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ABSTRACT 

Urban ecological indicators allow the objective and quantitative characterisation of ecological conditions in a 

spatially continuous way by evaluating the influence of urban surface types with respect to ecological functions and 

ecosystem services. Although the concept had already been developed in the 1980s, the variety of existing indicators 

had not been widely applied yet in urban planning practice, because of the high manual mapping effort that is 

required for spatially differentiated urban surface mapping. This paper presents a new automated remote sensing and 

GIS-based system for the flexible and user-defined derivation of urban ecological indicators. The system is based on 

automated surface material mapping using airborne hyperspectral image data and height information. Because the 

material classes obtained from remote sensing analysis differ in part from the surface types needed for the 

calculation of urban ecological indicators, they have been transformed into so-called linking categories representing 

the basis for the automated GIS-based derivation of urban ecological indicators. For this purpose, a computer-based 

system for flexible indicator derivation has been developed, allowing the user-defined integration of indicators based 

on the variable determination of mapping units, linking categories and respective weighting factors. Based on a 

comprehensive review of existing ecological indicators, 14 indicators have been selected and implemented in the 

system. To demonstrate the potential of the new system, a variety of indicators has been derived for two test sites 

situated in the German cities of Dresden and Potsdam, using city blocks defined by the municipal authorities as 

spatial mapping units. The initial mapping of surface materials was automatically performed on the basis of airborne 

hyperspectral image data acquired by the HyMAP system. The results of subsequent GIS-based indicator calculation 

were validated using results from field-based reference mapping that had been carried out for selected city blocks 

situated in both cities. An accuracy assessment for these reference city blocks has revealed mean errors of 

approximately 4 %, confirming the suitability of the developed automated GIS-based system for flexible and 

efficient indicator calculation. 
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1. INTRODUCTION 

Urban ecological indicators represent quantitative and spatially continuous descriptions of ecological conditions in 

the urban environment. They belong to the group of urban sustainability indicators that have been developed for 

evaluating and monitoring economic, social, infrastructural, ecological/environmental and population related aspects 
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of ongoing urbanisation processes with the goal of supporting urban planning towards more sustainable urban 

development (Button, 2002; Li et al., 2009; Munier, 2011; Schwarz, 2010). 

 

The urban ecological indicators reflect the widely acknowledged influence of urban surfaces on many ecological 

functions and ecosystem services, such as groundwater recharge, retention of contaminants, air purification and 

urban climate regulation (Arlt and Lehmann, 2005; Bolund and Hunhammar, 1999; Eliasson and Svensson, 2003; 

Gomez-Baggethun and Barton, 2013; Henry and Dicks, 1987; Pickett et al., 2001). They build on the spatially 

differentiated mapping of urban surface types and represent measures for the fulfilment of ecological functions 

within predefined spatial mapping units (e.g., city blocks, land parcels or districts). Thus, they allow the quantitative 

and spatially continuous ecological assessment of urban areas given the availability of urban surface type maps of 

sufficient thematic and spatial detail. 

 

The concept of surface type-based urban ecological indicators was already introduced for urban planning purposes 

in Germany in the 1980s and 1990s (Berlekamp and Pranzas, 1986; Krause, 1989; Sandtner, 1998). As a result, a 

variety of urban ecological indicators was developed including, among others, the (weighted) imperviousness 

(Berlekamp and Pranzas, 1986; Weng, 2012), vegetation density value (Krause, 1989, Kumar et al., 2012) and 

integrated ecological value (Heber and Lehmann, 1996). Because the required surface type mapping has been 

mostly carried out by labour-intensive field surveys and the visual interpretation of aerial photographs (e.g., 

Cadenasso et al., 2007), the derivation of these indicators has been limited to rather small areas and thus prevented a 

wider use of ecological indicators in practical urban planning. 

 

To reduce the required manual mapping effort, alternative approaches for the derivation of urban ecological 

indicators have been developed that do not require the spatially explicit mapping of urban surface types. One of 

them is the visual estimation of indicator values based on aerial photographs (Schulte et al., 1993), which comprises 

a high degree of subjectivity and has no potential for automation. The urban structural units (USU) approach (Böhm, 

1998; Gill et al., 2008; Haggag and Ayad, 2002; Schiller, 2003) is more sophisticated and based on the assumption 

that each USU is characterised by a typical composition of urban surface types resulting in USU-specific indicator 

values. These values are determined for a representative number of mapping units belonging to the same USU by the 

detailed manual mapping of surface types. In the next step, the derived indicator values are extrapolated to all spatial 

mapping units belonging to the same USU. This way, large urban areas only have to be mapped in part with high 

manual effort. However, this approach represents a simplification and neglects the spatial variability of indicator 

values for mapping units belonging to the same USU (Pauleit and Duhme, 2000). Moreover, it does not yield the 

potential for automation.  

 

Since the end of the 1980s, the wider availability of digital multispectral satellite imagery, such as LANDSAT-

(E)TM and SPOT, has stimulated the investigation of the potential of these data for the automated spatially 

continuous mapping of urban surface types required for ecological indicator calculation (Cabral, 2007; Gomarasca et 
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al., 1993; Jat et al., 2008; Lo, 1997; Lu and Weng, 2004). These analyses have been constrained by the limited 

spectral resolution characterising the broad multi-spectral bands of these satellite systems. They only allow reliable 

differentiation between non-vegetated and vegetated urban surfaces and thus solely enable the automated derivation 

of vegetation-focussed urban ecological indicators, such as the vegetation density value (e.g., Kumar et al., 2012). 

However, the potential of these data has also resulted in the development of new ecological indicators assessing the 

proportion and the spatial distribution of urban vegetation, e.g., fraction of surrounding vegetation (Blaschke et al., 

2011), green index (Schöpfer et al., 2005) and urban neighbourhood green index (Gupta et al., 2012).  

 

Because of the limited spectral resolution of the multi-spectral data, the level of thematic detail that can be achieved 

in mapping urban surface types is not sufficient for the derivation of most urban ecological indicators, especially 

when the indicators require differentiated mapping of non-vegetated surfaces such as asphalt, concrete, water bound 

surfaces or bare ground (Banzhaf and Höfer, 2008; Herold et al., 2003). To address these limitations, indirect 

vegetation-based approaches have been developed for the derivation of such indicators (e.g., imperviousness). 

According to Weng (2012), these approaches either consider impervious surfaces as a complement to the vegetation 

fraction (e.g., Carlson, 2004; Kim et al., 2006) or they statistically relate vegetation indices derived from remote 

sensing data to independently mapped imperviousness values (e.g., Yuan, 2008). These methods also represent 

simplifications that neglect the different degrees of surface sealing occurring in non-vegetated areas. Thus, they are 

also lacking a consequential physical background, which limits their applicability and transferability to other study 

areas. 

 

Since the 1990s, hyperspectral remote sensing has opened up new opportunities for physically based material 

mapping due to the continuous acquisition of spectral information by a high number of narrow and adjacent spectral 

bands (e.g., Goetz, 2009). This high spectral resolution allows the differentiation of distinct material-specific 

spectral features that cannot be resolved by multispectral imagery (e.g., Heiden et al., 2007; Hepner and Chen, 2001; 

Herold et al., 2004). Using hyperspectral data in an urban context has enabled the identification of a wider range of 

urban surface materials, especially in the case of non-vegetated urban surfaces (e.g., Heldens et al., 2011; Roessner 

et al., 2011). However, exploring the full spectral information content of these data requires specialised automated 

methods for hyperspectral image analysis (e.g., Fauvel et al., 2008; Franke et al., 2009; Plaza et al., 2009; Roessner 

et al., 2001; Segl et al., 2003; Tuia and Camps-Valls, 2011). These methods result in a new quality of material 

mapping and provide valuable input information for the rapidly advancing developments in the GIS-based 

quantitative characterisation of urban areas. For example, Heiden et al. (2012) has demonstrated the principle 

suitability of hyperspectral material mapping in combination with height information for the derivation of selected 

urban ecological indicators (e.g., imperviousness, building density) for the city of Munich. 

 

The new quality of remote sensing-based urban surface material mapping, which can be achieved using 

hyperspectral imagery, has motivated the development of an automated system for the efficient and flexible 

derivation of urban ecological indicators that builds on automated hyperspectral material mapping and GIS-based 
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analysis. This new system enables the flexible and automated calculation of ecological indicators including the user-

defined implementation of new indicators and variable spatial mapping units. Methodological developments 

comprise the implementation of a wide range of ecological indicators that have been developed for urban ecological 

planning in Germany. The potential of the developed system is exemplarily demonstrated for two test sites within 

the German cities of Dresden and Potsdam by deriving a variety of urban ecological indicators for these test sites. 

The obtained indicator values are validated by field mapping-based accuracy assessment and by comparing them 

with results derived by state-of-the-art methods used in urban planning practice in Germany. 

 

2. STUDY AREAS, DATA AND PRE-PROCESSING 

 

Figure 1: Overview of study areas. Location of test sites within the city landscape and location of subsets used for 

visualisation purposes within this paper. 

 

2.1 Study areas 

The German cities of Dresden and Potsdam (Figure 1) were selected as study areas because they both represent 

typical large German cities, serving as the capitals of the federal states of Saxony and Brandenburg. Due to their 

specific historic development, they differ in part in their building structures while also showing many similarities 

relevant to remote sensing analysis, such as commonly used roof and surface materials. Thus, the consideration of 

two different cities increases the variability of surface representations within the analysed imagery caused by 

varying terrestrial conditions and differences in the airborne imaging processes. This way, the initial evaluation of 

the robustness of the developed approach can be performed as a first step towards achieving broader methodological 

transferability. 

 

Within the city of Dresden, with its more than 500,000 inhabitants, a 4.5 km by 2 km test site was chosen covering a 

comprehensive variety of urban structures including densely built-up areas in the north and large vegetated areas of 

the landscape park ‘Grosser Garten’ in the south. For the city of Potsdam, with a population of approx. 150,000 

inhabitants, a 5.8 by 2.8 km test site was chosen that also contains various urban structural elements ranging from 

the densely built-up city centre to low-density housing such as multi-storey blocks and single-family houses. 
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2.2 Hyperspectral database 

The developed system builds on hyperspectral remote sensing data as the main source of spatial information for the 

automated derivation of urban ecological indicators. These data resolve small-scale material-specific spectral 

features – such as the spectral decrease of the polyethylene spectrum at 1700 nm and 2200 nm or the absorption 

bands (local minima) of the bitumen and concrete spectra at 2200 nm and 2300 nm, respectively, in Figure 2 – 

which are determined by the chemical composition of the materials (Heiden et al., 2007; van der Meer and de Jong, 

2001). These spectral features opens up the possibility for the differentiation and identification of urban surface 

materials such as asphalt, concrete, gravel, fired clay, aluminium, polyethylene, and PVC (e.g., Heiden et al., 2007; 

Hepner and Chen, 2001; Herold et al., 2004) based on their spectral reflectance characteristics. 

 

 

Figure 2: Reflectance spectra of selected urban surface materials recorded by the HyMap sensor. The cross symbols 

indicate the reflectance values as they would be recorded by Landsat TM5 spectral bands depicted by the grey bars. 

The gaps in the spectra near 1400 nm and 1900 nm indicate wavelength ranges where atmospheric absorption 

inhibits spectral measurements. 

 

2.2.1 Spectral inventory of urban surface materials 

Detailed spectral knowledge about urban surface materials is stored in spectral libraries in the form of spectral 

reflectance signatures (also called spectra). In hyperspectral remote sensing these spectra serve as important input 

information for pre-processing and automated classification procedures. For the purpose of area-wide classification, 

these spectral libraries have to contain spectra of each surface material occurring in the analysed image data to 

obtain a spatially complete classification. The spectral libraries used in this study have been established during the 

last 10 years based on field and imaging spectroscopy for various test sites in the German cities of Berlin, Dresden, 

Munich and Potsdam. The majority of spectra (approximately 60,000) have been identified interactively in the 

hyperspectral image database. The surface materials contained in these spectral libraries are summarised in Table 1. 
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Table 1: Overview of urban surface materials contained in the comprehensive spectral library 

 Urban surface materials

Buildings (roofs) Red clay tiles (new), red clay tiles (old), auburn clay tiles, grey clay tiles, red concrete tiles, 

aluminium, zinc, copper, steel with protective coating, metal with four different coating 

colours, PVC, polyethylene, Plexiglas, glass, greenhouses, bitumen roof sheeting 

(bright/dark/red), tar-paper (obsolete), schist, green roofs, two types of gravel and eight 

spectrally unique but unknown materials 

Artificial open spaces Three types of concrete, asphalt, tartan track, synthetic turf, polyethylene pavement panels 

cobblestone pavement, concrete, red/dark/bright/grey loose chippings, red concrete 

pavement stones, red clay-baked pavement stones, red cinder (tennis court or running 

track), railway tracks 

Bare ground Siliceous sand, coarse construction sand, soil 

Water River, pond, lake, pool 

Vegetation Deciduous trees, coniferous trees, lawn, meadow, dry grass, tilled field, untilled field, fallow 

Other Shadowed vegetated and non-vegetated areas 

 

2.2.2 Hyperspectral image data 

The hyperspectral image data used in this study were acquired by the digital airborne imaging spectrometer HyMap–

a whiskbroom scanner that records image data in 126 spectral bands throughout the visible (VIS), near infrared 

(NIR) and shortwave infrared (SWIR I + II) wavelength ranges (Cocks et al., 1998). Image data were recorded for a 

total of 11 flight lines providing multi-temporal coverage of test sites in the German cities of Berlin, Dresden, 

Munich and Potsdam. The spatial resolutions range from 3 to 6 m. All images were used for the establishment of a 

comprehensive urban spectral library as described above. Automated urban material mapping (Section 3.2) was 

performed for the city of Potsdam based on the flight line acquired at the 19 May 1999 and for the city of Dresden 

based on the flight line acquired at 7 July 2004. 

 

The automated thematic analysis of hyperspectral image data requires pre-processing, which includes radiometric, 

atmospheric and geometric correction (Richter and Schläpfer, 2002; Schläpfer and Richter, 2002). Radiometric 

correction primarily consists of the conversion of raw digital numbers measured at sensors to physical unit radiance 

and has been performed by the sensor operating company. The atmospheric correction of the HyMap data was 

carried out using a MODTRAN-based parametric approach including a digital elevation model (DEM) as 

supplementary information, followed by a field spectra-based Empirical Line Correction to eliminate remaining 

spectral spikes. Geometric correction was performed using an in-house developed parametric geocoding approach 

based on in-flight recorded exterior orientation parameters, a DEM and ground control points. The resulting RMS 

errors amount to a maximum of one pixel and thus allow an accurate overlay of the image data with other spatial 

input data within a GIS system. 
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2.3 Height information 

Height information has been used in different processing steps of the developed system for the derivation of urban 

ecological indicators. Digital terrain models (DTM) representing the topographic heights at the Earth’s surface are 

required for geometric and atmospheric correction during the pre-processing of the hyperspectral image data. For the 

city of Potsdam, a DTM with a grid size of 25 m was provided by the state survey office. For the city of Dresden, 

the DTM was generated based on a last pulse LiDAR digital surface model (DSM) of 1 m horizontal resolution 

using multiple filtering techniques (Bochow, 2010; Bochow et al., 2010). The initial LiDAR DSM was acquired by 

the TopScan GmbH during the leaf-off period in December 2002 and provided by the municipalities of Dresden.  

 

Height information has also been used in the form of a mask of high objects to distinguish between surface types 

that represent different categories in the context of urban ecological indicator derivation and are covered by 

spectrally similar surface materials (mainly differentiation between open spaces and buildings covered by the same 

material, such as bitumen and concrete). For the city of Dresden, such a mask of high objects has been derived from 

a normalised digital surface model (nDSM), which has been generated by subtracting the LiDAR-based DTM from 

the initial LiDAR DSM containing the height information of the uppermost surfaces, including roof and vegetation 

tops. Thus, the resulting nDSM represents object height information for buildings and vegetation. The final mask of 

high objects has been generated from this nDSM by applying a height threshold of 1.8 m representing the minimum 

height of a building. This threshold is also higher than the Absolute Linear Error 90 of the nDSM to exclude false 

positives. 

 

For the city of Potsdam, the mask of high objects has been derived from a vector layer containing buildings with 

attributed height information that was provided by the state survey office of Brandenburg. Thus, for Potsdam the 

mask of high objects solely includes buildings representing the main source of ambiguities in hyperspectral material 

mapping. In contrast, vegetation of different height (e.g., trees/bushes and meadow/lawn) is robustly distinguishable 

based on the different spectral characteristics of these vegetation types (Heiden, 2007). This situation has been 

considered in the development of the automated processing system for urban material mapping (Section 3.2) by 

implementing the mask of high objects as a spatial information source, which can be enabled optionally for the 

different surface types.  

 

2.4 City blocks as basic mapping units 

For urban planning purposes, cities are divided into spatial units representing different aggregation levels, such as 

land parcels, city blocks and districts, whereas city blocks are the spatial units most commonly used in urban planning 

and urban design (Carmona et al., 2003; Komossa et al., 2005; Towers, 2005). In this study, city blocks also serve as 

spatial mapping units for the derivation of urban ecological indicators. These city blocks (Figure 3) were provided in 

the form of vector data by the municipal authorities of the cities of Dresden and Potsdam. For the city of Dresden, 

they consist of an urban structural unit data set, and for the city of Potsdam they are part of the Authoritative 

Topographic Cartographic Information System (ATKIS). The urban structural unit data set of the city of Dresden also 
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contains the ecological indicator imperviousness (IMP) as one of the attributes for each city block. These IMP values 

represent visual estimates that have been determined in 20 % steps based on aerial photographs. In this study, these 

estimates have been used for the evaluation of results obtained by the developed automated approach in comparison 

to a state-of-the-art method that is used by the municipal authorities of Dresden (Section 4.3) 

 

 

Figure 3: Subset of test sites in Dresden (left) and Potsdam (right) depicted as true colour composites of the used 

hyperspectral image data overlaid by city blocks (yellow lines). Insets: Exemplary reference city blocks. 

 

2.5 Reference mapping  

For accuracy assessment, the material coverage of individual city blocks has been digitised manually on-screen using 

orthorectified aerial photographs of 0.25 m resolution acquired in 2004 and 2005 for Dresden and in 1998 for 

Potsdam. Additional field investigations were carried out to resolve remaining ambiguities. As a result, 22 built-up 

city blocks were mapped situated in both cities. Figure 3 depicts exemplary city blocks including a legend showing 
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the level of thematic detail contained in the reference mapping. These reference blocks comprise urban structural 

units that are common for Mid-European cities and contain a comprehensive selection of urban surface materials. 

 

3. REMOTE SENSING AND GIS APPROACH FOR THE AUTOMATED DERIVATION OF URBAN 

ECOLOGICAL INDICATORS 

Section 3.1 introduces the principles of ecological indicator calculation and gives an overview of existing indicators 

and the surface types that are required for their derivation. Section 3.2 presents the hyperspectral classification 

approach, including the results of the automated identification of urban surface materials. Section 3.3 describes the 

adaptation of these results to the requirements of ecological indicator derivation and presents the GIS-based system 

that has been developed for the flexible, user-defined and spatially continuous calculation of urban ecological 

indicators.  

3.1 Urban ecological indicators 

Thematically, urban ecological indicators represent varying degrees of urban surface differentiation. The main 

subdivision consists of the differentiation between vegetated non-sealed surfaces with positive ecological influence on 

the urban environment and non-vegetated impervious surfaces with negative ecological influence (Gao et al., 2012; 

Gómez et al., 2011; Li et al., 2012; Weng et al., 2011). To allow a more detailed ecological characterisation, these two 

groups are further subdivided into surface types with different influences on specific ecological functions/services. 

These surface types include impervious surfaces (e.g., concrete and asphalt), water-bound surfaces (e.g., loose 

chippings, cinder), bare ground (e.g., soil, sand) and different categories of vegetation (e.g., lawns, meadows, bushes, 

trees). 

 

Based on the differentiated assessment of surface types, urban ecological indicators of different complexity levels 

have been developed. The indicators can be divided into three types: weighted parameters (wP), non-weighted 

parameters (nwP), and integrative indicators (iI). While the parameters evaluate individual ecological compartments, 

integrative indicators allow ecological assessment across compartments by combining and weighing various 

parameters. Table 2 shows a selection of 19 indicators and their required input information, differentiated in 

thematic urban surface types and additional non-surface-related information. This selection comprises indicators of 

each indicator type and for different ecological compartments. All of them allow the spatially continuous ecological 

characterisation of urban environments and are either in practical use or have been widely discussed in the literature. 

Most of these indicators have been developed for urban planning purposes in Germany since the beginning of the 

1990s, taking into account an increasing need for considering ecological aspects in urban planning. Therefore, the 

table also contains the German abbreviations of the indicators and the references to the original sources of 

publication. 

 

The general mathematical principle of the calculation of urban ecological indicators is shown in Equation 1. The 

indicator value results from the multiplication of the areas of the urban surface types within the spatial mapping unit 

and the corresponding weighting factors and is finally normalised by the total area of the spatial mapping unit. The 
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weighting factors depend on the objective of the indicator and are mostly empirically determined according to the 

impact of the specific urban surface type on the specific ecological compartment. 

 

unit mapping spatial  theof Area

i)factor    weighting i   typesurfaceurban  of (area
valueindicator 

 


n

i    (1) 

 

Apart from this, some urban ecological indicators, particularly the integrative ones, require additional information, 

such as the height of vegetation and buildings, the number of floors in the buildings, the presence of roof and facade 

greening, the spatial air temperature distribution, sewerage connection, type of subsurface or the type and percentage 

of paving joints within semi-impervious surfaces (Table 2). 

 

All of the surface types listed in Table 2 have the potential to be automatically identified by means of remote 

sensing. It has already been shown that some of the additional information contained in Table 2 can be automatically 

extracted from remote sensing data. Examples are green roofs derivable from optical images and digital elevation 

models (Roessner et al., 2011) and height information of vegetation and buildings derivable from digital elevation 

models (e.g., Hecht et al., 2008; Kraus and Pfeifer, 2001; Mayer, 2000). As a result, 14 indicators (highlighted in 

grey in Table 2) have been evaluated as being derivable in principle by remote sensing analysis and are further 

analysed within this paper. 
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Table 2: Overview of urban ecological indicators and required information for their derivation (highlighted grey: indicators derivable by remote sensing) 

English 
abbreviation 
of indicator 

Full name of indicator  
[indicator type:  
nwP = non-weighted parameter, 
wP = weighted parameter,  
iI = integrative indicator] 

German 
abbreviation 
of indicator 

Surface types    (Artificial | Natural) Additional information 

R
ef

er
e

n
c

e
 

Ecological compartment 

B
u

ild
in

g
s 

A
sp

ha
lt/

co
n

cr
e

te
 

S
la

b 
p

av
in

g
 

P
a

ve
d

 s
to

n
e 

su
rf

ac
e 

W
at

er
-b

o
un

d
 s

u
rf

a
ce

 

G
ra

ss
 p

a
ve

r 

A
rt

ifi
ci

al
 w

at
e

r 

N
a

tu
ra

l w
at

e
r 

B
a

re
 g

ro
un

d
 

H
ig

h
 v

eg
e

ta
tio

n
 

M
id

-h
e

ig
ht

 v
e

ge
ta

tio
n

 

L
ow

 v
eg

et
a

tio
n

 

V
e

ge
ta

tio
n 

h
ei

gh
t [

m
] 

B
u

ild
in

g
 h

e
ig

h
t [

m
] 

N
u

m
b

e
r 

of
 f

lo
or

s 

G
re

e
n 

ro
o

fs
 

F
a

ca
de

 g
re

e
ni

ng
 

A
ir

 t
e

m
p

er
at

u
re

 

S
e

w
er

ag
e

 c
o

n
ne

ct
io

n 

P
e

rc
. 

an
d 

N
o

. 
of

 jo
in

ts
 

T
yp

e
 o

f 
su

b
su

rf
ac

e
 

IMP Imperviousness [nwP] VSG                a Soil 

wIMP Weighted imperviousness [wP] gVSG ● ●  ●                 b 

SFV Soil function value [wP/iI] BFZ ● ● ●           ●    ● ● c 

OSV Open space value [nwP] FFZ ●                     d 

OSIMP Open space imperviousness [nwP] FFVSG                 d 

wOSIMP Weighted open space imperviousness [wP] gFFVSG  ●  ●                 d 

RC Runoff coefficient [wP] ABW ● ● ● ● ● ●                e Water 

IV Infiltration value [nwP] IFZ                  d 

VDV Vegetation density value [nwP] VFZ                    f Vegetation 

VCV Vegetation coverage value [nwP] VDG            ●          d 

CCV Canopy cover value [nwP] ÜFZ          ●            d 

VVV Vegetation volume value [wP] GVZ          ● ● ● ●         g 

BD Building density [nwP] GRZ ●                     h Built structure 

FAR Floor area ratio [nwP] GFZ ●              ●       h 

BV Building volume [nwP] BMZ ●             ●        d 

IEV Integrated ecological value [iI] ÖKO-Wert ● ●    ● ● ● ● ●    ●      i Multiple compartments 

CEH Climatic-ecological-(air-)hygienic value [iI] KÖH-Wert ●   ● ●  ●  ●  ● ●     k 

CEP Climatic-ecological-pedological value [iI] KÖP-Wert ● ●   ● ●     ●  ●  ● ●  ●  ● ● l 

BAF Biotope area factor [iI] BFF ● ●   ●        ● ●  ●  ● m

Explanation of symbols: ● required;  required in more detail;  required in less detail 

References: a Berlekamp and Pranzas, 1986; Weng, 2012. b Berlekamp and Pranzas, 1992; Heiden et al., 2012. c Pohl, 1991; Schulze et al., 1984. d Krause, 1989. e Haid and Treter, 2004; Illgen, 

2000. f Krause, 1989; Kumar et al., 2012. g Hecht et al., 2008; Pohl, 1991; Schulze et al., 1984. h Frick, 2006. i Arlt and Lehmann, 2005; Heber and Lehmann, 1996. k Schulz, 1982. l Rose, 1991. m 

Bötticher and Fisch, 1988; Lakes and Kim, 2012.
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3.2 Hyperspectral material mapping 

Automated urban material mapping using hyperspectral imagery requires approaches that are capable of fully 

exploiting the spectral information content of these data. Furthermore, such approaches need to be able to handle 

a large number of possible surface materials, including their spectral variations and a high percentage of mixed 

pixels in the image data due to the dominance of heterogeneous and small-sized structures. These requirements 

have formed the basis for the development of a multi-step hyperspectral processing system for urban material 

mapping (Roessner et al., 2001, 2011; Segl et al., 2003). The processing scheme of this system is depicted in 

Figure 4. It comprises standard hyperspectral image analysis techniques that have been combined, modified and 

extended to meet the special needs of the urban environment. 

HyMap data

Result:
Fractional abundance 

layers of surface materials

List of possible
EM-combinations

Most likely
EM-combinations

Atmospheric and geometric correction

Automated feature-based 
EM identification

Image-based EMs

Corrected HyMap data

Neighborhood-oriented 
iterative linear 
spectral unmixing

Image Spectral Library 
of surface materials

Next iteration

Mixed pixels   |   Seedlings

Neighborhood 
analysis for detection 

of EM candidates
Remaining mixed pixels   |   Unmixed pixels

Linear spectral
unmixing

ML classification of spectrally pure pixels (seedlings)

1

2

3

 

Figure 4: Automated multi-step processing system for urban material mapping. ML = maximum likelihood, EM 

= endmember 

 

The developed system builds on already pre-processed hyperspectral remote sensing data (Section 2.2) and is 

described in detail in Roessner et al. (2011). The system has reached a high degree of automation and consists of 

three major steps. First, endmember (EM) identification is carried out using an automated spectral-feature-based 

approach (Figure 4, No. 1). Such EMs are represented by distinct spectral signatures or bundles of signatures 

(Bateson et al., 2000; Theseira et al., 2003) that characterise the surface materials of interest. For automated EM 

extraction, the existing comprehensive urban spectral libraries (Section 2.2) have been used to build a classifier 

that enables supervised EM detection. For this purpose, a pairwise Maximum Likelihood classifier has been 

developed to achieve a class-specific dimensionality reduction. Once the classifier has been established, it can be 
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applied to any atmospherically corrected hyperspectral dataset to identify the specific EM, reducing the effort for 

collecting ground truth information and facilitating the transferability of the approach. 

 

The second processing step aims at the optimal separation between pure and mixed pixels, including the 

identification of the respective surface materials for the spectrally pure pixels based on a Maximum-Likelihood 

classification (Figure 4, No. 2). In this context, pure pixels are defined as pixels covered by a single surface 

material. In the case of mixed pixels, two or more surface materials are present within one pixel. The already 

identified image EM pixels represent the starting points of this separation. They comprise only a small 

percentage of all image pixels and are further subdivided into representative Gaussian distributed subclasses to 

accommodate the high spectral variability of urban surface materials in the hyperspectral image data. These 

subclasses serve as training information for the parameterisation of a Maximum Likelihood classifier for pure 

pixels and also allow the calculation of class specific Mahalanobis distance thresholds to exclude mixed pixels. 

The combined identification results of the first and second processing steps represent the total number of 

spectrally pure pixels. 

 

In the third processing step (Figure 4, No. 3) previously identified pure pixels serve as seedling pixels for 

analysing the remaining mixed pixels by neighbourhood-oriented iterative linear spectral unmixing (Roessner et 

al., 2001). The high spectral dimensionality of hyperspectral image data allows the application of linear spectral 

mixture models, resulting in the estimation of fractional abundances for each EM class within one pixel. 

However, the application of mixture models consisting of a high number of spectrally similar EMs is not 

feasible; thus, methods for the individual determination of per-pixel mixture models have been developed 

(Dennison and Roberts, 2003; Roessner et al., 2001). The developed approach applies iterative spatial 

optimisation strategies to find a suitable per-pixel mixture model incorporating the previously identified pure 

pixels and the EM information of previously unmixed pixels. This way, the iterative unmixing procedure leads to 

the spatial growing of the unmixing results around seedling pixels until all image pixels are processed. 

 

The developed approach also includes the possibility of integrating object height information in the form of a 

mask of high objects (Section 2.3) in steps 1, 2, and 3 (Figure 4) to distinguish between surface types that are 

relevant for ecological indicator calculation and have similar spectral characteristics. This way, confusion 

between open spaces, buildings and different vegetation types can be reduced in the automated classification and 

unmixing process. 
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Figure 5: Exemplary results of neighbourhood-oriented iterative linear spectral unmixing for a subset area in the 

city of Dresden (left) and Potsdam (right). The number in brackets indicates the number of surface materials 

(Table 1) aggregated into the respective mapping categories. 



15 

The result of the automated multi-step processing system for urban material mapping consists of one fractional 

abundance layer per EM (surface material) that stores the proportional coverage of the respective EM for each 

pixel. In Figure 5, the urban material mapping results are depicted in an exemplary way for 2 km by 1.3 km 

subsets of the city centres of Dresden and Potsdam. For the classification-like representation of the results, the 

dominating EM has been derived for each pixel (Figure 5b1 and b2). For visualisation purposes, the classified 

surface materials were further aggregated into the material categories contained in the legend of Figure 5, 

whereas the number in brackets indicates the original number of classified surface material variations. These 

mapping results are complemented by a greyscale image depicting the fraction of the dominating EM ranging 

between 50 and 100 % (Figure 5c1 and c2). Areas dominated by small-sized objects are depicted in various 

shades of grey indicating a high fraction of mixed pixels. These areas can be clearly distinguished from areas 

characterised by large homogeneous objects depicted in white, such as rivers, meadows, wide streets and large 

buildings. In the case of low fractional abundances for the dominating EM, the material coverage of the second 

EM provides valuable information allowing the analysis of the occurrence of surface materials at a sub-pixel 

level. The obtained material classes that have been automatically mapped on a pixel basis form the input 

information for the subsequent derivation of urban ecological indicators. 

 

3.3 GIS-based derivation of urban ecological indicators 

To automatically derive urban ecological indicators, a flexible GIS-based system has been developed (Figure 6) 

that has been combined with a graphical user interface (GUI) to enable the interactive determination of 

ecological indicators and mapping units. The system allows the direct and spatially continuous calculation of a 

variety of ecological indicators based on the fractional abundances of urban surface material classes resulting 

from hyperspectral remote sensing (Section 3.2). 

 

Fractional abundance 
layers of surface materials

Fractional abundance 
layers of linking categories

Indicator calculation

Spatial mapping units

Normalized digital 
surface model (nDSM)

Indicator values 
per spatial mapping unit

Percentage of surface materials 
and linking categories 

per spatial mapping unit

Indicator-specific
weighting factors

Recoding

 

Figure 6: GIS-based system for automated indicator calculation based on hyperspectral material mapping and 

height information. The incorporation of height information in the form of nDSM data is optional (depicted by 

dashed box) and can be enabled for selected indicators.  
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The surface material categories derived from the automated classification of hyperspectral remote sensing data 

(Section 3.2) differ from the thematic classification of the urban surface types that are used in the calculation of 

urban ecological indicators (Section 3.1). Thus, the remote sensing-based categories and the surface types need 

to be transformed into common denominator categories that can then be used for automated remote sensing-

based indicator calculation. For this purpose, so-called linking categories have been introduced (Figure 7). 

Table 3 gives an overview of the surface types required for the calculation of the 14 selected indicators (Table 

2), the related surface materials derived from hyperspectral remote sensing (Table 1) and the respective linking 

categories used for automated GIS-based indicator calculation. The surface material classes have mainly been 

transformed into the linking categories by thematic matching, aggregation and merging summarised as the 

recoding step in Figure 6. Table 3 shows that the majority of surface types can be derived from the remotely 

sensed surface materials by thematic aggregation, such as the linking category ‘building’ comprising 35 different 

roof materials, which have been identified in the process of automated hyperspectral image analysis. 

 

Surface
Types

Surface
Materials

Linking
Categories

Urban Ecological
Indicators

Hyperspectral Remote 
Sensing

 

Figure 7: Link between urban ecological indicator derivation and hyperspectral remote sensing. 

 

Only with three indicators – runoff coefficient (RC), vegetation volume value (VVV) and integrated ecological 

value (IEV) – has such a transformation not been fully possible, because the automatically derived hyperspectral 

material classes could not be directly linked to all of the surface types needed for the calculation of these 

indicators. To enable their automated remote sensing-based derivation, slight modifications have been applied to 

the original indicators. In the case of the linking category ‘pavement’, three different material classes of 

pavement derived from hyperspectral remote sensing could not be linked to the two surface types ‘slab paving’ 

and ‘paved stone surface’ (Table 3), differing by their stone size. To overcome this problem, both categories – 

surface types and surface materials – have been aggregated into one comprehensive linking category ‘pavement’. 

However, this modification only has a subordinate influence on the resulting indicator values and solely affects 

the indicator RC.  

 

Furthermore, the surface type ‘mid-height vegetation’ (e.g., bushes, shrubs) could not be distinguished from low 

and high vegetation in the process of automated hyperspectral material mapping, because the available nDSM 

(Section 2.3) is not sufficient to adequately differentiate between these three types of vegetation. Reasons 

include the nature of the last pulse LiDAR data used and the acquisition date in December 2002 occurring 

outside of the growing season. Nevertheless, it has been possible to reliably differentiate between the surface 

types ‘low vegetation’ and ‘high vegetation’, only leaving the need for omitting the surface type ‘mid-height 

vegetation’ from the list of linking categories. Another surface type that could not be identified from 
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hyperspectral imagery is ‘grass paver’. Therefore, the calculation of the three affected indicators (RC, VVV and 

IEV) has been slightly modified. Overall, 11 out of the 14 implemented indicators can be calculated without any 

modifications based on the hyperspectral mapping results. 

 

Table 3: Linking categories between remotely sensed surface materials and relevant indicator surface types 

relevant for indicators. 

Surface types (used for  
urban ecological indicator calculation) 

Surface materials (derived from
hyperspectral remote sensing) 

Linking categories (used for 
RS/GIS-based indicator calculation) 

A
rt

ifi
ci

al
 

Buildings 
35 roof materials (e.g., concrete tiles, clay 
tiles, bitumen) 

Building 

Green roofs 1 (green roofs) Green roofs 

Asphalt/concrete covering 7 (e.g., asphalt, concrete, tartan) Asphalt/concrete covering 

Slab paving 3 (cobblestone, concrete and clay-baked 
pavement stones) 

Pavement 
Paved stone surface 

Water-bound surface 5 (loose chippings, cinder) Water-bound surface 

Grass paver --- --- 

Pool 1 (pool) Pool 

Pond 1 (pond) Pond 

--- Shadow on non-vegetated surfaces Shadow on non-vegetated surfaces 

N
at

ur
al

 

Bare ground 3 (soil, siliceous sand) Bare ground 

Low vegetation 4 (lawn, meadow) Low vegetation 

Mid-height vegetation --- --- 

High vegetation 2 (deciduous, coniferous) High vegetation 

Natural water 2 (river, lake) Natural water 

--- Shadow on vegetated surfaces Shadow on vegetated surfaces 

 

As described in Section 3.1 and shown in Equation 1, the calculation of urban ecological indicators includes the 

introduction of indicator-specific weighting factors that characterise the surface types according to the evaluation 

objectives of the respective indicator. To apply this concept, these weighting factors have been determined for all 

of the newly established linking categories (Table 4, Figure 8). They have been mostly taken from the 

publications describing the original indicators (Table 2). When the weighting factors were missing, they were 

added from other publications including, among others, empirical studies on the infiltration capacity and flow 

rates (Bunzel, 1992; Din, 1995; Illgen, 2000). 

 

In this context, the two shadow categories listed at the end of Table 4 represent a special case for the 

determination of weighting factors, because they comprise multiple linking categories; therefore, no distinct 

weighting factor can be assigned. The results from hyperspectral material mapping allow the discrimination of 

vegetated and non-vegetated shadowed areas (Table 1). In the urban areas that have been analysed in this study, 

shadows are mostly caused by buildings or high vegetation and cast over open spaces. Therefore, it can be 

assumed that shadowed vegetated surfaces most likely belong to the category of low vegetation and thus the 

respective weighting factor can be assigned to them. In the case of non-vegetated shadowed surfaces, a variety of 

linking categories - asphalt/concrete, pavement, water-bound surfaces and bare ground – have to be taken into 

account to derive a weighting factor that can be assigned to non-vegetated shadowed surfaces. For this purpose, 

the relative areal coverage has been calculated within the analysed test site for each of the four above mentioned 

non-vegetated linking categories. In the second step, the obtained percentage values have been multiplied by the 

weighting factors of the respective linking categories and averaged to obtain the area-weighted average for each 

indicator and test site. The resulting indicator-specific weighting factors for non-vegetated shadowed surfaces 

are shown in Table 4. This way, the developed approximation approach allows the calculation of ecological 
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indicators even in cases of shadowed surfaces, which represent a common problem in remote sensing analysis 

and might cover significant parts of urban areas depending on the dominating building structures. 

 

 
Figure 8: Linking categories derived from hyperspectral urban surface material classification based on the 2004 

HyMap data of Dresden (left) and 1999 HyMap data of Potsdam (right). The insets show the original variety of 

urban surface materials (see Figure 5 for legend). 

 

The definition of these weighting factors and the introduction of spatial mapping units (e.g., land parcels, urban 

biotopes, city blocks, districts or other administrative units) allow the automated calculation of urban ecological 

indicator values as well as the areal percentage of linking categories and surface materials for all spatial mapping 

units (Figure 6). The spatial mapping units and weighting factors can be defined by the user, which enables 

spatially and thematically flexible indicator calculation for the whole area of interest. The results, in the form of 

quantitative indicator values, can be used for further GIS-based analysis and cartographic visualisation 

supporting the objective ecological evaluation of urban areas. 
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Table 4: Indicator-specific weighting factors of linking categories ranging between 0 and 1, with the exception of the factor ‘height’ required for the indicators VVV and 

BV, and weighted by the object height in meters (m). 

Linking categories IMP wIMP OSV OSIMP wOSIMP RC IV VDV VCV CCV VVV ESS1c ESS2c ESS3c ESS4c ESS5c ESS6c ESS7c BD BV 

Buildings 1 1 0 - - 1 0 0 0 0 0 0 0 0 0 0 0 0.1 1 height 

Green roofs 1 1 0 - - 0.4a 0 0 0 0 0.1 mb 1 0.2 0 0 0 0.2 0.5 1 height 

Asphalt/concrete 1 0.9 1 1 0.9 0.9 0 0 0 0 0 0 0 0 0.1 0 0.1 0.1 0 0 

Pavement 1 0.7 1 1 0.7 0.7a 0 0 0 0 0 0.2 0.1 0.3 0.3 0.4 0.5 0.3 0 0 

Water-bound-surface 1 0.4 1 1 0.4 0.5b 0 0 0 0 0 0.3 0.1 0.4 0.6 0.8 0.5 0.4 0 0 

Pool 1 1b 1 1 1b 0b 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Pond 1 1b 1 1 1b 0b 0 0 0 0 0 1 1 0 0 0 0 0.6 0 0 

Natural Water 0 0 1 0 0 0b 1 0 0 0 0 1 1 0b 1 1 1 1 0 0 

Bare Ground 0 0 1 0 0 0b 1 0 0 0 0 0.3 0.1 0.5 1 1 1 0.5 0 0 

High Vegetation 0 0 1 0 0 0b 1 1 0 1 height 0.8 0.8 0.8 1 0.4 0.9 0.9 0 0 

Low Vegetation 0 0 1 0 0 0b 1 1 1 0 0.1 m 1 0.3 0.8 0.9 0.5 0.9 0.8 0 0 

Shadow no veg.d [0.1] [0;0.9] 1 [0;1] [0;0.9] [0;0.9] [0.1] 0 0 0 0 [0;0.3] [0;0.1] [0;0.5] [0.1;1] [0.1] [0.1;1] [0.1;0.5] 0 0 

Shadow on veg. 0 0 1 0 0 0 1 1 1 0 0.1 m 1 0.3 0.8 0.9 0.5 0.9 0.8 0 0 

 
a Average of multiple surface types considered in the original publication of the indicator. b New value not given in the original publication of the indicator. c The IEV is a complex indicator 

integrating seven ecosystem services (ESS): ESS1 (climatic regulation), ESS2 (dust settlement), ESS3 (retention of contaminants), ESS4 (surface porosity/permeability), ESS5 (groundwater 

recharge), ESS6 (infiltration of rainwater), and ESS7 (habitat formation). d Weighting factors within the given range are calculated automatically for each study area (see Section 3.3). 
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4. RESULTS OF URBAN ECOLOGICAL INDICATOR DERIVATION 

4.1 Mapping of urban ecological indicators 

Using the developed approach, a spatially continuous derivation of urban ecological indicators was performed by 

the direct calculation of individual urban ecological indicator values for each city block within the test sites of 

Dresden and Potsdam. In Figure 9, the results for three exemplary urban ecological indicators - vegetation 

density value (VDV), imperviousness (IMP) and integrated ecological value (IEV) - are depicted for one by one 

kilometre subsets of the two test sites. In both cases, the subsets cover parts of the respective city centres and 

adjacent areas. In Potsdam, the city centre is characterised by vegetation density values ranging between 0 and 

30 % and imperviousness values larger than 70 %, while the other built-up areas vary between 10 and 80 % in 

vegetation density and between 30 and 90 % in imperviousness. In Dresden, the depicted part of the city centre is 

characterised by vegetation density values between 10 and 30 % and imperviousness values between 50 and 

80 %. For the city park situated in the northern part of the subset, imperviousness values amount to 

approximately 10 % and vegetation density values to approximately 90 %. These results confirm the 

complementary character of the two analysed indicators. 

 

In addition, the IEV has been calculated for the test site of Dresden. The IEV is a complex indicator integrating 

seven ecosystem services (ESS) such as climate regulation and groundwater recharge (Table 4). In contrast to 

other integrative indicators, it enables the evaluation and mapping of the individual ecosystem services 

separately in addition to its integrative value. Figure 9 shows the results of the IEV for the subset of the Dresden 

test site supplemented by the individual values for climatic regulation and groundwater recharge. The park in the 

north showing the highest vegetation density values is of high climatic importance (high values for ESS1), 

especially in regard to the adjacent highly overbuilt and impervious block development. This area is 

characterised by rather low climatic regulation values (ESS1) and low groundwater recharge values (ESS2), 

which are only slightly higher compared to the park area in the north due to the comparably high 

evapotranspiration rates of grass vegetation within the park. 

 

The depicted exemplary results demonstrate the overall potential of the approach for ecological spatial 

differentiation, which can form the basis for further GIS-based analysis performed by experts responsible for 

urban planning. The selection and interpretation of implemented indicators can be adapted to the local needs of 

different cities and urban planning purposes. 
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Figure 9: Aerial photographs and derived urban ecological indicators overlaid by city blocks as spatial mapping 

units for one by one kilometre subsets of the test sites of Dresden and Potsdam. Indicators: vegetation density 

value (VDV), imperviousness (IMP) and integrated ecological value (IEV), with two selected ecosystem 

services (ESS): climatic regulation and groundwater recharge (Table 4). 
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4.2 Accuracy assessment 

For the accuracy assessment of the calculated urban ecological indicators, a total of 22 representative reference 

city blocks were mapped for the cities of Dresden and Potsdam based on aerial photographs and field surveys 

(Section 2.5). Accuracy assessments were conducted on the level of linking categories and on the level of 

indicators. 

 

4.2.1 Accuracy assessment - Level of linking categories 

A statistical accuracy assessment on the level of linking categories (Table 3) is presented in Figure 10, which 

depicts the mean areal coverage for each linking category calculated for the 22 reference city blocks of Dresden 

and Potsdam. A comparison between the areal proportions of the linking categories derived from hyperspectral 

image analysis and reference mapping shows that they are in good agreement with each other, with maximum 

differences of 4.7 % for asphalt/concrete covering and 4.4 % for low vegetation, whereas most of the linking 

categories are characterised by a slight underestimation. This is mainly due to areas classified as shadows 

amounting to an average of 12 % within the 22 reference blocks. Because shadows are predominantly cast over 

open spaces, these categories are subject to the highest differences. The occurrence of shadows can be minimised 

by choosing data acquisition times with high sun elevation. Moreover, discrimination between vegetated and 

non-vegetated shadowed areas can reduce the influence of shadows on the indicator values as described in 

Section 3.3. 

 

Figure 10: Mean areal coverage of linking categories derived by reference mapping (reference) and 

hyperspectral image analysis (classified) based on 22 representative city blocks for Dresden and Potsdam 

 

4.2.2 Accuracy assessment - Level of indicators 

For accuracy assessment on the indicator level, five urban ecological indicators (imperviousness (IMP), runoff 

coefficient (RC), vegetation density value (VDV), building density (BD), and integrated ecological value (IEV)) 

have been chosen to represent each ecological compartment and indicator type (Table 2). Accuracy statistics 

have been derived for each indicator based on the 22 reference city blocks. For this purpose, the differences 
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between indicator values calculated from hyperspectral image classification and those calculated from reference 

mapping have been analysed in form of the absolute error (AE; Figure 11a) and the relative error (E; Figure 

11b), whereas the mean error values (MAE and ME) are depicted by the grey columns. The low mean absolute 

errors (MAE) of the indicators (approximately 4 %) demonstrate the suitability of the developed remote sensing-

based approach. The mean relative errors (ME), indicating whether the remote sensing-based approach results in 

underestimation or overestimation, show a slight underestimation in comparison to the reference data for four 

out of the five indicators. This is caused by the already discussed underestimation of the linking categories used 

for indicator calculation (Figure 10). In contrast, the overestimation of the integrated ecological value (IEV) 

results from the inverse behaviour of the corresponding weighting factors of these linking categories with respect 

to the ecological quality (Figure 9). 

 

Figure 11: Accuracy of hyperspectral indicator derivation – comparison between absolute (a) and relative (b) 

errors. Mean errors are depicted by grey columns, standard deviations by solid lines, and minimum and 

maximum error values by dots. Indicator abbreviations are explained in Table 2. 

 

4.3 Comparison with results from visual indicator estimation  

For the imperviousness (IMP) indicator, the accuracy of remote sensing based indicator values (Section 4.2) has 

also been compared to the accuracy of indicator values derived by the visual estimation method, which are 

contained in the USU dataset provided by the municipality of Dresden (Section 2.4). Table 5 shows the 

comparison between the visually estimated values (IMPVIS) and the ones derived by hyperspectral remote 

sensing (IMPHY) along with the values calculated for each of the manually digitised reference blocks (IMPREF). 

For only 7 out of 19 city blocks (37 %) the reference indicator values fall into the class of the visual estimation 

method (IMPREF in IMPVIS). In all of the remaining 12 blocks, the visually estimated classes represent an 

overestimation of imperviousness in comparison to the values obtained from the reference dataset. In contrast, 

the remote sensing-based indicator values differ less than 10 % from the reference indicator values (IMP 

difference), except for one outlier (city block no. 16). Classifying the remote sensing-based results in the same 

20 %-step classes, which have been used for visual estimation, conformity of 95 % (18 of 19 city blocks) has 

been achieved (IMPHY in IMPREF +/-10). These results clearly show the superiority of the objective automated 

remote sensing-based approach in comparison to the visual estimation method, which is characterised by a high 

degree of subjectivity. 
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Table 5: Comparison of imperviousness (IMP) values in % derived by the hyperspectral approach (IMPHY) and 

by the visual estimation method (IMPVIS - contained in USU data set of Dresden) for the 19 reference mapping 

blocks of Dresden. IMPREF in IMPVIS: 20 % IMPVIS class correctly contains the reference imperviousness values 

(IMPREF); IMPHY in IMPREF +/-10: IMPHY falls within a corresponding +/- 10 % class of IMPREF, simulating the 

same 20 % scale; ● Value falls in the 20 %-step class 

No. Area 

[m²] 

IMPREF 

reference 

mapping 

IMPHY 

hyperspectral 

approach 

IMP 

difference 

IMPREF - IMPHY 

IMPVIS  

visual estimation class 

USU dataset Dresden 

IMPREF  

in 

IMPVIS 

IMPHY  

in 

IMPREF +/-10 

1 16571 31 27 -4 40-60  ● 

2 27911 33 30 -3 40-60  ● 

3 27756 34 28 -6 40-60  ● 

4 8975 42 45 3 40-60 ● ● 

5 13264 42 37 -5 40-60 ● ● 

6 21976 42 41 -1 40-60 ● ● 

7 26953 46 43 -3 40-60 ● ● 

8 10840 42 42 0 60-80  ● 

9 18135 44 39 -5 60-80  ● 

10 24186 48 47 -1 60-80  ● 

11 14341 48 39 -9 60-80  ● 

12 10197 55 55 0 60-80  ● 

13 54453 57 60 3 60-80  ● 

14 30684 58 59 1 60-80  ● 

15 28047 61 55 -6 60-80 ● ● 

16 12969 66 53 -13 60-80 ●  

17 6846 73 75 2 80-100  ● 

18 13588 74 76 2 80-100  ● 

19 7867 80 84 4 80-100 ● ● 

 

5. DISCUSSION 

The developed remote sensing and GIS-based system for the flexible and efficient calculation of ecological 

indicators is based on automated surface material mapping using airborne hyperspectral image data and height 

information. As a result, fractional abundance layers are obtained for a large variety of urban surface materials. 

In the second step, the surface material classes have been transformed into linking categories representing the 

surface types that are needed within the developed GIS-based system for flexible indicator calculation (Section 

3.3). Based on these linking categories, 14 urban ecological indicators have been implemented in the GIS-based 

system, enabling their automated and reproducible calculation in a spatially continuous way. They comprise 

(non-)weighted parameters and integrated ecological indicators (Table 2). For 11 of these indicators, the required 

surface types could be completely derived from the hyperspectral material mapping results. Slight modifications 

only needed to be applied to three of the original indicators (RC, VVV and IEV) to facilitate their GIS-based 

calculation. These results show that automated hyperspectral material mapping is capable of providing suitable 

input information for subsequent GIS-based indicator derivation. 
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However, the comprehensive remote sensing-based assessment of surface types needed for ecological indicator 

derivation requires the integration of additional object height information into the automated material mapping 

approach to distinguish between spectrally similar materials representing different surface types. This is 

especially important for discriminating between buildings and open surfaces of similar material coverage. Such 

height information is also needed to differentiate between low, mid-height and high vegetation (Table 4). For 

this purpose, a LiDAR-based DSM is needed that contains height information for the ground and vegetation top 

levels. However, the available LiDAR dataset is not suitable for a reliable differentiation between vegetation 

heights, because it had been acquired outside of the growing season. However, it has been possible to distinguish 

between high (trees) and low (meadow, lawn) vegetation solely based on spectral characteristics. The future 

wide availability of high quality object height information, such as detailed 3D city models, will further increase 

the reliability of automated surface type mapping. 

 

Another principle problem for all remote sensing-based methods is the presence of shadows in the image data. In 

the case of the analysed test sites, the shadowed areas amount to approx. 13 %. To reduce the influence of 

shadows on the calculation of indicator values, the differentiation between shadows on vegetated and non-

vegetated surfaces and the derivation of indicator- and area-specific weighting factors for the two shadow classes 

(Section 3.3) has been implemented. The influence of shadows can be further reduced by choosing data 

acquisition times with high sun elevation. 

 

For accuracy assessment, five representative urban ecological indicators were selected and indicator values were 

calculated for the 22 reference city blocks (Section 4.2). Overall, the mean absolute error (MAE) amounts to 

approximately 4 % for all five indicators, whereas the maximum absolute errors for the individual indicators 

range between 7 % and 14 %. These small errors demonstrate the general suitability of the developed remote 

sensing-based approach for automated indicator calculation for large areas. These results were also compared to 

the results obtained by the visual estimation approach (Section 4.3), representing one of the state-of-the-art 

methods used for ecological indicator derivation in urban planning practice. Visually estimated imperviousness 

values have been compared to the ones calculated from the reference mapping. This comparison has revealed 

that only for a minority of city blocks (7 out of 19) could the same class membership be achieved. In contrast, 

grouping the indicator values obtained by the developed automated approach into the same discrete categories 

has resulted in conformity of 95 % (18 out of 19 city blocks). These results demonstrate the superiority of the 

developed approach with regard to reliability and efficiency. Moreover, the approach also distinguishes itself by 

its objective reproducibility. 

 

The accuracies of the developed direct approach are also compared to the accuracies that, in principle, can be 

achieved by the urban structural units (USU) based extrapolation approach (Section 1). Because this approach 

assumes a single characteristic indicator value for all mapping units belonging to the same USU, the real 

variability of indicator values occurring between these mapping units has to be assessed to evaluate the 

achievable accuracy. For this purpose, Pauleit and Duhme (2000) have analysed the imperviousness (IMP) and 

vegetation density value (VDV) of 621 mapping units belonging to USUs of different residential types, whereas 

the indicator values for the individual mapping units were determined by visual estimation. The results show 

considerably high standard deviations within the same USUs ranging between 14.8 % and 18.1 %, which 
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significantly exceeds the uncertainty related to the developed approach (MAE of approximately 4 %). Heiden et 

al. (2012) have analysed the variability of the same indicators for 664 mapping units belonging to similar USU 

types. In comparison to Pauleit and Duhme (2000), they observed significantly lower standard deviations 

ranging between 5 % and 11 %. This difference might be attributed to the mapping methods used – which in the 

case of Heiden et al. (2012) is based on hyperspectral image analysis and height information – or to the 

determination of USU-types, which often differs between cities. These results confirm that the accuracies of 

indicator calculations obtained by the developed approach are sufficient to resolve the existing variability of 

indicator values occurring between the different mapping units of the same USU. 

 

The use of hyperspectral remote sensing data also allows regular updates of the information base, whereas the 

objectivity and long-term stability of the analysis are ensured by the physically based automated mapping of the 

underlying urban surface materials. Thus, the developed GIS-based system can be applied to all urban areas of 

comparable surface material coverage. This principle methodological transferability has been shown by applying 

the approach to the two test sites within the German cities of Dresden and Potsdam. Urban areas outside of Mid-

European cities may comprise additional surface materials. In such cases, the developed approach can be 

extended by integrating the spectral reflectance signatures of additional materials into the automated 

hyperspectral mapping process, which may also require the determination of new linking categories for 

transforming material classes into ecologically relevant surface types. Due to the developed graphical user 

interface, the GIS-based system can be adapted to the different local conditions as long as hyperspectral remote 

sensing data of sufficient spatial resolution higher than 10 m (Weng, 2012) are available. 

 

6. CONCLUSIONS AND OUTLOOK 

A new automated remote sensing and GIS-based system has been developed for the flexible calculation of user-

defined urban indicators, which significantly reduces the mapping effort by computer-based processing and 

automation for large parts of the procedure. This system comprises the variable determination of mapping units, 

surface material types and respective weighting factors, and the implementation of additional user-defined 

indicators accommodating a large variety of user needs and urban conditions. Moreover, the developed system 

allows the objective and reproducible calculation of indicator values as a result of the computer-based 

automation. In contrast, most state-of-the-art methods comprise a large amount of manual effort and thus are 

likely to be biased by the subjectivity of the analyst. Because the developed system is characterised by 

objectivity, automation and flexibility, it enables the efficient analysis of large areas, the calculation of a variety 

of ecological indicators using the same information base, the accommodation of various user needs and local 

conditions. This way, the developed system opens up new opportunities for a wider use of urban ecological 

indicators in the urban planning practice.  

 

Such a broad application, including the possible operational use of the developed system, highly depends on the 

availability of suitable hyperspectral remote sensing data, which has continuously improved over the previous 

years due to the increasing number of available airborne hyperspectral systems (e.g., CASI, HyMap, AISA, 

HySpex, and APEX). Further opportunities will open up with the launch of new hyperspectral (EnMAP) and 

superspectral (Sentinel-2, WorldView-3) satellite systems acquiring data with increased spectral resolution. 

However, the limited spatial resolution of the EnMAP (30 m) and the Sentinel-2 (10 –20 m) satellite-based 



27 

systems will require the development of new data fusion methods, allowing their combined use with optical and 

radar satellite remote sensing data of higher spatial resolution. In this context, the WorldView-3 superspectral 

satellite system, covering the VNIR-SWIR spectral range with 16 bands at a spatial resolution of at least 3.7 m, 

has big potential for urban analysis, whereas the capabilities of the SWIR bands are of special interest for the 

improved differentiation of non-vegetated areas. The developed system for the calculation of urban ecological 

indicators can be adapted to the use of such operationally acquired satellite remote sensing data, which will 

enlarge its potential applicability to a worldwide scale and thus increase the opportunities for regular monitoring 

and updates. This is especially important for managing the development of large urban agglomerations, 

representing a rapidly growing global phenomenon. 
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