koelmans AA, Besseling E, Halsband C (2017) Aging of microplastics promotes their ingestion by marine zooplankton. Environ Pollut 231:987–996

    Article  CAS  Google Scholar 

  • Zar JH (1974) Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, p 620

    Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the captain Raymond Sweatte and crew of the R/V Savannah for supporting professionally our efforts to obtain doliolids and copepods during various times during the past years on the southeastern shelf of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav-Adolf Paffenhöfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paffenhöfer, GA., Köster, M. The Effects of Microplastics on Dolioletta gegenbauri (Tunicata, Thaliacea). Arch Environ Contam Toxicol 78, 94–105 (2020). https://doi.org/10.1007/s00244-019-00676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00676-z

Navigation