Skip to main content
Log in

Inhibition of jack bean urease by amphiphilic peptides

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the current study, amphiphilic peptides were designed and screened against Jack bean urease by using computer aided drug discovery approach. The result showed that out of thirty-eight amphiphilic peptides 1, 3, 12, 18, 30, and 33 exhibit stronger binding affinity with the active site of the enzyme through chelation of charged amino acids with the nickel ions i.e., Ni+2 841 and Ni+2 842 as well as hydrophobic contacts of the nonpolar tail with the nonpolar residues in the active site. The selected amphiphilic peptides were synthesized by solid-phase peptide synthesis strategy, characterized by fast atomic bombardment mass spectroscopy (FAB-MS) and nuclear magnetic resonance spectroscopy (1H and 13C-NMR) and in vitro urease inhibitory activity of amphiphilic peptides was studied. Amphiphilic peptides 12 and 33 showed excellent urease inhibitory activity, (p < 0.001) with IC50 values 20.5 ± 0.01, and 28.1 ± 0.03 µM respectively, which was considerably better than thiourea used as positive control.

Highlights

  • Molecular docking.

  • Solid-phase synthesis of amphiphilic peptides.

  • FAB MS-MS and 1H and 13C NMR study of amphiphilic peptides.

  • Urease inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45. https://doi.org/10.1016/j.tim.2014.04.007.

    Article  PubMed  CAS  Google Scholar 

  2. Mobley HL, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Mol Biol Rev. 1989;53:85–108. https://mmbr.asm.org/content/53/1/85 https://mmbr.asm.org/content/53/1/85.

    CAS  Google Scholar 

  3. Karplus PA, Pearson MA, Hausinger RP. 70 years of crystalline urease: what have we learned? Acc Chem. 1997;30:330–7. https://doi.org/10.1021/ar960022j.

    Article  CAS  Google Scholar 

  4. Collins CM, D’Orazio SE. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993;9:907–13. https://doi.org/10.1111/j.1365-2958.1993.tb01220.x.

    Article  PubMed  CAS  Google Scholar 

  5. Burne RA, Chen YY. Bacterial ureases in infectious diseases. Microbes Infect. 2000;2:533–42. https://doi.org/10.1016/S1286-4579(00)00312-9.

    Article  PubMed  CAS  Google Scholar 

  6. Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure. 1999;7:205–16. https://doi.org/10.1016/S0969-2126(99)80026-4.

    Article  PubMed  CAS  Google Scholar 

  7. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes. Bioorg Chem. 2017;72:21–31. https://doi.org/10.1016/j.bioorg.2017.03.007.

    Article  PubMed  CAS  Google Scholar 

  8. Hanif M, Shoaib K, Saleem M, Hasan Rama N, Zaib S, Iqbal J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol. 2012;2012. https://doi.org/10.5402/2012/928901.

  9. Horta LP, Mota YC, Barbosa GM, Braga TC, Marriel IE, Fátima ÂD, et al. Urease inhibitors of agricultural interest inspired by structures of plant phenolic aldehydes. J Braz Chem Soc. 2016;27:1512–9. https://doi.org/10.21577/0103-5053.20160208.

    Article  CAS  Google Scholar 

  10. Hakimi AM, Lashgari N, Mahernia S, Ziarani GM, Amanlou M. Facile one-pot four-component synthesis of 3, 4-dihydro-2-pyridone derivatives: novel urease inhibitor scaffold. Res Pharm Sci. 2017;12:353 https://doi.org/10.4103/1735-5362.213980.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Svane S, Sigurdarson JJ, Finkenwirth F, Eitinger T, Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep. 2020;10:1–4. https://doi.org/10.1038/s41598-020-65107-9.

    Article  CAS  Google Scholar 

  12. Rego YF, Queiroz MP, Brito TO, Carvalho PG, de Queiroz VT, de Fátima Â, et al. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J Adv Res. 2018;13:69–100. https://doi.org/10.1016/j.jare.2018.05.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res. 2018;13:101–12. https://doi.org/10.1016/j.jare.2018.01.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ansari FL, Wadood A, Ullah A, Iftikhar F, Ul-Haq Z. In silico studies of urease inhibitors to explore ligand-enzyme interactions. J Enzym Inhib Med Chem. 2009;24:151–6. https://doi.org/10.1080/14756360801945598.

    Article  CAS  Google Scholar 

  15. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PloS one. 2008;3:1410 https://doi.org/10.1371/journal.pone.0001410.

    Article  CAS  Google Scholar 

  16. Meng H, Chen L, Ye Z, Wang S, Zhao X. The effect of a self‐assembling peptide nanofiber scaffold (peptide) when used as a wound dressing for the treatment of deep second degree burns in rats. J Biomed Mater Res Part B. 2009;89:379–91. https://doi.org/10.1002/jbm.b.31226.

    Article  CAS  Google Scholar 

  17. Koutsopoulos S. Self‐assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res Part A. 2016;104:1002–16. https://doi.org/10.1002/jbm.a.35638.

    Article  CAS  Google Scholar 

  18. Tang C, Shao X, Sun B, Huang W, Zhao X. The effect of self-assembling peptide RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Int J Mol Sci. 2009;10:2136–45. https://doi.org/10.3390/ijms10052136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mi K, Wang G, Liu Z, Feng Z, Huang B, Zhao X. Influence of a self‐assembling peptide, RADA16, compared with collagen I and matrigel on the malignant phenotype of human breast‐cancer cells in 3D cultures and in vivo. Macromol Biosci. 2009;9:437–43. https://doi.org/10.1002/mabi.200800262.

    Article  PubMed  CAS  Google Scholar 

  20. Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf B. 2007;55:200–11. https://doi.org/10.1016/j.colsurfb.2006.12.002.

    Article  CAS  Google Scholar 

  21. Wang M, Adikane HV, Duhamel J, Chen P. Protection of oligodeoxynucleotides against nuclease degradation through association with self-assembling peptides. Biomaterials. 2008;29:1099–108. https://doi.org/10.1016/j.biomaterials.2007.10.049.

    Article  PubMed  CAS  Google Scholar 

  22. Liu J, Zhang L, Yang Z, Zhao X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Biomaterials 2011;6:2143 https://doi.org/10.2147/IJN.S24038.

    Article  CAS  Google Scholar 

  23. Zhang H, Xin X, Sun J, Zhao L, Shen J, Song Z, et al. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d-or l-threonine and application as a template for the synthesis of Au and Ag nanoparticles. J Colloid Interface Sci. 2016;484:97–106. https://doi.org/10.1016/j.jcis.2016.08.052.

    Article  PubMed  CAS  Google Scholar 

  24. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149–54. https://doi.org/10.1021/ja00897a025.

    Article  CAS  Google Scholar 

  25. Balasubramanian A, Ponnuraj K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol. 2010;400:274–83. https://doi.org/10.1016/j.jmb.2010.05.009.

    Article  PubMed  CAS  Google Scholar 

  26. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg Med Chem Lett. 2015;25:3285–9. https://doi.org/10.1016/j.bmcl.2015.05.069.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Thanks to Higher Education Commission (HEC), Pakistan, for providing SRGP project (NO: 21-1505/SRGP/R&D/HEC/2017) and 8169 /Sindh/NRPU/R&D/HEC/2017 from the Higher Education Commission, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zafar Ali Shah or Farzana Shaheen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, Z.A., Hussain, S., Khan, S. et al. Inhibition of jack bean urease by amphiphilic peptides. Med Chem Res 30, 1569–1576 (2021). https://doi.org/10.1007/s00044-021-02757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02757-y

Keywords

Navigation