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A B S T R A C T   

National forest inventories (NFI) provide essential forest-related biomass and carbon information for country 
greenhouse gas (GHG) accounting systems. Several tropical countries struggle to execute their NFIs while the 
extent to which space-based global information on aboveground biomass (AGB) can support national GHG ac
counting is under investigation. We assess whether the use of a global AGB map as auxiliary information pro
duces a gain in precision of subnational AGB estimates for the Peruvian Amazonia. We used model-assisted 
estimators with data from the country’s NFI and explored hybrid inferential techniques to account for the sources 
of uncertainty associated with the integration of remote sensing-based products and NFI plot data. 

Our results show that the selected global biomass map tends to overestimate AGB values across the Peruvian 
Amazonia. For most strata, directly using the map in its published form did not reduce the precision of AGB 
estimates. However, after calibrating the map using the NFI data, the precision of our map-assisted AGB esti
mates increased by up to 50% at stratum level and 20% at Amazonia level. We further demonstrate how different 
sources of uncertainties can be incorporated in the map-NFI integrated estimates. With the hybrid inferential 
analysis, we found that the small spatial support of the NFI plots compared to the remote sensing-based sample 
units of aggregated pixels (within block variability) contributed the most to the total uncertainty associated with 
the AGB estimates from our map-NFI integration. Uncertainties caused by measurement variability and allo
metric model prediction uncertainty were the second largest contributors. When these uncertainties were 
incorporated, the increase in precision of our calibrated map-assisted AGB estimates was negligible, probably 
hindered by the great contribution of the within block variability to our map-plot assessment. We developed a 
reproducible method that countries can build upon and further improve while the global biomass products 
continue to evolve and better characterize the AGB distribution under large biomass conditions. We encourage 
further cross-country case studies that reflect a wider range of AGB distributions, especially within humid 
tropical forests, to further assess the contribution of global biomass maps to (sub)national AGB estimates and 
finally GHG monitoring and reporting.   

1. Introduction 

Tropical countries have substantially increased the use of remote 
sensing information for forest monitoring while they develop national 
forest inventories (NFIs) to produce country specific greenhouse gas 
(GHG) estimates (Nesha et al., 2021; Romijn et al., 2015; Eggleston 
et al., 2006). The long-term success of forest-related monitoring systems 

depends on country efforts to upgrade or maintain their land use/forest 
area data and consistently update their NFIs (Romijn et al., 2015). 
Owing to budget constraints, inaccessibility of areas, institutional cir
cumstances, developing capacities and the like, tropical countries 
struggle to establish national inventories or to guarantee frequent up
dates of their NFIs (Nesha et al., 2021; Ploton et al., 2020; Rodríguez- 
Veiga et al., 2017). These conditions limit the quality of their national 
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aboveground biomass (AGB) estimates, which ultimately hinders the 
accuracy, completeness and consistency of reported country GHG 
emissions and removals estimates under the international climate 
frameworks as well as the formulation of domestic mitigation targets. 

Multiple efforts have been made to produce large-area biomass 
maps. As space-based biomass monitoring opportunities evolve, so does 
the policy framework with regard to the possible applications of remote 
sensing products for GHG monitoring and accounting (Herold et al., 
2019). The refined 2019 Intergovernmental Panel on Climate Change 
(IPCC) guidelines propose the use of biomass maps for national land use, 
land use change and forestry (LULUCF) GHG reporting. Country case 
studies that link NFI plot-based data and satellite data are certainly 
needed to gain experience and build confidence on how national GHG 
monitoring and reporting can benefit from this fast-evolving research 
field. Given the limited coverage and periodicity of NFIs in tropical 
countries, it is timely to explore whether global biomass maps can 
improve sample-based inventory estimates. We assess how a large-area 
biomass map can be used as auxiliary data for the National Forest and 
Wildlife Inventory (NF&WI) in Peru as a means of increasing the pre
cision of subnational AGB estimates. Previous studies have addressed 
the benefits of space-based data for increasing the precision of ground- 
based estimates (McRoberts et al., 2002; Ståhl et al., 2016; Næsset 
et al., 2016), but to our knowledge none of them are oriented to NFI 
applications in humid tropical forests, where forest ecosystems with the 
greatest AGB levels are mostly found. 

The IPCC states that countries should reduce the uncertainties of 
their GHG inventories as far as practicable (Eggleston et al., 2006, Vol 1, 
Chap 1, Section 1.2). For uncertainties to be compared or reduced, they 
first must be rigorously estimated (McRoberts et al., 2018). Previous 
studies have addressed the use of hybrid inference when incorporating 
the uncertainty of allometric model predictions into the total uncer
tainty estimation (McRoberts et al., 2016; Ståhl et al., 2014), arguing 
that by ignoring this source of uncertainty, total uncertainty may be 
underestimated. We used hybrid inference to account for different 
sources of uncertainties from the integration of remote sensing-based 
products with ground-based data aiming for more comprehensive 
map-assisted estimates. 

Peru started implementing the NF&WI in 2013, and by 2020 it had 
completed approximately 32% of the target sample. Though incomplete, 
the country relies on this probabilistic sample for estimating national 
forest-related emission factors (MINAM and MIDAGRI, 2021). Peru 
could benefit from the use of remote sensing-based biomass products to 
increase the precision of national and subnational AGB estimates, 
especially if they produce a more efficient (i.e., less intensive) sampling 
strategy. At the same time, in the latest update of the forest reference 
emission level, the country also recognized the need to more compre
hensively account for and propagate the sources of uncertainties within 
its LULUCF-GHG accountability system (MINAM and MIDAGRI, 2021). 
Thus, an assessment of the effects of the sources of uncertainty from the 
integration of plot and space-based biomass data is key. 

The objective of this study is to assess whether a large-area biomass 
map used as auxiliary data can produce a gain in precision relative to the 
precision of subnational field-based forest AGB estimates. To this end, 
we: i) defined a statistical inferential approach for the use of remotely 
sensed auxiliary information in combination with the NF&WI sample 
data; ii) locally calibrated an open-source, large-area biomass map using 
the NF&WI plot data; iii) accounted for the effects of the sources of 
uncertainty from the integration of the remote sensing-based product 
with the NF&WI data; and finally iv) compared the precision of the map- 
assisted estimates to the precision of the field-based AGB estimates from 
the NF&WI. Four scenarios are considered. In the baseline scenario A, 
the (sub)national AGB estimates correspond to simple expansion esti
mates using only the NF&WI data; for scenarios B-D, we introduced the 
European Space Agency Climate Change Initiative (CCI) (Santoro and 
Cartus, 2021) biomass map as auxiliary data. In scenario B, we used the 
aforementioned map in its published form; while for scenarios C-D we 

first locally calibrated the biomass map using the plot data and a linear 
regression model. In scenario D we used hybrid inferential techniques to 
additionally account for the effects of measurement variability, geo- 
location error and the uncertainties owing to the plots covering 
smaller areas than the remote sensing-based sampling units (here-after 
characterized as within-block variability). We argue that by accounting 
for the uncertainties from all the sources, we produce more compre
hensive map-assisted AGB uncertainty estimates and thereby better 
comply with the IPCC good practice guidelines (Eggleston et al., 2006, 
Vol 1, Chap 1, Section 1.2). 

2. Material and methods 

2.1. The biomass map 

We used the 2017 v.3 CCI global AGB biomass map (Santoro and 
Cartus, 2021) as auxiliary data. The map has a 100 m resolution and its 
nominal date is closest to the NF&WI implementation period and, 
therefore, minimizes potential differences caused by temporal mis
matches (GFOI, 2020). The map was developed by combining Synthetic 
Aperture Radar (SAR) C-band Sentinel-1 information and Phased Array 
L-band SAR (PALSAR-2) data from ALOS-2 as well as other auxiliary 
data (Santoro and Cartus, 2021). The map processing chain first predicts 
growing stock volume, which is next converted to AGB predictions at 
approximately 100 m resolution by means of biomass conversion and 
expansion factors. 

2.2. Defining the population 

Our population is defined in accordance with Peru’s NF&WI survey. 
Of the six subpopulations defined by the NF&WI (hereafter character
ized as strata), the four strata within Amazonia pertain to our research. 
They are defined as hydromorphic zone (HZ), accessible montane forest 
(AMF), inaccessible montane forest (IMF) and lowland forest (LF) strata. 
More on the NF&WI stratification information is included in Supple
mental Material S.1. The Peruvian survey concerns only forested areas 
according to a preliminary remote sensing-based land cover assessment 
(MINAGRI and MINAM, 2016). Hence, our population is constrained to 
the Peruvian Amazonia forestland. 

The NF&WI uses a non-aligned systematic sampling design with plots 
randomly located within coarse grid cells whose sizes differ per stratum 
(20–34 km) (MINAGRI and MINAM, 2016). All coarse grid cells were 
assigned to panels based on accessibility and similar criteria to facilitate 
the work of the field-crew and to reduce costs. In total, there are five 
panels uniformly distributed throughout each stratum. By the time of 
our analysis, plots in approximately two of the panels, hereafter desig
nated panel 1 and panel 2, had been measured. A few plots within these 
panels were missing and were considered missing at random. For the 
purpose of this study, coarse grid cells assigned to panels 1 and 2 within 
the Peruvian Amazonia forestland defined the population (Fig. 1). 
Population units are either 4x4 or 5x5 (depending on the stratum) blocks 
of aggregated CCI pixels. 

Within the HZ, AMF and IMF strata, plots consist of 10 circular 
subplots (0.05 ha), while in the LF stratum they consist of seven rect
angular subplots (0.1 ha). In all strata, the subplots are arranged in L- 
shaped configurations (Fig. 2a and 2b). The length of the edges of the 
population units (square blocks of pixels) approximates the length of the 
longest arm of the NF&WI plot (Fig. 1). 

The sample consisted of blocks enclosing the field plots. We recre
ated N-S and E-W orientated map blocks (of size ~ 400 m × 400 m and 
~ 500 m × 500 m, depending on the stratum), where the southwest 
corner was located 50 m south and 50 m west of each plot anchor point 
(Fig. 1). The AGB observation for the ith sample unit in the hth stratum, 
hereafter denoted yhi, is the AGB mean over the seven or 10 subplots of 
the plot located in the ith sample unit. The corresponding sample unit 
map value, hereafter denoted ŷhi, is the AGB mean over the 4x4 or 5x5 
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CCI pixels defining the ith sample unit. 

2.3. Field-based AGB 

Our analysis included live-woody AGB information for 299 plots (32 
in HZ; 46 in AMF; 11 in IMF and 210 in LF). The inventory data were 
mostly provided at tree level and included information such as subplot 
coordinates, diameter at breast height (DBH) for trees with DBH ≥ 10 cm 
and wood density (WD). The plot-level AGB and corresponding mea
surement errors were estimated using the approach of Réjou-Méchain 
et al. (2017) as implemented in the BIOMASS R package. Plot-level AGB 
estimates and pre-processing activities are addressed in Supplemental 
Material S.1. 

2.4. Map harmonization 

Our pre-processing and data harmonization steps included:  

i. Re-projection. We made sure that the plot coordinates, the 
biomass map and auxiliary information were in the WGS 1984/ 
UTM zone 18S projection system.  

ii. Map pixel size harmonization. The 2016 land-use mask of Peru 
(Plataforma Geobosques, 2021) was resampled to the same pixel 
size as the biomass map (~100 m × 100 m) by majority (mode). 
This mask was used to define the population of forested pixels.  

iii. Cropping and masking: We cropped the biomass map to the extent 
of panels 1 and 2 within the Peruvian Amazonia. Additionally, we 
used the re-sampled land-use mask of Peru to mask all non-forest 
pixels from the biomass map. 

The mean AGB map block values were calculated by ignoring any 
non-forest (NA) pixels. 

2.5. Statistical estimators 

In scenario A, we used the simple expansion estimator directly with 
the NF&WI plot data. In the other scenarios (B-D), the biomass map was 
introduced as auxiliary information and used with model-assisted esti
mators (Table 1). 

2.5.1. Scenario A: Field-based estimation (Baseline) 
In our baseline scenario, only the plot-based AGB data as described in 

section 2.3 and Supplemental Material S.1 were used. To compute the 

Fig. 1. CCI biomass map for panels 1 and 2 within the Peruvian Amazonia. On the right, an example of a plot roughly covering a block of 4x4 map pixels. The red 
cross is the plot’s anchor point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. (a) Plot configuration of the HZ, AMF and the IMF strata. (b) Plot configuration of the LF stratum. Adapted from MINAGRI and MINAM (2016).  

N. Málaga et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103102

4

per-stratum AGB estimates, we used the simple expansion estimator, 
assuming the plots were a probabilistic random sample of the stratum 
(McRoberts et al., 2020): 

μ̂h =
1

mh

∑mh

i=1
yhi (1) 

where mh is the number of plots in stratum h, and yhi is the AGB mean 
over the seven or 10 subplots of the plot located in the ith sample unit. 

The variance estimator is defined as: 

V̂AR(μ̂h) =
1

mh(mh − 1)
∑mh

i=1
(yhi − μ̂h)

2
. (2)  

2.5.2. Map-assisted scenarios B - D: Using the biomass map as auxiliary 
data for the per stratum estimation 

The model-assisted estimators of the population mean and variance 
were similar for the scenarios B-D. In scenario B, the AGB predictions of 
the population units, ŷhj, correspond to AGB means over the 4x4 or 5x5 
uncalibrated CCI map values. In scenarios C and D the AGB predictions, 
ŷhj, are AGB means over the 4x4 or 5x5 values of the map calibrated 
using a regression model fitted to the plot data (section 2.6). 

The difference (scenario B) and the regression estimators (scenario C 
and D) of the population mean consist of the sum of a predictions-based 
term and a residuals-based adjustment term. Using remotely sensed 
auxiliary data, the within-stratum prediction-based term is the synthetic 
estimate (μ̂hsyn) calculated as the mean of predictions (ŷhj) over all 
population units (Särndal et al., 1992, p.222). The within-stratum 
adjustment term is based on differences between sample unit observa
tions (yhi) and their corresponding sample unit map values (ŷhi). Hence, 
the within-stratum estimator is (Lohr, 2010, Section 5.1): 

μ̂h =
1

Mh

∑Mh

j=1
ŷhi +

1
mh

∑mh

i=1
εhi (3) 

where j indexes the population units within stratum h, Mh is the 
number of population units in stratum h, mh is the number of sample 
units in stratum h and the sample unit residuals εhi are calculated 
as,εhi = yhi − ŷhi.

The within-stratum variance estimator (Lohr, 2010, Section 5.1) is: 

V̂AR(μ̂h) =
1

mh(mh − 1)
∑mh

i=1
(εhi − ε̄h)

2 (4)  

ε̄h =
1

mh

∑mh

i=1
εhi  

2.5.3. Peruvian Amazonia forest-related AGB estimation 
For all scenarios, we used post-stratified estimators for our across- 

strata population estimates (Næsset et al., 2020): 

μ̂ =
∑H

h=1

Mh

M
μ̂h (5)  

V̂AR(μ̂) =
∑H

h=1

(
Mh

M

)2

V̂AR(μ̂h) (6) 

where M refers to the population size across all strata (M = 1 578 
357) 

We estimated the per-stratum and Amazonia level gain in precision 
from the contribution of the biomass map by means of relative efficiency 
(RE), a ratio that compares the variance estimated in senario A 
( ̂VAR(μ̂)field) and the variance from our map-assisted estimates from 

scenarios B-D ( ̂VAR(μ̂)map)(Næsset et al., 2020). 

RE =

̂VAR(μ̂)field

̂VAR(μ̂)map

(7)  

2.6. Calibrating the biomass map 

For scenarios C and D, and within each stratum h, we fitted simple 
linear regression models to predict AGB (Mg ha− 1) for each map unit, 
thereby constructing a new locally calibrated map. In scenario C, we 
established a regression model where the sample unit observations (yhi)

are the dependent (response) variable and the sample unit map values 
(ŷhi) are the independent (predictor) variable. The parameters βh0 and 
βh1 are to be estimated and εi N

(
0, σ2

i
)
. 

yhi = βh0 + βh1*ŷhi + εhi (8) 

Four AGB plot estimates within the LF forest stratum were not 
representative of the subpopulation and therefore excluded when fitting 
the regression models for both scenarios, but they were included when 
estimating means and variances. These four plots included very large 
trees (larger than any trees reported in Chave et al. (2014)) within very 
small plots and therefore resulted in questionable plot-based AGB ha− 1 

for Amazonian lowland forests. 
Scenario D additionally accommodated the effects of different 

sources of uncertainty involved in map-to-plot comparisons. In this 
scenario, regression models (Eq. (9)) were fitted to the residuals be
tween sample unit map values (ŷhi) and AGB values obtained by Monte 
Carlo simulations that account for measurement variability (yk

hiM.V), 
geo-location error (yk

hiL.E) and the within-block variability (yk
hiWB.V), 

which are further addressed in section 2.7. In each Monte Carlo run 
(indexed by superscript k), a set of simulated values for yk

hiM.Vyk
hiL.E,

yk
hiWB.V for the ith sample unit was generated. Hence, model parameters 

βk
h0 and βk

h1 were estimated in that run and used to predict AGB values 
(section 2.7). Unlike Eq. (8), the model was fitted to the residuals, 
because the within-block variability is estimated as the difference be
tween AGB averaged over subplot locations within a plot and ŷhi. For all 
models, the residuals were tested for heteroscedasticity using the 
Breusch-Pagan test Zeileis and Hothorn, 2002. <1% of runs had p <
0.05, for most strata. Even in the LF stratum where the percentage was 
greater, the correction for heteroscedasticity had a negligible effect on 
our estimates. The regression approach used in each Monte Carlo real
ization, k, is described by Eq. (9). 
(
yk

hiM.V − ŷhi
)
+
(
yk

hiL.E − ŷhi
)
+
(
yk

hiWB.V

)
= βk

h0 + βk
h1*ŷhi + εk

hi (9) 

Table 1 
Summary of scenarios A-D.   

A B C D 

Inferential strategy Design- 
based 

Design-based model assisted 
estimation 

Hybrid 
inference 

Use of the biomass 
map as a source 
of auxiliary 
information 

No Yes, in its 
original 
form 

Yes, locally calibrated using 
the NF&WI data 

Statistical 
estimators 

Simple 
expansion 
estimator 

Model- 
assisted 
difference 
estimator 

Model- 
assisted 
regression 
estimator 

Model- 
assisted 
regression 
estimator 
within an 
hybrid 
approach 

Accounting for the 
effects of the 
measurement, 
geo-location and 
within block 
uncertainty 

No No No Yes  
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2.7. Accounting for the sources of uncertainty from the integration of the 
biomass map with the plot data (scenario D) 

We used hybrid inferential methods to estimate per stratum and 
overall population estimates of AGB and their variances by propagating 
the effects of the sources of uncertainty associated with the allometric 
model predictions, geo-location error and the within-block variability as 
well as the contribution from the designed-based sampling variability. 
We used a Monte Carlo simulation procedure with 1000 runs as 
described by McRoberts et al. (2016) to combine the model-based pre
diction uncertainty and probability-based sampling variability. 

2.7.1. Measurement variability (yk
hiM.V)

We used the AGBmonteCarlo function available in BIOMASS (Réjou- 
Méchain et al., 2017) to propagate the uncertainties associated with the 
measurement of DBH, WD and the Chave et al. (2014) generalized 
allometric model parameters and residuals. We predicted tree-level AGB 
similarly to the previous scenarios (Supplemental Material S.1), but 
additionally accounted for the aforementioned uncertainties using the 
Monte Carlo scheme available in Réjou-Méchain et al. (2017). We 
simulated 1000 AGB values for subplots which were averaged to the 
plot-level (yk

hiM.V) and extracted from the map-based AGB (ŷhi) to 
calculate the residuals in the left-hand side of Eq. (9). 

2.7.2. Geo-location error (yk
hiL.E)

Ground-based data with geo-referencing errors are prone to mis
matches when integrated with remote sensing-based products with the 
errors affecting the map-assisted estimates of mean AGB (Mg ha− 1). The 
NF&WI reported maximum GPS location errors of 10, 25, 25 and 30 m 
for the HZ, LF, IMF and AMF strata, respectively. We modelled the effect 
of the plot geo-location error by simulating 1000 potential plot anchor 
point locations from a uniform random angle between a 0–2 π and 
maximum radius equivalent to the per stratum GPS error (Fig. 3b). 
Hence, we obtained 1000 simulated blocks and estimated the corre
sponding map AGB weighted mean values yk

hiL.E (Fig. 3a), which were 
later subtracted from the estimated map-based AGB (ŷhi). 

2.7.3. Within-block variability (yk
hiWB.V) 

In general, the area represented by a large-scale biomass map pixel is 
far greater in size than an NFI plot. Therefore, local forest biomass 
spatial variability can contribute to uncertainties when pairing the map 
information and the plot data (Réjou-Méchain et al., 2014). Here, we 

applied a geostatistical approach to model the forest biomass distribu
tion within our map-based blocks containing the L-shaped NF&WI plot 
configuration (Gotway and Young, 2002; Kyriakidis, 2004). We assessed 
within-block variability by simulating differences between the AGB 
averaged over subplot locations within a plot and the map-based AGB 
within blocks. We implemented the following procedure within each 
stratum:  

i) We estimated semi-variances from all available ground-based 
subplots within the stratum in log-transformed AGB and fit var
iogram functions using the gstat package for R (Gräler et al., 
2016). The mean measurement variability (also transformed to 
log scale) was subtracted from the nugget as described by 
Christensen (2011) thereby avoiding double counting of the 
measurement variability in our regression model (Eq. (9)). The 
variogram models are shown in detail in the Supplemental Ma
terial S.2. 

Fig. 3. (a) CCI biomass map and 12 of the 1000 sample unit realizations in the LF stratum. The distribution of the simulated plot anchor point locations (in black) and 
recorded location (red cross) are detailed in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Block discretized into locations with subplot support (+) and seven 
subplot locations forming an L-shaped plot configuration () within the 
LF stratum. 
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ii) The map-based block was discretized by points (Fig. 4 – crosses). 
The discretization grid corresponds to the centres of a tessellation 
of the block by square plots having the size of the subplots.  

iii) Using a Monte Carlo approach, we simulated log(AGB) at each 
grid node within the block using the variogram model obtained in 
step i). The simulated log(AGB) values at each individual grid 
node were back-transformed by exponentiation, which was fol
lowed by a multiplicative correction to force the average over the 
within-block locations to match the AGB map value of the block 
(ŷhi).  

iv) For each ith sample unit and kth iteration, we calculated the mean 
over the simulated (back-transformed) AGB predictions at the 
grid nodes corresponding to the 7–10 subplots locations within 
the L-shaped plot configuration and subtracted the map-based 
block values (ŷhi) to obtain the within-block residuals expressed 
in Eq. (9) 

(
yk

hiWB.V
)
. 

2.7.4. Simulation procedure and mean AGB 
The effects of the three previously described sources of uncertainty 

on the mean calibrated AGB were assessed by Monte Carlo simulations 
as described by McRoberts et al. (2016). For each kth simulation 

(replications k = 1, 2, ….…, 1000):  

i) We fit regression models (Eq. (9)) to the residuals of the simulated 
AGB observations (yk

hiM.V, yk
hiL.E and yk

hiWB.V) and the map-based 
(ŷhi) values, and then used the resulting model parameter esti
mates to calculate the AGB predictions for each ith sample unit (ŷk

hi). 
ii) To estimate the per stratum mean AGB (Mg ha− 1) (μ̂k

h) and corre
sponding variance (V̂AR

(
μ̂k

h
)
) within the simulations, we used the 

model-assisted estimators defined in section 2.5 (Eqs (3) and (4)) 
where ŷk

hj are the population unit AGB predictions from our cali
brated map .

The per stratum AGB mean (μ̂k
h) and variance (V̂AR

(
μ̂k

h
)
) were esti

mated using Eqs 10 and 11, respectively: 

μ̂h =
1

1000
∑1000

k=1
μ̂k

h (10)  

V̂AR(μ̂h) =

(

1+
1

1000

)

*W1 +W2 (11) 

Fig. 5. Relationship between the map-based AGB values and observed NF&WI values for HZ (a), AMF (b), IMF (c), and LF (d) strata. The scenario C regression 
models to calibrate the biomass map and the correspondent equations are shown in red, the dashed grey line is the 1:1 line. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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where W1 = 1
1000

∑1000
k=1 (μ̂k

h − μ̂h) refers to the among replications 

variance and W2 = 1
1000

∑1000
k=1 V̂AR

(
μ̂k

h
)

is the mean within replications 
variance. Finally, we used Eqs. (5) and (6) for estimating the overall 
Peruvian Amazonia mean AGB (Mg ha− 1). 

3. Results and discussion 

3.1. Locally calibrating the large-area biomass map 

For all four strata within the Peruvian Amazonia, the CCI biomass 
map tends to overestimate AGB when compared to our plot data, most 
evidently for small AGB values (Fig. 5). For scenario C, two of the four 
per stratum linear regression models were significant (p < 0.001), 
although all had small coefficients of determination (R2 0.02–0.3) 
(Fig. 5). For the accessible and inaccessible montane forest strata 
(Fig. 5b and c), the regression models were non-significant (p > 0.05), 
attributable to large trees within small subplots and to the small sample 
sizes within these strata. Additionally, only 11 plots were available for 
the IMF stratum, thereby detracting from the statistical rigor of our 
analysis, which may change once the NF&WI progresses in its imple
mentation. We selected a non-intercept linear model in the HZ stratum 
for both scenarios to avoid negative AGB map values after calibration. In 
scenario D, we fit the regression model (Eq. (9)) within a Monte Carlo 
approach to account for the measurement variability, geo-location and 
within-block variability. R2 varied between 0 and 0.7 for all strata, with 
the HZ stratum having the smallest values. Most models for the IMF 
stratum and HZ, were not statistically significant at the 95% significance 
level. 

In global validation, large-scale biomass maps tend to overestimate 
small biomass and underestimate large biomass plot values (>150 Mg 
ha− 1), a trend from which CCI biomass products are not exempt (Avi
tabile et al., 2016). However, the global map-plot comparison pattern 
can have local exceptions, as shown in the map-based biomass over
estimation in our case study (e.g. Fig. 5a). Additionally, Réjou-Méchain 
et al. (2019) compared several biomass maps available for the pan
tropics (including the CCI biomass map) against fine resolution biomass 
products and also found weak coefficients of determination (R2 < 0.3). 

3.2. Addressing the sources of uncertainty 

Consistently among strata, the within-block variability and geo- 
location error were the largest and the smallest contributors, respec
tively, to the overall uncertainty resulting from the integration of the 
CCI biomass map and the NF&WI plot data. The standard deviation of 
measurement variability fluctuated between 27 and 38 Mg ha− 1 among 
strata, whereas the within-block variability ranged between 72 and 90 
Mg ha− 1 (Fig. 6). Similar to other studies, the contribution of the geo- 

location error was negligible (McRoberts et al., 2002). 
Plot AGB values are allometric model predictions rather than error- 

free observations but uncertainties associated with plot data are usu
ally ignored in AGB monitoring and reporting. Systematic errors asso
ciated with the prediction of WD and the application of allometric 
models might have large effects at the population level in the tropics due 
to adverse conditions (i.e. inaccurate species identification, limited in
formation of WD database, presence of very large trees, etc.) (Réjou- 
Méchain et al., 2019; Ståhl et al., 2014; Chave et al., 2014). Our results 
are consistent with a study in temperate forests that also used hybrid 
inference to address the effects of allometric model prediction uncer
tainty on map-assisted AGB estimates (McRoberts et al., 2016). The 
greatest contribution to the measurement variability from the IMF and 
LF stratum can be attributed to very large trees within small plots. 

Previous studies have shown the effects of differences in the remote 
sensing spatial support and plot size on capturing local AGB spatial 
variability; within pixel AGB variability is larger when the pixel-to-plot 
ratio also increases (Réjou-Méchain et al., 2019, 2014; Saatchi et al., 
2011). We modelled the AGB variability within blocks of size ~ 16 ha 
and 25 ha by means of a geostatistical approach using variograms esti
mated from data for small subplots. Like other studies in the neotropics 
that stressed the large spatial variability of forest structural metrics over 
short distances (Chave et al., 2004, 2003; Saatchi et al., 2011), we found 
large AGB heterogeneity within our blocks. Within the two most data- 
rich strata (AMF and LF, Supplemental Material S. 2), the ranges of 
spatial correlations varied from 15 to 30 km. Still, the large nugget-to- 
sill ratio of our variograms shows that most variability in AGB occurs 
at very short distances (<30 or 75 m). 

The major contribution of the within-block variability found in this 
study indicates that the small plot size within larger map-based sampling 
units is the main source of uncertainty in map-plot comparisons. The 
advantage of large, single plot configurations as opposed to plots with 
small subplots has been stressed in literature, because small plots are 
prone to introduce errors related to mismatches in the sampling area, 
edge effect, measurement errors, etc. (Chave et al., 2004; Réjou-Méchain 
et al., 2014, 2019; Ploton et al., 2020). However, the large costs of 
establishing a plot in the tropics have favoured the use of NFI plot 
configurations involving small subplots. Foreseeing the increasing 
contribution of open-source remote sensing-based products for national 
and subnational forest-related estimation and management, future work 
should assess the contribution of remote sensing-based products under 
different NFI plot configurations, how well the spatial plot configuration 
captures local AGB variability and ultimately, how the configuration 
affects the precision of the estimates (Næsset et al., 2020). 

3.3. Increased precision of subnational AGB estimates 

Mean forest AGB estimates at stratum level using only the NF&WI 
data (scenario A) ranged between 165 and 253 Mg ha− 1 among strata 
(Table 2). In a preliminary report, SERFOR stated AMF: 145.4 Mg ha− 1; 
IMF: 166.5 Mg ha− 1, LF: 295.4 Mg ha− 1, HZ:188.6 Mg ha− 1; no standard 
errors were reported (SERFOR, 2020). Differences from our results may 
be attributed to the NF&WI estimates being based on a smaller sample 
(approximately half of the sample used in this study), as well as the 
application of different allometric models (i.e., species-specific models) 
and the inferential approach. 

Model-assisted estimation using the uncalibrated biomass map to 
adjust for systematic map errors (μ̂hsyn) considerably overestimated 
mean forest-related AGB stocks for all strata (scenario B - Table 2). These 
systematic errors reveal that this global biomass map is not directly 
suitable for national or subnational AGB estimation and GHG reporting 
schemes, which concurs with a study for African dry forests and 
woodlands (Næsset et al., 2020). 

Our results show that introducing the map as a source of auxiliary 
information slightly increased the precision of our AGB map-assisted 
estimates. Without local calibration, the standard errors (SEs) in 

Fig. 6. Per stratum standard deviations (SD) due to measurement variability 
(M.V), geo-location error (L.E), and within-block variability (WB.V). 
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scenario B mostly showed no reduction in comparison to our baseline 
scenario A (Table 2). However, after calibrating the biomass map (sce
nario C), most strata (except for the LF forest) presented a gain in pre
cision, as indicated by smaller SEs in comparison to scenario A. The gain 
in precision of our estimates can be explained by the RE indicator (Eq. 
(7), Table 2). For instance, relative to the simple expansion estimates, a 
RE value of 1.2 (scenario C – Amazonia level) represents a gain in pre
cision of 20%, meaning that 1.2 times more plots would be needed by 
the NF&WI to reach the same level of precision as the current model- 
assisted AGB estimates (McRoberts et al., 2014). Within strata, the 
precision increased by as much as 50%. After propagating the effects of 
the sources of uncertainty (scenario D), SEs marginally changed in 
comparison to scenario A, ranging from 7.5 to 25.3 Mg ha− 1 among 
strata. The precision of our Amazonia level estimates actually decreased 
by 10% (Table 2). For most strata, differences in SEs between our 
baseline and map-assisted estimates were only evident in scenario C, 
revealing the contribution of the local calibration of the global map. 
However, scenario D provides the most comprehensive and transparent 
representation of the map-assisted AGB estimation. 

Previous studies have shown how the use of remote sensing-based 
products as sources of auxiliary information can support AGB esti
mates for GHG monitoring and reporting (McRoberts et al., 2020; Ogle 
et al., 2019). Nonetheless, few studies have reported the application of 
global biomass products to enhance inferences for national or subna
tional AGB estimates, particularly in humid tropical forests. Studies in 
dry tropical forests and temperate forests have shown marginal preci
sion gain of model-assisted AGB estimates when uncalibrated maps are 
used as an auxiliary source of information, but found substantial im
provements when using locally calibrated global products (Næsset et al., 
2020; McRoberts et al., 2019). Our results partially agree with the 
aforementioned studies, although the gain in precision of our map- 
assisted estimates in scenario C is smaller. These former studies do not 
account for the effects of the sources of uncertainty affecting the inte
gration of plot and map biomass products, as we did in our scenario D. 
We stress the relevance of accounting for these uncertainties, especially 
the within-block variability whose contribution was found to be at least 
three times greater than the other two. By doing so, we assess the 
contribution of a large-area biomass product to (sub)national map- 
assisted AGB estimates more comprehensively, complying with IPCC 
guidelines on accounting for sources of uncertainty (Eggleston et al., 
2006, Vol 1, Chap 1, Section 1.2). Further case studies on the contri
bution of biomass products to (sub)national estimates under different 
biomass densities, especially within tropical humid forests, is 
encouraged. 

The small correlations found between the NF&WI plots and our CCI 
biomass map blocks limited the gain in precision of Peru’s (sub)national 
AGB estimates. As addressed by Næsset et al. (2016) in Miombo wood
lands, finer spatial resolution remote-sensing products (i.e., derived 
from ALS or RapidEye) enhanced the precision of AGB estimates 
threefold when compared with global products. Nonetheless, the effort 
and capacity needed within tropical countries to process nation-wide 
openly available fine resolution, remote sensing-based products for 
enhancing AGB national estimates are much larger than when using an 

existing biomass product. Global biomass products are encouraged to be 
used in the context of GHG accounting and reporting if they are well- 
calibrated to national circumstances (Ogle et al., 2019). As efforts in 
mapping biomass improve, more accurate maps imply greater correla
tions and hence more favourable conditions for further increasing the 
precision of national AGB estimates. 

Increasing the statistical precision of AGB estimates with auxiliary 
information suggests that either the target level of precision for AGB can 
be met with fewer plots or the original target level of precision can be 
exceeded with the original sample size (McRoberts et al., 2002). Our 
study is especially relevant for Peru’s monitoring efforts, because only 
10–35% of the per-stratum target sample had been accomplished by 
2020, mostly due to budget constraints. We here present a reproducible 
method that countries can benefit from. As the accuracy of global 
biomass products continues to evolve, their contribution to enhancing 
the precision of country AGB estimates will, likewise, increase over time. 
As for the case of Peru, once the NF&WI implementation progresses, the 
contribution of the biomass maps products to the precision of their (sub) 
national estimates could also be benefited once more field-based infor
mation becomes available. 

4. Conclusions 

We found that without calibrating the map to correct for the sys
tematic map error, the 2017 CCI biomass map tends to overestimate 
forest-related AGB values across Peruvian Amazonia, revealing that 
there is room for improvement for AGB stocks to be estimated directly 
from large-area biomass maps. 

Addressing the sources of uncertainties promotes more accurate and 
transparent AGB estimation, which translates to more credible country 
GHG reporting practices. We found that the within-block AGB vari
ability was the largest contributor among the propagated sources of 
uncertainty. It affects plot-map integration because NFI plot data are 
often acquired over smaller spatial units than the remote sensing-based 
sampling units and strongly contributes to the non-negligible uncer
tainty of plot AGB data. In contrast, the contribution of the geo-location 
error was virtually negligible. Our study shows that accounting for error 
sources and propagating uncertainties resulting from integration of plot- 
and space-based biomass information is possible. We rigorously esti
mated the uncertainties, providing subnational AGB estimates that 
comply with the IPCC good practice guidelines. 

Using a global biomass map as a source of auxiliary information with 
the NF&WI reference data led to a small increase in the precision of 
forest-related per stratum estimates and Peruvian Amazonia AGB map- 
assisted estimates. After calibration, the map slightly increased the 
precision of the AGB estimates, which was constrained by the small map- 
plot correlations. However, when propagating the aforementioned 
sources of uncertainty, the map no longer contributed to increasing the 
precision. As the main source of uncertainty is attributed to the plot size 
being smaller in size than the remote sensing-based sampling units, we 
encourage the expansion of this work to explore the contribution of 
biomass maps to (sub)national AGB estimates under a range of AGB 
settings and capturing a cross-country diversity of sampling designs and 

Table 2 
Stratum-wise and Peruvian Amazonia sample size (n), mean AGB ha− 1 (μ̂h) and standard error (SE) estimates (Mg ha− 1), as well as relative efficiency (RE) indicator.  

Strata n Scenario A Scenario B Scenario C Scenario D 

μ̂h SE μ̂hsyn μ̂h SE RE μ̂hsyn μ̂h SE RE μ̂hsyn μ̂h SE RE 

HZ 32  223.8  15.6  323.0  213.6  13.0  1.4  217.8  216.9  12.6  1.5  225.8  222.9  14.9  1.1 
AMF 46  165.3  15.7  243.6  140.8  21.9  0.5  161.9  161.9  15.5  1.0  165.7  165.9  15.8  1.0 
IMF 11  181.5  23.4  340.2  173.3  26.1  0.8  178.2  178.2  20.8  1.3  186.8  186.6  25.3  0.9 
LF 210  253.5  7.2  384.5  262.5  9.1  0.6  246.4  255.5  7.2  1.0  246.9  255.9  7.5  0.9 
Amazonia 299  218.9  6.9   215.8  8.1  0.7   211.0  6.4  1.2   221.1  7.2  0.9 

*μ̂hsyn stands for synthetic estimator.  
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plot configurations. We present a reproducible method that countries 
can build upon and further improve while the biomass map products 
continue to improve over time. Further improvement of space-based 
biomass products should enhance their usefulness for enhancing (sub) 
national AGB estimates and other applications beyond than addressed in 
this study. 
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