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HELMERT-Commemorative Lecture

Absolute Gravimetry in its
Operational Phase - Some

Results and Problems

By Wolfgang Torge
Institut flir Erdmessung
Universitdt Hannover (F.R.G.)

Abstract: Until the 1950s, absolute gravimetry has been governed by the pen-
dulum method, with limited progress in accuracy and economy. This finally
led to the concept of the Potsdam Gravity System, which was based on only
one absolute gravity value; global, regional and local gravimetric surveys
were connected by relative gravity measurements. Since 20 years the free-fall
method has succeeded, with transportable absolute gravimeters reaching accu-
racies which correspond to that of relative gravimeters. This situation has
changed the strategy at the establishment of gravity control networks, with
static or geodynamic objective. At the example of the JILA absolute gravi-
meter (Faller type), operated by the Institut fiir Erdmessung, University of
Hannover, the possibilities and proublems of this new technology are demon-
strated.

Zusammenfassung: Die absolute Schweremessung war bis in die 1950er Jahre von
der Pendelmethode beherrscht, wcbei der Fortschritt in Genauigkeit und Wirt-
schaftlichkeit Uber 300 Jahre begrenzt blieb. Das fihrte schlieBlich zur
Konzept ion des Potsdamer Schweresystems, das sich auf eine absolute Schwere-
messung stitzte; globale, regionale und lokale gravimetrische Aufnahmen wur-
den daran mit Hilfe relativer Gravimeter angeschlossen. Seit 20 Jahren hat
sich die Freifallmethode durchgesetzt, transportable Absolutgravimeter er-
lauben MeBgenauigkeiten, die denen der Relativgravimetrie entsprechen. Damit
andert sich die Konzeption beim Aufbau von Schwerefestpunktfeldern statischer
und geodynamischer Zielsetzung. Die Moglichkeiten und Probleme dieser neuen
Technologic werden exemplarisch am Beispiel des JILA-Absolutgravimeters
(System Faller) des Instituts fir Erdmessung, Universitdt Hannover, darge-
stellt.

1. Introduction

With the law of the free fall (about 1590) and the pendulum law
(about 1609), Galileo Galilei established the two basic rela-
tionships, which governed absolute gravimetry until present time.
In this context, we understand "absolute gravimetry" as the
method to determine the magnitude of gravity by measurement of
the fundamental acceleration quantities length and time. More
than 300 years of gravimetric history brought a remarkable in-
crease of accuracy and efficiency at absolute gravity measure-
ments. This was achieved by improved length and time standards,
better understanding of error sources, and adopting new technolo-
gies as soon as possible. Since Richer 1672/73 found the latitude
dependence of gravity, an accuracy increase of five orders of
magnitude was achieved, with the pendulum method exclusively used
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until the 1950s, superseded then by the free-fall method. This
development was not straightforward, especially as more economic
relative gravity measurements since the end of the 19th century
delivered the bulk of gravity data, and absolute gravity values
only had to play the role of defining the gravity standard, see
Figure 1 (TORGE 1982).
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Fig. 1: Increase of accuracy in terrestrial gravimetry,

after TORGE (1982)

This philosophy is partially changing now, with operational ab-
solute gravity meters available, delivering the same accuracy

as relative gravimeters within a reasonable time. Nevertheless,
there are still one to two orders of magnitude difference at
hardware cost and observation time per station, between absolute
and relative gravimetric techniques.

In the sequel, we first outline the development of the pendulum
method, and the solution which was found at the beginning of
this century for surveying the gravity field of the earth. This
solution was strongly influenced and promoted by the fundamental
work of Helmert, Direktor of the Royal Prussian Geodetic Insti-
tute in Potsdam. We then proceed to the rapid break-through of
the free-fall method, and discuss the main features of free-fall
gravimeters and strategies for reducing errors. Finally, the
operational stage of absolute gravimetry is demonstrated at the
results obtained with the JILA-gravimeter (Faller-type) operated
since 1986 by the Institut fir Erdmessung (IfE), University of
Hannover.
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2. The pendulum as absolute gravimeter and the Potsdam

Gravity System

Based on the work of GALILEI (1632), and with the pendulum-clock
constructed by HUYGENS (1673), the pendulum could be used for
gravity determinations, with a first result relevant to geodesy
obtained by the measurements of RICHER (1673). At those early
experiments, approximations to the mathematical pendulum -have

been employed.1) We mention the precise determination performed by
Borda and Cassini de Thury in 1792 in the Paris astronomic ob-
servatory, and the transportable device used by Biot in western
Europe in the beginning of the 19th century. The potential of this
constructive solution was exhausted by BESSEL (1828), with a wire
pendulum swinging at two different pendulum lengths (difference
method). The physical pendulum was made operational by KATER
(1818) with the reversible pendulum, and successfully employed

at arc measurements in western Europe and at French and English
marine expeditions. Already at that time, the method of deter-
mining gravity differences with respect ‘to a base station was
prefered, using "invariable" pendulums. The accuracy of the gra-
vity determinations performed in the first decades of the 19th
century may be estimated to be at the order of 100 pms~?

Upon initiative of the "Mitteleuropdische Gradmessung”, the precur-
sor of the International Association of Geodesy (IAG), gravity
measurements were more intensively taken up since 1862. Following
suggestions of Bessel, J. Repsold built a transportable rever-
sible pendulum ‘apparatus, and instruments of this type and simi-
lar ones were used in many countries, during the next 20 to 30
years. But in spite of all efforts, the number of gravity sta-
tions increased rather slowly. So, only 122 gravity values were
available to HELMERT (1882/1884) in order to calculate normal
gravity and flattening of the earth's ellipsoid.

Friedrichﬂgg?ert_gglmggg (1843-1917), who in 1887 became Director
at the Geodetic Institute Potsdam, took up this challenge. By his
position as Director of this Institute, he was already occupied
with gravity measurements in Prussia, beingone task of the Geo-
detic Institute. The problem of a more efficient determination

of the earth's gravity field, in the regional and global sense,
was attacked by him from the theoretical, experimental und orga-
nisational point of view. He revised thoroughly the theory of

the reversible pendulum (HELMERT 1898), started investigations
about the use of elastic springs for gravity measurements, and
immediately recogaized the chance offered by the relative pen-
dulum apparatus developed by VON STERNECK (1887). Improvements

of the Repsold apparatus, studies of the Sterneck apparatus, and
relative gravity measurements between Vienna and Potsdam followed,
in order to transfer the Vienna absolute gravity value to the Geo-
detic Institute Potsdam. The Vienna Gravity System had been intro-
duced by a report presented by Helmert to the 13. General Confe-
rence of the IAG in Paris 1900 (HELMERT 1901). This was the first

1) More details on the historical development and the present
state of gravimetry can be found in TORGE (1989).
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attempt to establish a global gravity standard by few accurate
absolute gravity measurements, and relativa connections between

a number of fundamental stations distributed over the earth
(TORGE 1988). In 1896, preparations for a new absolute gravity
measurement in Potsdam started, and from 1898 to 1904, an abso-
lute determination followed, performed by KUHNEN and FURTWANGLER
(1906). Using five different reversible pendulums, a large number
of observation series after adjustment delivered the famous value
of 9.81274 + 0.00003 ms—?. In a report, prepared by E. BORRASS
(1911), and presented by Helmert to the 16. General Conference

of the IAG in London 1909, 2736 gravity measurements made on 2398
stations between 1808 and 1909, were collected and referred to
the Potsdam absolute value. With the formulation "... die Zahlen
entsprechen denn auch der Gesamtheit aller absoluten Bestimmungen
und werden von uns als 'Potsdamer System' bezeichnet ...".
(HELMERT 1910, p. 110/111) and the adoption of this report by the
IAG, The "Potsdam Gravity System" was established.

This was a solution, which served gravity standardization pur-
poses in metrology, geodesy, and geophysics for the first half of
the 20th century. Relative connections between Potsdam and gra-
vity fundamental stations transferred the Potsdam System to many
national gravity networks. While relative pendulum measurements
served for this transfer and for establishing gravity base net-
works, regional and local interpolation became a task of spring
gravimeters, since the 1930s. In the same time, the Potsdam gra-
vity value was called in question, which finally initiated two
new absolute determinations at the National Bureau of Standards,
Washington (1936), and the National Physical Laboratory, Tedding-
ton (1939). The accuracy of these experiments now reached few

10 pums—?, and revealed the Potsdam value to be 100 to 150 pms~
too high. After 1945 geodesy and geophysics strengthened their
endeavours to establish a new global gravity reference system.
During the 1950s, it became obvious that such a system could be
that the péﬁaaiaa‘aethod had reached its limits (COOK 1965).

Two experiments performed with up-to-date technology, and
thorough discussions of error sources and accuracies mark the
end of the pendulum era. Therevarsible pendulum method (4 pendu-
lum pairs) was applied at the Zentralinstitut flir Physik der
Erde, Potsdam, and gave a standard deviation of + 3 ums~?, and
an agreement of 1 pms ? to the present gravity standard(SCHULER
et al. 1971). The wire pendulum experiment (difference method)

at the Finnish Geodetic Institute resulted in a standard devia-
tion of + 17 ums~—?, but a systematic bias of 59 ums~? remained
(HYTONEN 1972). Main error sources preventing further develop-
ments of the pendulum method are elastic deformations of the
pendulum, and deformations and movements in the knife-edge-
bearing system.
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3. Appearance and advance of the free-fall method

In the 1950s, time measurement technology, with short-term fre-
quency stability of 1079, made it possible, to use the free-fall
method for gravity measurements. This had already been proposed
by GUILLET (1938), and first experiments started in the Bureau
International des Poids et Mesures, Sévres (VOLET 1952).
Improved vacuum technique was the other prerequisite for the
application of this method, as the atmospheric air pressure
effect produces errors of the order 10-3g.

fall method, see also SAKUMA (1984) and FALLER and MARSON (1988):

- Stationary experiments in the 1950s and 1960s, with the length
reference being represented either by the falling body or by
mechanically defined measurement planes, and methods of geo-

- the introduction of optical interferometry (Michelson inter-
ferometer principle), permitting the simultaneous measurement
of position and time and leading soon to an accuracy increase
of one order of magnitude (FALLER 1965, SAKUMA 1963).

all absolute gravimeters operated today. The interferometer is
represented by two corner-cube reflectors, one of them being
the falling body and the other one serving as a fixed reference.
As light source, He-Ne-gas lasers (wavelength 633 nm) are used
exclusively today. Counting the number of interference fringes,
and measuring the time at preselected numbers gives, after sca-
ling with the laser wavelength, the relations between position
and time of the falling body, needed for the calculation of gra-
vity.

LONG PERIOD
SUSPENSION

FALLING

‘é~ CORNER CUBE
REFLECTOR

CORNER y

REFERENCE l
CUBE A v Y
REFLECTOR

¢ L‘ LASER 5

PHOTO
Y DETECTOR

MIRRORV

BEAM
MIRROR SPUTTER

Fig. 2: Michelson interferometer system used at the
free-fall mathod
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is less sensitive to the effects of residual air and frequency-
dependent effects in the electronics, since the same velocity
and fringe frequency occur twice during the flight (SAKUMA
1963, COOK 1967),

the development of transportable free-fall and rise-and-fall
gravimeters since the 1970s with an observation time per sta-
tion between one day and one week. The first instrument of
this type (free-fall, * 0.5 pms~’ HAMMOND and FALLER 1971) was
successfully employed at the establishment of the Internatio-
nal Gravity Standardization Net1971 (I.G.S.N.71), which re-
placed the Potsdam Gravity System (MORELLI et al. 1974),

the operational application of transportable instruments since
the middle of the 1970s, with inclusion of powerful microcom-
puters for on-line evaluation of a large (up to 1000 or more)
number of position/time-measurements during one experiment
(multiposition method).

measurement procedures include:

Reduction of residual air-pressure effects to the 0,01 pms—?
order by evacuating the fall-chamber to 10~4Pa (10-2Pa at
rise-and-fall instruments), which is now done by ion pumps
operated also during transportation. In addition, a co-acce-
lerated chamber is used in the Faller-type instruments, in
order to reduce the residual air drag,

application of long-period isolation devices for reducing the
effects of vertical ground motion resulting from natural and
artifical microseismic on the "fixed" reference corner-cube,

performing of a multitude of experiments per station in order
to reduce residual microseismics by randomization. With 100 to
1000 experiments (the repetition number depending on the
instrument's construction and the local microseismic), an
error reduction by the factor 1/10 to 1/30 achieved.

ments depends on

reproducibility (time stability) of length and time standards,
which are about 10‘9/a for a stabilized He-Ne-Laser, and
10'10/a for a Rubidium frequency standard,

the elimination or sufficient reduction of non-gravitational

dient effects, electrostatic and magnetic effects),

the stability of the reference frame with respect to micro-
seismics and man-made vibrations. A severe problem is the
sensitivity of the interferometer to tilt. While the random
part of tilt effects will only increase the scatter of the
individual results, tilts produced by the measurement process
itself may systematically falsify the results (floor recoill,
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- the electronic_system counting and timing the occurence of
interference fringes. This zero-crossing-detection may con-
tain systematic errors if a frequency-dependent time delay
exists. The rise- and-fall method offers an advantage with
respect to this effect.

From error_analyses, as done for nearly all of the existing
absolute gravimeters (e.g. FALLER and MARSON 1988), one may

state that the random error part of an absolute gravity deter-
mination may be reduced to a few ums~?, and that residual syste-
matic errors amount to 0.03...0.04 pums—?. In addition, the
uncertainties of gravimetric earth tides and polar motion re-
ductions, as well as the gravitational effects of air pressure
and groundwater variations, if not sufficiently reduced, enter
into the results. Finally, when comparing the gravity values
obtained with different gravimeters one has to take into

account the transfer error, between the reference height (about

1 m in most instruments) for the absolute value and the ground
mark used for comparisons. So, the overall accuracy of * 0.1 pms—?
stated for most of the more recent absolute gravity determination,
seems to be realistic. Nevertheless, comparisons of absolute re-
sults obtained with different instruments sometimes show discre-

pancies of some 0.1 pms~?, which cannot be explained by the
apriori error budget. Table 1 gives such an example summarizing
the results from eight different absolute gravimeters, obtained
in the BIPM Sévres, between 1976 and 1986 and reduced by local

gravimetric connections to the point Sévres A.

Gravity at
Instrument Epoch BIPM, Sevres,A Remarks
(pms=?)
9 809 250
IMGC May 1976 + 9.77 rise and fall
June 1976 9.87
Jan. 1977 9.81
March 1977 9.91
April 1982 9.85
June 1985 9.95
BIPM (stat.) 1976 9.90 rise and fall
GABL Sept. 1977 9.94 free fall
Oct. 1981 9.98
Nov. 1981 9.96
June 1985 10.02
JILAG Nov. 1981 9.78 free fall
June 1985 9.99
NIM April 1980 10.04 free fall without
June 1985 10.16 micros.insulation
BIPM March 1982 9.97 rise and fall
(Jaeger) June 1985 9.76
IGPP June 1985 10.13 free fall
JILAG-3/IfE  June 1986 9.75 free fall
simple mean (n = 19) 9.92

Table 1: Absolute gravity measurements in BIPM, Sévres, point A,
after TORGE (1987)
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From table 1, we recognize most of the institutions operating
transportable absolute gravimeters today:

- Istituto di Metrologia "G. Colonnetti", Torino (IMGC),
ALASIA et al. 1982,

- Institute of Automation and Electrometry, Siberian Branch,
USSR Academy of Sciences (GABL), ARNAUTOV et al. 1983,

- Joint Institute for Laboratory Astrophysics, National Bureau
of Standards and University of Colorado, Boulder (JILA),
FALLER et al. 1983,

- National Institute of Metrology, Beijing (NIM), FENG et al.
1982,

- Jaeger S.A., Division Aeronautique, transportable absolute
gravimeter GA -60, operated by BIPM, SAKUMA 1983,

- Institute of Geophysics and Planetary Physics, University of
California (IGPP), ZUMBERGE et al. 1986,

- JILA-Gravimeter JILAG-3, Institut fiir Erdmessung, University
of Hannover, TORGE et al. (1987).

With four more instruments of the last type operated by different
institutions (U.S. National Geodetic Survey/DMA, Geological
Survey Canada, Finnish Geodetic Institute, Institut for Geophysic,
Univ. Vienna), two Japanese developments (Earthquake Research
Institute, Tokyo University, International Latitude Observatory
Mizusawa), and one Jaeger gravimeter handled by the Geophysical
Survey Institute, Japan, altogether 14 transportable devices

have been available in 1988,

Between 1976 and 1988, about 200 stations have been surveyed
world-wide with these instruments, some of them repeatedly.
The different observation campaigns served for the following
purposes:

- testing of new instruments and comparison with other gravi-

meters (e.g. BOULANGER 1983, 1986),

- establishment of large scale gravimeter calibration lines
(e.g.CANNIZZO et al. 1978),

- control of I.G.S.N.71 and establishment of stations for the

planned global absolute gravity network (e.g. ARNAUTOV et al.
1979),

mental gravity networks (e.g. OGIER and SAKUMA 1983, XU SHAN
et al. 1986),

- monitoring of gravity variations with time, related to recent
geodynamic processes especially in earthquake regions
(e.g. HANADA et al. 1985, ZUMBERGE et al. 1986).
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4., Some results obtained with the JILAG-3 gravimeter

of IfE Hannover

Within a cooperative program between the Joint Institute for
Laboraty Astrophysics (JILA), National Bureau of Standards

and University of Colorado (Prof. Faller) and the Institut

fiir Erdmessung (IfE), University of Hannover, and with support
of Deutsche Forschungsgemeinschaft (DFG), Bonn, IfE obtained
one of the recent JILA free-fall gravimeters in 1986. After
laboratory investigations and software improvements, more than
80 gravity determinations on about 50 stations have been per-
formed until October 1988 (approximately 150 QOO individual
experiences, as an example of the present state of absolute
gravimetry (TORGE et al. 1987, 1988).

The JILA gravimeter employs the direct free-fall method, using

a dropping distance of 0.2 m, see Fiqgure 3. There are two re-
markable
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Fig.3: JILA free-fall gravimeter principle

constructive measures in this instrument, the drag-free chamber
and the super-spring. The first one reduces the effect of resi-
dual gas molecules by screening the dropped object in a servo-
controlled, motor-driven evacuated chamber which moves inside
the main vaccum system. The second one isolates the reference
corner cube against ground vibration, through a long-periodic
(T = 30 to 60 s) spring, where the oscillation period is gene-
rated electronically with a spring of 30 cm length. Thus, the
drop-to-drop dispersion is reduced by a factor of 10 to 100.
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The mean wavelength of the two wavelengths freguency-stabilized
He-Ne-laser remains constant to 2 x 10-9/a and is calibrated

regularly with a iodine-stabilized laser. In operation, inclu-

were achieved with 500 to 2000 drops, at observation times of
2 to 6 hours. Fig. 4 shows the microseismic scatter and the

histogram of the residuals, at average station conditions.

150 308
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HAY 1988
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Fig. 4: Microseismic scatter and histogram of the
residuals, station Thule, Greenland

For the HP 9816 process-computer, an on-line program was deve-
loped, which performs the evaluation and all required reductions
(earth tides with * 0.01 pms—?, atmospheric pressure, polar
motion finite, velocity of light inside the interferometer).
Pulse division by 4000 leads to a time counter recording of 200
divided pulses, corresponding to observing time values at 200
equidistant positions of the dropped prism separated by about
1.25 mm (4000 times half the laser wavelength). The microcomputer
performs an on-line adjustment and stores the gravity value: on
flexible disk. One drop takes about 2 s, and for data transfer
and evaluation another 8 s are necessary, thus one experiment is
performed in 10 s. 50 drops per each wavelength (red/blue) are
combined to a sub-set, 10 to 30 sub-sets or more are performed
per_station. The instrument's adjustment is generally controlled
after ten sub-sets. The measurement on one station can be comple-
ted in one day, whereby the measurement process is completely

and ground level is observed with two LaCoste-Romberg gravimeters
equipped with electronic feed-back systems, with an accuracy of
+ 0.01...0.02 pms=*, RODER et al. (1985).

From results, obtained over two years in Hannover, a repeatability
of + 0.1 ums~? has been found, see Fig. 5.
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Fig.5: Gravity values observed over two years with JILAG-3
gravimeter in station 101 (mean value 9.812 633 08ms~?),
IfE Hannover

- Absolute gravity sites, observed with other instruments, in
order to check the accuracy of the instrument. This includes
the BIPM, Sévres (see Table 1), 6 station established with
the Italian IMGC absolute gravimeter (see Table 2), and the
station Potsdam, observed several times with the USSR GABL
gravimeter

Station Epoch JILAG IMGC Diff. Bias-red.
JILAG-3 (pms~?) (pms=?) (pms=2diff.
(pms~—?)
BRAUNSCHWEIG 860327 981 252 9.14 9.23 -0.09 0.04
BRAUNSCHWEIG 870219 981 252 9.30 9.23 0.07 0.20
HAMBURG 860417 981 363 6.56 6.92 -0.36 -0.23
HAMBURG 870326 981 363 6.46 6.92 ~0.46 - -0.33
MUENCHEN 860420 980 723 1.11 1.28 -0.17 -0.04
WIESBADEN 860422 981 036 8.45 8.67 -0.22 -0.09
SEVRES A3 860607 980 925 9.13 9.17 -0.04 0.09
COPENHAGEN 860820 981 495 5.91 5.82 0.09 0.22
BRUXELLES A 870610 981 117 2.65 2.66 -0.01 0.12

Mean: -0.13 -0.02
RMS Difference: £0.22 $0.18

Table 2: Comparison of JILAG-3 observations with IMGC
observations (IMGC observations with IfE gradients),
after TORGE et al. (1987)

- 12 stations (including 4 IMGC sites) of the Gravity Base Net-
work of the Federal Republic of Germany (DSGN76), and of the
1. order gravity network of Lower Saxony, in order to control
the accuracy of these networks, and the relative accuracy of
the absolute gravity values,

DOI: https://doi.org/10.2312/zipe.1989.102.02



12

- 9 stations (including 3 base net stations) on the calibration
line Cuxhaven-Hannover-Harz (KANNGIESER et al. 1983), in order

line,

- 7 gravity stations (including one DSGN76 station) in Southwest
Germany, as calibration standard and for strengthening gravi-
metric control in the Hohenzollern-Graben geodynamic test area,

drift and (eventually) absolute calibration control of the
superconducting gravimeter operated at the Royal Astronomical
Observatory,

- 3 stations of the southernmost Scandinavian gravity land
uplift line for absolute gravity control,

- 5 stations on the Faeroer (1), in Reykjavik, and in Greenland
(3) as control and improvement of the global gravity network,

absolute network,

- 6 gravity stations in northern Iceland, for supporting the

gravity variations of tectonic origin (TORGE and KANNGIESER
1985),

After nearly 3 years of experiments, hard- und software
improvements, and a number of observation campaigns performed
under different and partly extreme conditions, it may be stated
that the JILAG gravimeter can be operated by an expert team in
an almost routine manner, delivering an average station accuracy
of + 0.1 uyms—*. Systematic discrepancies have been found with
respect to the results of other gravimeters, which may be due

to instrumental effects.

5. Conclusions

The following conclusions may be drawn for absolute gravimetry:

- free-fall absolute gravimeters are operational today, with
transportable devices delivering an average accuracy of * 0.1

-2 ‘ . . . .
pms within one day, under optimum conditions,

- larger errors, which are difficult to detect and identity,
may occur under difficult environmental conditions,

- systematic discrepancies between different absolute gravime-

understood. Further comparisons and investigations in this
direction are urgently needed.

Nevertheless, absolute gravimeters can already be employed for
numerous purposes, for delivering the absolute gravity standard,
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and for calibration and strengthening of networks established
with relative gravimeters. If the absolute standard is strived
for, an instrumental control by comparison with other absolute
gravimeter results should be performed. We mention the following

applications:

- Establishment of the International Absolute Gravity Basestation

difference between absolute stations now being about 1000
Hms=?,

- inclusion in regional and local geodynamic control networks,
in connection with relative gravimetry, geodetic space tech-
niques, and levelling,

- calibration of relative gravimeters (field instruments and
recording devices),

- drift control for recording gravimeters.
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THE CONTRIBUTION OF DETERMINATIONS OF GRAVITY FIELD VARIATIONS TO GEODYNAMICS .
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by E. Groten and M. Becker
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Technische Hochschule Darmstadt
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Abstract

Present high-precision (* 1 cm and better) techniques such as VLBI, SLR, LLR
etc., yield deformations of the earth’s surface related to more or less
arbitrary geodetic datums. Moreover, these basically relative and geometrical
methods give uplift and subsidence with respect to an arbitrary ellipsoid which
has no fundamental physical meaning. Precise relationship with respect to the
gravity field in terms of level surfaces etc. implies very precise gravity
control in terms of repeated gravimetry or similar techniques. From a variety of
such experiences we meanwhile know accuracies, perturbations, unresolved
problems and special requirements of such measurements. Typical examples are:
(1) the Paris micronet measurements, (2) the international D-meter campaign
(locally), (3) the Turkey-testnet (regional), (4) the A-B-C-profile and
Fennoscandia (large scale) and (5) the Norway experiment (man-made effects). A
variety of perturbing effects such as load-tide still needs further
investigation in order to achieve accuracies of a few microgal in these cases.
Further projects such as (a) Northern India and (b) the African experiment are
described. The necessities of combining relative gravimetry with absolute
gravity observations, geometrical measurements and local observations such as
tilt- or tube measurements in order to eliminate local perturbations are
discussed. A critical review and a detailed outlook on the contribution of
gravimetry to monitoring tectonic plate motion and similar geodynamic aspects is
given.

1. Introduction

Repeated relative gravity has meanwhile achieved an accuracy which makes it
compatible with modern space techniques such as VLBI, SIR etc. Whenever tidal
loading effects are available so that associated reductions can be made with
sufficient accuracy and scaling by relating relative gravimetry to a few
absolute gravity stations is feasible we can obtain, by using simultaneously 10
or so gravimeters, resolution of the order of * 10 microgal even under
unfavorable conditions, which corresponds to about * 1 cm or so in vertical
displacement. Over shorter distances and in more favorable conditions it can be
much better: Thus we may summarize our results as follows: (1) in the BIPM
(Paris) indoor a micronet resolution of about * 1 microgal was achieved and
corroborated by repeated observations, (2) in the International D-meter campaign
over distances of 100 km about * 2 microgal was obtained; (3) in a local network
in Anatolia for geodynamic purposes over 30 km about * 4 microgal were found in
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several repetitions; (4) in the Fennoscandian uplift experiment over two decades
resolution of similar type was reached over much longer distances; (5) under
quite unfavorable conditions in Southern Norway resolution of about + 5 to * 6
microgal is achieved; (6) under extremely unfavorable conditions in the high
Andes accuracy of * 5 (by train) and * 10 to 12 microgal (by car and aircraft)
were found for long distances. By applying a 3 sigma rule 30 microgal would be
available as an accuracy limit today. In all north-south or mountain experiments
calibration can pose a problem unless zero-network-techniques are applied. For
verification in the norwegian experiment tilt measurements using vertical
pendulums around the project area are used; level measurements by using tubes
can mainly be used in a similar fashion (averaging out local perturbations) in
underground experiments.

By repeating gravity observations we obtain gravity variations with time besides
relative gravity values themselves. As VLBI, SLR, GPS etc. yield ellipsoidal
height variations the tranformation into orthometric height variations has to be
done using gravity data. Thus gravimetry serves a double purpose.

2. The present state of relative gravity networks

The instrumental error sources of the LaCoste gravimeters used in high precision
gravity work are well known and are analyzed in numerous papers, see (Groten,
1983) or (Becker, 1984) for a review. From these investigations the following
figure describing the effects of the instrumental errors can be deduced.

Hgpl
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30 screw-errors LCR model G

20+ reading,levelling,
cldmping, voltage,
hysteresis
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Fig.1 INSTRUMENTAL ERRORS OF LACOSTE GRAVIMETERS
VERSUS GRAVITY DIFFERENCE
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However, in the analysis of data gathered in field surveys of various networks
often a clear association of the residuals with a certain error source is hard
to find. In spite of rather sophisticated modeling the different effects are
obscured and the adjustment results in an error estimate which is depending on
‘the effectiveness of certain error source-types in the network under
consideration. Based on the experiences at the Institut of Physical Geodesy we
would like to demonstrate the potential of gravity measurements in a number of
quite different applications and, what is also important, using different
instruments.

The BIPM micronet for connecting the sites of absolute gravity measurements is
an example of an almost ideal situation where the utmost precision should be
obtainable. The sites are indoor in one house, the temperature is rather stable,
gravity differences are below 1 mgal and the only remaining unknown error surce
are possible magnetic effects for different gravimeters used. Detailed analysis
are published in (Becker, 1983, 1985), (Boulanger, Faller, Groten, 1986). In
general the accuracy of the adjusted gravity differences in both the 1981 and
the 1985 campaigns was about 0.8 ugal for a combined adjustment of 6 to 14
instruments and about 1.4 pgal for single instruments in the average, see Tab.
1. However, the averaging of several gravimeters is a must because systematic
discrepancies between instruments of up to 10 pgal for an adjusted gravity
difference may occur.

year 1981 1985
free net gravity
value accuracy [pgal] + 0.9 +0.4%
number of observations 274 667
number of sites 5 6
vertikal. gradient
accuracy [pgal] +1.3 + 0.8
number of observations 190 706
number of sites 4 6
number of gravimeters 6 14
* For single instruments between 0.3 to 3.3, 1.5 ugal
in the average

Tab. 1 BIPM micronet accuracies

With the broader use of electrostatic feedback systems, see (Harrison and Sato,
1984), (Vaillant et al., 1986), for field measurements with LaCoste G- and D-
meters the situation is not changed dramatically. As the results published in
(Réder and Wenzel, 1986) show, the accuracy of feedback-instruments is slightly
better whereas the internal precision should obviously be the same as for
properly operated standard gravimeters. However, there still are systematic
discrepancies of 4 to 8 ugal between single instruments. v

An other outcome of these campaigns of BIPM was the fact, that great care has to
be taken in choosing the observation sites and identifying the exact locations.
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Mass distributions of pillars and walls can cause horizontal gradients of 10
pgal/m and variations just as big in the vertical gradient.

At the occasion of the JAG D-meter campaign in 1983, where 12 LaCoste Model D-
gravity meters were used, it was demonstrated that accuracies of one to two ugal
for the adjusted gravity differences can in principle be obtained also under
field conditions with longer transportation times and larger gravity
differences. As shown in the detailed analysis (Becker, 1984) several
gravimeters reached the same precision in indoor calibrations and on the 200
mgal calibration line Hannover-Harz. This however is a special case where
extraordinary efforts in design of measurements, site selection, transportation,
number of observations and modeling were undertaken.

In general and especially with Model G gravity meters, which have to be used in
case of larger gravity differences, the results in networks for monitoring
gravity changes were found to be less accurate than calibration measurements. In
the sequel we will compare the results of three different projects of this type,
namely the monitoring net across the North Anatolian Transform Fault (NATF), the
net at the Blasjo-artificial lake and the Southamerica Geodynamics Profiles.

The plate motion situation in Turkey is discussed in detail in (Jackson and
McKenzie, 1988). Although the main movements along the NATF are horizontal
displacements, see e.g. (Jackson and McKenzie, 1988), there is evidence from
geomorphology for considerable height changes. The gravity net extends across
the fault and since its installation in 1982 four main repetitive observations
took place. Due to the North-South extension and mountain ranges the "zero-
network type", where all gravity differences are smaller than 1 mgal and so
minimizing the calibration errors, could not be used. Tab. 2 gives the
accuracies obtained in the various campaigns using 2 gravity meters.

year 1982 1984 1985 1986

free net gravity

value accuracy [pgal]) 2 + 3 +3 + 4
number of observations 204 162 142 90
number of stations 9 10 10 14

Tab. 2 Accuracies of Turkey network

In the analysis of gravity variations, see (Aksoy et al., 1988), the variations
of 0-10 pgal turned out to be insignificant and not caused by a systematic
height or gravity change. This result is corresponding to other geodetic studies
indicating a phase of inactivity for this region of the NATF. Here repeated
gravity measurements were successful in verifying that no significant changes
occured till now. The network is considered to be a densification of the
WEGENER/MEDLAS-project as soon as the GPS determination of coordinate variations
associated with gravity changes are carried out.

Whereas the net mentioned above is designed to monitor changes by geophysical
processes man can not affect, the situation at the Blasjo lake is different.
Here the gravity and height changes -associated to the filling of Nothern
Europe’s biggest reservoir shall be monitored. As, e.g., the investigations of
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Lambert et al.(1986) show, rather complicated phenomena, like uplift together
with increasing gravity are occuring in connection with those artificial man
made changes. Therefore Blasjo is a rather universal object also for studies of
seismicity, tilt-changes and loading effects. In addition to the gravity network
shown in Fig. 2 precise levelling was performed in parallel to the gravimeter
measurements and on the same sites, see (Becker et al., 1988) for details and
first results. Moreover in the 1988 campaign a GPS-network was added for the
first time in order to check the geometrical deformation independently. Statens
Kartverk, the Norwegian Mapping Authority, observed the net with two Ti4100 and
two Trimble receivers. As we want to focus on the potential of gravity
measurements here, Tab. 3 gives the accuracies obtained in the different
campaigns. In spite of the fact that the net in view of gravity differences and
distances is very similar to the NATF net in Turkey the accuracy is somewhat
lower.

year 1985 1986 1987
free net gravity

value accuracy [pgal] + 4.5 t6.5 t 4.5
number of observations 457 539 300

number of sites 28 30 16

number of gravimeters 6 5 4

Tab. 3 Blasjo gravity-monitoring network accuracies

This is probably due to severe environmental disturbances from heavy wind and
hard rain prevailing in this area during most of the observation days in all
campaigns. Another reason may be helicopter transport to the external reference
stations where the elimination of vibrations was not perfect. Comparison of the
gravity values of different epochs revealed significant changes in some
stations, however, part of these changes is due to the direct attraction affect
of the changing water mass which until now we could not yet compute. Gravity
variations due to subsidence or uplift will be determined after application of
these corrections and using lake-levels with maximum difference.

The third example to be presented is conceptually different. In order to monitor
the uplift associated with the subduction process at the active continental
margin in Western Southamerica the "ABC-Profiles" connecting stations in
Argentina, Bolivia and Chile are extending over distances of more than 1000 km,
over height changes of more than 4500 m and gravity differences of up to 2 gal,
see Fig. 3 and (Becker, Groten, Gao, 1985) for details. The figures mentioned
above already indicate that the measurements are affected by quite a number of
disturbances. There are among others rapid pressure and temperature changes due
to aircraft transportation and height variation, vibrational effects in
aircrafts and on roads without pavement, no daily drift control on the longer
profiles etc. In contrary to the- small networks cited above, where relative
short transportation times and a proper observation scheme can minimize errors
due to imperfect tidal corrections, in this large network tidal parameters and
ocean tidal loading have to be considered carefully.

The ABC profiles were observed first in 1984 and in 1987 and 1988 the first
repetition was completed using 4 to 8 gravity meters in parallel.
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Further gravity monitoring projects in geophysically interesting areas are
planned for the northwestern Himalayas, where the convergence of the Indian and
Eurasian plates produces motion rates of about 2-4 cm/year horizontally and 1 cm
vertically. Combined GPS and gravimetric traverses across the main faults are
designed to determine the actual deformation in the area described in view of
the gravity field in (Verma and Prasad, 1987).

A project in Sudan and Nigeria with high precision gravity measurements is under
consideration in view of the completely different geophysical structure
prevailing in these african countries; this area is at the southern and of the
WEGENER-MEDLAS -project.

Summarizing the experiences in the various applications Fig. 4 it may be deduced
in order to demonstrate the potential of gravimetric observations for
geodynamical purposes and for combination with other techniques.
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3. A comparison of station location with the gravity field

It is well known that relative maxima and minima of the Bouguer field are
considered in geophysics as indicators of local subsidence and uplift,
respectively. In that case, of course, long-range trends have to be removed.
This is quite important in high-mountain areas such as the high Andes. In order
to demonstrate the last mentioned fact we undertook a low-pass filtering of
Rapp’s (1981) global spherical harmonics expension of degree n<l80 using the
Stokes kernel in spherical harmonics form as a low pass filter (n-1)"!. The
result is formally called a geoid for the area under consideration; the first
degree and a conventional normal gravity field were subtracted. Fig. 5 shows the
result. By subtracting, in addition, the global topography in spherical
harmonics up to the same degree we obtained what is called analogously a
"Bouguer geoid" for the area under consideration. It is consequently based on a
spherical Bouguer correction which differs significantly from the flat Bouguer
anomaly which will be applied for regional purposes below; this is shown in Fig.
6 and clearly reveals the mass deficit of the isostatic "roots". The trend
corresponding to these "roots" is formally eliminated by applying an isostatic
correction of Airy-Heiskanen type with a depth of compensation T=50 km which is
justified lateron; see Fig. 7 for the associated "Isostatic geoid".

‘The comparison of the trends inherent in these figures justifies the use of
isostatic and trend-removed Bouguer maps. As we aimed at a somewhat shorter
wavelength of about 50 to 40 km we used for the detailed comparison the
expansion of degree n<360 by Rapp et al. (1986), Model E; it is here called OSU
86. Its deviation from (Rapp, 1981l) is significant only in some parts of the
area under investigation. This is demonstrated for free-air, spherical Bouguer
and isostatic "geoids" (low-pass-filtered gravity fields as described before).
Figs. 8 to 14 contain, together with the main stations of our geodynamic
network, the free-air (81 and 86), Bouguer (flat plate (81 and 86), flat refined
["ref."] and spherical (8l)); and isostatic (81) "geoids". The free-air and
Bouguer data reveal relatively small deviations from each other.

In order to illustrate the trends we took the recent GEM Tl low-degree expansion
and plotted the free air gravity field and the associated geoid; see Fig. 15 and
16. This effect should have been subtracted from the local representation but it
is seen that it is quite regular in the area under consideration and therefore,
does not affect the aforementioned comparison sensibly or significantly.

We used the "geoids" here instead of the gravity maps which better reveal the
local part because in the graphical representation its illustration and
visualization is easier to understand in the low-pass filtered form. For the
detailed comparison, of course, the gravity field itself is of interest. Fig. 17
to 22 show, for a basically qualitative comparison the area under consideration
together with the main stations, the free air (81 and 86), Bouguer (flat, flat
refined ["ref.") and spherical ["SPH"]) for 81 and the isostatic (8l) gravity
fields. All our isostatic data are related to compensation depth 50 km.

We may conclude from this comparison that we succeeded only to a certain extent
to locate our geodynamic stations at local Bouguer minima and maxima. The reason
is, to some degree, to be seen in logistic, topographic and other practical
difficulties.

Local comparison:
For the Northern part of Chile, Argentina and Southern Bolivia where a densified

gravity network together with GPS-observations was established we had for a
similar, but more intensified, study a recent gravity survey made by Goetze
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(1986) at our disposal. As these data did not enter Rapp’s combination solution
they enable an independent check with each other which gives interesting insight
into the accuracy of Rapp’s results. Figs. 23 to 25 show Goetze's free air,
Bouguer (flat plate) and isostatic (compensation depth of 40 km, Airy-Heiskanen
model) gravity fields for this local part. Even though a detailed trend analysis
of the field reveals that a trend-removed Bouguer field significantly deviates
from the isostatic field it seems to be justified to base our considerations on
the isostatic field.

For reasons of accuracy interpretation we show in Figs. 26 to 28 (for the same
local area) the same gravity fields (free air, Bouguer, flat plate and
isostatic) where the isostatic compensation depth was, however, 50 km. By
comparing both fields the similarity of principal parts of the field are obvious
but significant deviations do exist between Goetze's and Rapp's 86-solutions. In
this case the errors inherent in Goetze'’s solution should be negligible in spite
of distortions in elevation, absolute gravity references etc. In order to
compare the influence of the selected depth of compensation in the isostatic
field we plotted in Figs. 29 to 32 the gravity field for four different depths
T=0,30,50 and 80 km corresponding to Rapp’'s 8l-solution. The direct comparison
corroborates, to some extent, the compensation depths 40 to 50 km chosen by
Goetze and us, respectively. An analogous comparison with the Rapp-86E-solution
yields basically the same result.

It is surprising to see, on inspecting the data, that the free air gravity field
is not as strongly correlated with the terrain as is expected. The actual
gravity deviates obviously in a significant way from the isostatic model, as was
already outlined in connection with Fig. 6. But isostatic compensation appears
to be overwhelming, in principle.

In Figs. 33 and 34 we chose an even more detailed representation with all GPS-
gravity sites (where GPS- and gravity-data where measured) and compared it with
isostatic (T=50 km) and Bouguer fields based on Rapp’'s 86-data.

It is noteworthy that the vertical gravity gradient varies in the area under
consideration by up to five percent or even more around the normal value. With
elevations of up to 5000 m associated differences between conventional geoidal
and modern surface anomalies differs by more than 50 mgals.

4. Conclusions

Microgravimetry is hampered by non-uniqueness problems. With new fast and
efficient high-precision space techniques such as GPS, VLBI etc. the non-
uniqueness problem can be solved and gravity plus geometry is able to attack
four-dimensional boundary value problems by fully exploiting the substantially
increased accuracy and reliability even under unfavorable conditions, of modern
gravimetry.

Geophysical interpretations of gravity fields for detecting areas of uplift and
subsidence is, to some extent also hampered by, slightly different, non-
uniqueness problems. Insofar it is non a full alternative to the geodetic
approach of repeated observations, as far as vertical motion is concerned.

We tried to focus here particularly on the question, to what extent presently
available global gravity models of high resolution (degree of harmonics n<360
etc.) are reliable enough, in areas where the combination solutions are
particularly poor, for such an interpretation. Our very comprehensive and
detailed comparison based on eventually independent data (this is in contrast to

DOI: https://doi.org/10.2312/zipe.1989.102.02



27

most present similar studies) shows that in an area which also Rapp and other
experts consider as an area of a poorly determined gravity field (Northern

Argentina) such models cannot yet replace terrestrial surveys dedicated to these

purposes.

As far as time-dependent boundary value problems (BVP) are concerned (Groten and
Hausch, 1986) we have to clearly distinguish between the deformations of the
earth’s surface and the associated deformations of level surfaces where the
latter are usually only about ten percent of the first ones; as long as the

accuracy of observations of the surface deformations are not much better than
ten percent of the deformations themselves there is often little meaning in

solving the BVP for the level surfaces.
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Fig. 9 Free-air-geoid, computed by spherical harmonics of degree 360 (OSU86E)
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Fig. 12 Refined-Bouguer-geoid, computed by spherical harmonics of degree 180
(RAPP81)
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Fig. 17 Free-air-anomalies, computed by spherical harmonics of degree 180
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Fig. 20 Refined-Bouguer-anomalies, computed by spherical harmonics of degree
180 (RAPP81)
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Fig. 21 Spherical-Bouguer-anomalies, computed by spherical harmonics of degree

180 (RAPP81)
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Isostatic-anomalies, computed by spherical harmonics of degree 180
(RAPP81),

Fig. 22
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Fig. 26 Free-air-anomalies, computed by spherical harmonics of degree 360
(OSUB6E)
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Fig. 27 Bouguer-anomalies, computed by spherical harmonics of degree 360
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Fig. 29 Isostatic-anomalies, computed by spherical harmonics of degree 180
(RAPP81), beginning with n = 2
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EQUILIBRIUM FIGURES IN GEODESY AND GEOPHYSICS

Helmut Moritz

Technical University, Graz, Austria

Abstract: Already around 1960, geodetic satellite observations
have shown that the earth cannot be in exact hydrostatic
equilibrium. Nevertheless, hydrostatic earth models are useful
reference figures for geophysics.

There is an enormous literature on geodetic equilibrium
figures, but the various works have not always been interrelated,
also for linguistic reasons (English, French, German, Italian,
Russian). The author attemps to systematize the various approaches
and to use the standard second-order theory for a study of the
deviation of the actual earth and of the equipotential reference

ellipsoid from an equilibrium figure.

Zusammenfassung: Bereits um 1960 zeigten die Ergebnisse geoddtischer

Satellitenbeobachtungen, daB die Erde nicht in exaktem
hydrostatischen Gleichgewicht sein kann. Nichtsdestoweniger sind
hydrostatische Erdmodelle natlirliche Bezugsfiguren fiir die
Geophysik.

Es gibt eine auBerordentlich umfangreiche Literatur iliber
geoddtische Gleichgewichtsfiguren, aber die verschiedenen Arbeiten
sind oft ohne gegenseitigen Zusammenhang, auch aus sprachlichen
Grinden (Deutsch, Englisch, Franzdsisch, Italienisch, Russisch).
Der Verfasser versucht, die verschiedenen Verfahren vereinfachend
zu systematisieren und die Standardtheorie 2. Ordnung auf die
Untersuchung der Abweichungen der tatsdchlichen Erde und des

Niveauellipsoids von einer Gleichgewichtsfigur anzuwenden.

DOI: https://doi.org/10.2312/zipe.1989.102.02



59

1. Introduction

At present, interest in terrestrial equilibrium figures is
very low indeed. The last major textbook in physical geodesy
that extensively considered equilibrium figures was (Ledersteger,
1969) , whereas (Moritz, 1980) does not even mention them.

The reason is that one of the first results of satellite
geodesy, already around 1960, was a value of the earth's
flattening £(=1/298.25) which was incompatible with the
hydrostatic value of 1/297.34 (Bullard, 1948); cf. also
(Heiskanen and Moritz, 1967, pp. 340-341). This discrepancy shows
that the earth cannot be in hydrostatic equilibrium.

The equipotential ellipsoid which underlies the médern
definition of a Geodetic Reference System, from the International
Gravity Formula 1930 to the Geodetic Reference System 1980
(Moritz, 1984), is not an equilibrium figure either.

On the other hand, a hydrostatic earth model continues to
be the reference for the geophysical theory of a rotating and
oscillating elastic earth; cf. (Melchior, 1983, sec. 6.2; Moritz
and Mueller, 1987, sec. 4.2).

Here we have three unrelated facts: earth not in hydrostatic
equilibrium, nonhydrostatic geodetic reference, hydrostatic geo-
physical reference, which call for interrelation; and the basis
for this continues to be a precise theory of a hydrostatic earth.

Since the time when Clairaut published his fundamental
equation in 1743 to about twenty years ago, the problem of
terrestrial hydrostatic equilibrium figures has fascinated the
attention of mathematicians, geophysicists, astronoﬁers and
geodesists alike, producing theoretically highly interesting
and practically very useful results. There remains the curious
fact that these works have not always been interrelated. The
practically oriented literature in English has frequently taken
little notice of great theoretical advances published in French,
German, Italian or Russian.

The present paper attempts a review of various approaches.
It does not pretend anything like completeness and should be

regarded as a first approximation only.
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2. Clairaut's Equation

The theory of spheroidal figures of equilibrium is governed
by the famous differential equation of Clairaut, published in
1743:

r2

Q
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R o

+i[9-—1Jf=O. )
D

mlm
R L))

foN)
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~
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Here the earth is considered a rotationally symmetric body;

the surfaces of constant density g (which are at the same
time surfaces of constant gravity potential W , sée below) ,
are slightly flattened spheroids which at a first approximation
might be identified with ellipsoids, of semimajor axis a ,

semiminor axis b and mean radius r , so that
= f(r) (2)

represents the flattening. The mean radius r , so to speak,

labels the internal equipotential surfaces, so that also
p = pl(r) (3)

holds. Finally,

r
.

D == |p(r)r 2ar' = D(x) (4)
3
a

denotes the mean density inside the surface p = p(x) , which

for the present purpose may even be regarded as a sphere. As

an integration variable, r 1is denoted by r' , a distinction
which we shall later drop, using r also as integration variable
when no confusion is likely.

Clairaut's equation is an approximation linear in f ;

terms of order f? are neglected. For contemporary accuracy,
second-order terms must be retained, leading to the second-order

theory to be discussed in sec. 6.
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The standard derivation of (1) is the one given, e.g. in
(Jeffreys, 1970, sec. 4.03). It will also be used in sec. 6,
so that here we can limit ourselves to a brief sketch.

The fundamental equation of hydrostatic equilibrium is
dp = pdw , (5)

p denoting the pressure, p the density and W the gravity
potential already introduced. An immediate consequence of (5)
is that

W = W(p) . (6)

the potential is a function of density only, so that the surfaces
of constant density, p = const., are also equipotential surfaces
W = const. In the sequel, we shall simply speak of equisurfaces.

Now the internal gravity potential is brought into a form
W(r,8) = W,(r) + W, (r) P, (cos®) , (7)

where & denotes the spherical colatitude (spherical polar
distance); because of rotational symmetry there is no dependence
on longitude A . Note that r denotes the mean radius as above.

Since p = p(r) , it follows from (6) tggz_élso W must
only depend on r, so that

W,(r) =0 ; (8)

P, (cos 8) denotes the usual Legendre polynomial of second degree.
The condition (8) leads to

r x
5
_ £(x) Jprzdr ¢ L de(fr) ar +
r 5r dr
0
R (9)
+lr2Jp£dr +E L e .
5 dr 8 1G

DOI: https://doi.org/10.2312/zipe.1989.102.02



62

Here r behind the integral always indicates the integration
variable; it should have been correctly denoted by r' as in
(4) . The symbol R stands for the mean radius of the earth,
R = 6371 km, w denotes the earth's rotational velocity and
G the gravitational constant as usual.

By skilful manipulation of (9) both integrals can be
removed by differentiation, resulting in (1).

The further treatment of (1) by Radau's classical trans-

formation leads to the famous result
_2(y 2 |\6m_ '
J, —-3—(1 = 55 11}1 ' (10)

which, supplemented by second-order terms, permits the

computation of the second-degree zonal coefficient

(11

from the quantity

_Cc-A
H === (12)

very precisely known from astronomical precession. The notations
are standard: C and A are the earth's principal moments

of inertia (polar and equatorial), M denotes the earth's mass
and a 1its mean equatorial radius.,

Now, J, 1is directly related to the flattening by
. 3 1
£ —EJ2+§m+o(f2) ' (13)

O(f?) denoting terms on the order of £? or higher and

n o= ola (14)

the very small ratio of centrifugal force at the equator to

normal gravity at the equator, Y, -
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Before the advent of artificial satellites, the flattening
f was computed by combining egs. (10) and (13), since J, could
only be computed indirectly from H by (10), presupposing
hydrostatic equilibrium.

The artificial satellites made J directly observable,

2
which lead to the discrepancy mentioned in sec. 1, and to the
consequent waning of the geodesists' interest in equilibrium
figures, in spite of papers such as (Khan, 1968, 1969;

Nakiboglu, 1979; Denis and Ibrahim, 1981).

3. The Method of Integral Equations

The mathematically rigorous treatment of equilibrium
figures goes back to the French mathematician Poincaré (1885)
and to his contemporary, the Russian mathematician Liapunov.
Whereas Poincaré concentrated his research on homogeneous
equilibrium figures (density p = const.), Liapunov (1904)
studied heterogeneous figures as well, thus providing a rigorous
justification of Clairaut's theory.

Lichtenstein (1933) continued Liapunov's work and tried
to simplify it, but his attempt to achieve perfect mathematical
rigor still makes his book extremely difficult to read, so that
his work, also because it is written in German, has shared the
fate of Liapunov's researches of being largely ignored by the
geodetic and geophysical community.

Their result may be described as follows: Consider a
nonrotating heterogeneous mass in hydrostatic equilibrium of
arbitrary density distribution in the absence of external forces.
The density is subject only to the natural condition of being
positive and non-decreasing towards the interior. In this case
it can be proved that the configuration must be spherically
symmetric: p = p(r) 1is an arbitrary (in the above sense) function
of the radius r of the spherical equisurfaces.

If this configuration is subjected to a "sufficiently slow"
rotation, then a spheroidal equilibrium figure exists which is
"close" to the original spherical configuration and possesses

the same density law p(r) , r now denoting the mean radius
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of the equisurfaces. In other words, Liapunov ahd Lichtenstein
proved the existence and uniqueness of an equilibrium figure
"in the neighborhood" of a given spherical mass configuration.
To be sure, "smallness" of the angular velocity .w 1is to be
considered in the mathematical sense, without implying that
the earth's actual rotational velocity is "sufficiently small"
in this sense. The author does not know whether the required
extremely laborious estimates for this purposes have ever been
performed numerically.

In a sense, Liapunov and Lichtenstein achieved for Clairaut's
problem essentially what Hormander in 1976 did for Molodensky's
gravimetric boundary value problem (cf. Moritz, 1980, sec. 51):
a proof of existence and uniqueness under certain mathematical
restrictions.

It would be presumptuous in this paper to even give a
mathematical description of the proof, so the reader is referred
to Lichtenstein's book.

The basis of the proof, however, is a linear integral
equation, which has a certain analogy with Molodensky's famous
integral equation and may, therefore, interest the geodetic
reader. Hence we shall attempt to sketch a simple geometric
derivation of Lichtenstein's fundamental integral equation.

Consider a nonrotating spherically symmetric mass I ,
and submit it to a rotation with angular velocity w which

deforms it into the spheroid S . Denote by ¢ = QP the

distance of a "new" equisurface from the corresponding "old"
one. The deviation < satisfies an integral equation which
can be found as follows (Fig. 1):

Denote the "normal" gravity potential of the spherical
configuration by U and that of the actual spheroidal
configuration by W . The potential U is purely gravitational
(nonrotating!), whereas W includes the centrifugal force.

The effect of the configuration change, spherical to
spheroidal, consists of three parts:

(1) The volume element dv , containing the density
p' = p(r') , is moved from Q' to P' . Thus p' 1is now at

P , whereas the new density at Q' is
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-
—

e o e =

Xy
P’
/
/
rotating
spheroid
(boundary)
S
Figure 1. Rotation deforms a sphere into a spheroid
1 - Ep_' )
P FE
" Thus the total effect of the change at the potential at point
Q 1is
- 0" 1 15
o [[ferier fav - )
v
The meaning of £ , r' and ¢' 1is seen from Fig. 1, G denoting

the gravitational constant and v the volume of I .
(2) The effect of the "bulge" (positive if S 1is above I ,
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negative otherwise) can be considered as a surface layer on
the sphere I , with surface density p'z' (the integration
variable is denoted by a prime even if the integration point

is on I ). This gives the contribution

GH;-p-}ldz - (16)
z

(3) The centrifugal potential

Tut (2 + %) . (17)

Adding (15), (16), and (17) to the normal potential U(Q)
gives W(Q)

e =ov@ -6fferE fav

v

+GH;'p'%dz s 2ot ey (18)

[3e]

Now we perform the transition Q-+ P , getting

W(R) = W(Q) + 3Wc =W - gt . (19)
By the very definition of the equisurfaces, W(P) and
U(Q) are functions of r , the radius vector of the sphere
passing through Q , which is identical to the mean radius vector
of the equisurface passing through P . Thus

W(P) - U(Q) = v(r) (20)
is a small function of r only, of which we can dispose

suitably.

Combining all these equations we get
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o~

'
- gg - G [IIQ'%%T dv + G [[;'p'% dz +
v z
(21)

w2 (x%2 + y?) - v(r) =0

+
[T

This fundamental integral equation for ¢ has been derived
rigorously in (Lichtenstein, 1933, pp. 97-101). Note that it
is extended over the original spherically symmetric configuration.
Lichtenstein (1933, p. 22) has also shown that equilibrium
figures must be symmetric with respect to the equatorial plane
(the xy plane in Fig. 1). If, in addition, we assume rotational
symmetry (this is not necessary but natural), ¢ must have the

form

g = gcm (r) P_ (cos6) , (22)

containing only even zonal harmonics. (The existence of odd zonal
harmonics in the geopotential is another indication of the earth's
deviation from hydrostatic equilibrium!)

Limiting ourselves to the first approximation, we thus have

t = g,(r) + g,(r) B, (cos )
This is substituted into (21). Now the integrations can be
performed, taking the orthogonality of spherical harmonics into
account. We then find that cn(r) can be made zero by selecting

fo(x) = Tutr? (23)

whereas for t, we obtain the integral equation

i xr
s (1) (o arG |1
46 —; [p(r )r'?dr' - _%_ = [p(r')d[r'“;z(rﬁ]
0 0
N , (x') S
r
+ r? Ip (r)a [——2.—-——]} v 1p2rz = o,
T 3
r
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which is easily seen to be basically identical to (9). This

provides another method for deriving Clairaut's equation.

4. The Geometry of Equilibrium Surfaces

Clairaut's equation (1) for the basic geometric quantity,
the flattening £ , is a homogeneous differential equation.

Homogeneous differential equations (with right-hand side
zero) with independent variable t , time, correspond to free
motion, as opposed to forced motion. In the present case, the
independent variable is the radius r rather than time, but
the argument may indicate that the geometry of the equisurfaces
for equilibrium figures seems to have a considerable autonomy.

This idea was thoroughly investigated in the fundamental
book (Wavre, 1932). Since it is little known in the English-
speaking scientific community, we shall briefly outline Wavre's

theory of stratification of equilibrium figures.

4.1. Stratification of Equisurfaces

Let S(t) denote the set of equisurfaces (surfaces of
constant density and of constant potential), as a function of
a parameter t (there is no danger of confusing it with timel!).
The parameter t thus "labels" the individual equisurfaces
and could, in principle, be selected in many ways. Formerly,
we have labeled the equisurfaces by its mean radius., r , but
in Wavre's theory it is more convenient instead to take the
parameter t as the semiminor axis of the spheroidal equisurface
under consideration. (This is well known since the ellipsoidal
coordinate u also has this character, cf. (Heiskanen and
Moritz, 1967, p.40)). For the limiting ("free") surface S we
take t =1, so that S = S(1) .

We again assume rotational symmetry about the z-axis,
knowing already that the stratification must also be symmetric
with respect to the equatorial plane (invariance for 2z +» =-2z) .
Thus we have no dependence on longitude A ; as latitudinal

coordinate we take a parameter & that labels the plumblines
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as indicated in Fig. 2.

z(9=0)
[}
plumbline V=7,

plumbline J=-3, >,

free surface S=S(1)

S(t+dt)

equisurface S(t)

xy (¥=90°)
Figure 2. The géometry of stratification

Since the equisurfaces t = const. are not parallel, their
infinitesimal distance dn differs, in general, from dt . We

put
= = N(t,e) , (25)

where the function N is unknown a priori. Note that N is
always positive (from geometry), dimensionless (by our choice
of units) and equals 1 on the axis 6 = 0

Since, by definition, the potential W depends on t only,

we have for gravity

- W _ _dawdt _ _1dw (26)
g an dt dn N at -
Hence
aw _ _
St = -9N = W' (t) (27)
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is a function only of t , although g and N depend also on
6 . In other terms,

(gN)ei = (gN)ez ; (28)

the product gN is independent of 8 along an equisurface S(t).
Since (28) is an identity in t , it can be differentiated:

2g av| _ [agy, ooN :
stV * 95T seN + 9% . (29)
5, 8,
Now by (25),
39, _ 9g dn _ 439
at an dt Nan ! Uelt),

and Bruns' formula (Heiskanen and Moritz, 1967, p. 53) gives

%% = -2Jg + 4nGp - 2uw® = -2Jg - £ , (31)

calling with Wavre
f = -41Gp + 20% (SAW!) (32)

the "transformed density"; it is nothing else than the result
of applying the Laplace operator A to the gravity potential
W , and the reader will recognize Poisson's equation. In (31),
J denotes the mean curvature of the equisurfaces.

Substituting (31) into (30), and the result into (29), we
obtain after some elementary computations, also using (26), Wavre's
fundamental formula

£(t) (2JN - alnN/at% - (2JN - BlnN/at%
= 2 1

= (33)
W' (t) N? - (N2
( %2 ( h

This equation is remarkable in that it provides a neat separation

of the geometry and the physics of equilibrium surfaces: the
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left-hand side, containing physical quantities such as density
p and potential W , depends only on t , whereas the right-hand

side depends only on the geometry of stratification (J,N) ' and

is independent of the density distribution!
4.2. Wavre's Theorem

Put for the left-hand side of (33)

v(e) = HEL (34)

Then (30), using (26), (31) and (34), can be brought into the
form

Fle

= -2JN + ¥N? , (35)

Qj=

which again is a function of the geometrical stratification only
and does not depend on the density! This is a diréct consequence
of the definition (34) and of the remarkable properties of (33)
just pointed out.

Eq. (35) holds for any 6 , and in particular for 6 =0 ,
on the rotation axis. Thus we may integrate it along this axis

from Eh to P (Fig. 2):

P t
Y
13
J aﬁdt=[(—2JN+\¥N2)dt=anD-£ngN, (36)
PN 1
so that
t
9y = 9y eXP U (-2JN + \mz)dt} = g(t,0) , (37)
1

where 9y = g(1,0) denotes gravity at the pole.
Now (28), with e1 = 0 and 6, = 6 , together with (37),
gives
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t
(£,6) = <=1 g(£,0) = =N _oxp || (<208 + wN?)at (38)
el (t,0) ’ N(t,0) .
1
noting that N(t,0) = 1 as we have already remarked. Finally

(34) and (27) give
f(t) = -¥Y(£)N(t,0)g(t,8) , (39)
and hence the density p(t) by (32).

Note the truly remarkable logical structure of these

formulas: the physics, especially the density distribution

p(t) , is uniquely determined by the geometrical stratification.

In fact, given the geometry (J,N) , we can compute Y¥(t) by

(33) and (34). Then gravity g(t,6) is obtained by (38), and
finally the density p by (39) and (32). The only constants

that must be given in addition to the set of surfaces S(t) ,

are the angular velocity w and polar gravity 9y which, however,
areuniquely determined by w and the total mass M ("Stokes
elements"), using the theory of the external gravity field. Thus

we have
Wavre's Theorem

The physics of equilibrium figures (density p , gravity
g ) is completely determined by the geometrical
stratification, i.e., the set of equisurfaces S(t)
(0sts1), together with the total mass M and the
angular velocity w

4.3. Spherical Stratification as an Exception

For spherical stratification, Wavre's theorem does not apply
since the right-hand side of (33) becomes 0/0 here, so that
¥(t) is not defined.

In fact, we have seen that a nonrotating spherical

equilibrium configuration admits arbitrary density laws
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( p positive and nondecreasing towards the center). The actual

earth is close to a spherical stratification, so that Wavre's

theorem, although theoretically applicable, is not "stable":

a large change of the density law may go along with an

unmeasurably small variation of the geometrical configuration.
Thus, of course, the density distribution of the earth can

only be determined empirically : from seismology, free oscillations,

etc.

4.4. Impossibility of a Purely Ellipsoidal Stratification

Wavre (1932, p. 60) also provides a very elegant version
of Pizzetti's (1913, p. 193) proof that a family of strictly
ellipsoidal equisurfaces S(t) is impossible, provided the
density distribution is heterogeneous (this goes back to Hamy
in 1887) . Homogeneous ellipsoidal equilibrium fiqures =-
ellipsoids of MacLaurin and Jacobi -- do, of course, exist, but
they are without geodetic relevance.

In sec. 6 we shall see that even the equipotential ellipsoid
(Heiskanen and Moritz, 1967, sec. 2-7) cannot be an equilibrium
figure. This was pointed out, to the author's dismay, by
Karl Ledersteger. In fact, it should be noticed here that
Ledersteger was the last great geodesist who seriously and
deeply occupied himself with Wavre's theory; this should be
recognized even if one is not prepared to follow him all the

way .

4.5. Another Derivation of Clairaut's Equation

Although rigorously, the spheroidal equisurfaces are not

ellipsoids, they are so in linear approximation (in f). Thus

Wavre's equation (33) can be used for a very elegant derivation
of Clairaut's equation. We put 6, = 0,8, = 90°, and write,
noting N(t,0) =1,
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g(t,0) = gpttl ’ N(t,90°) = NE(ti '
(40)
J(t,0) = J,(t) , J(t,90°) = J_ (t)
The equisurfaces are (approximately!) ellipsoids of semiaxes
a(t) and b(t) = t , so that
S
alt) =g =1 + £(t) . (41)
We further have
No(8) = 22 a2 e (n) (42)
E dt
and conventional ellipsoidal formulas give for the mean
curvatures, to linear approximation
9 =1 (1-216) T =l (43)
P t y E £
so that (33), with (32), easily becomes
4nGp - 2w _ —t2f" + 6f
g, (t) 2t2f' + 2tf
or
{2t2£' + 2tf) (47Gp - 20?) = (-t?£" + 6£)g,(t) . (44)

Corresponding to our approximation, we neglect the product fu?
(this removes w? from our further considerations) and take

QP(t) spherical:

g (t) = Fetn() , (45)

a well-known formula, equal to Gm(t)/t? , where m(t) denotes

the mass inside a sphere of radius t ; D(t) is the mean
density (4). Thus (44) reduces to
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3p (2t%f' + 2tf) = tD(-t*£" + 6f) (46)

from which Clairaut's formula (1) follows immediately (with

t # r in our approximation).

4.6. Concluding Remarks

Eq. (33) holds for arbitrary 0, and 6, - If we replace

6, by 6, , we get the purely geometrical relation

(2JN - 34n N/at)93 - (2JN - 3&n N/Bt)el

2 - 2
(N*), = (N%)g “n
(2JN - 3&n N/Bt)92 - (2JN - 34&n N/at)%
(N%)g = (N%) g

which is a necessary condition for all stratifications of
equilibrium figures.

Is this condition also sufficient? If it were so, then we
could remove the layer above any internal equisurface S(t) ,
cf. Fig. 2. For the remaining "reduced" figure bounded by S(t) ,
eq. (47) continues to hold for any of its internal equisurfaces,
and the reauced figure would also be a possible figure of
equilibrium.

This is Ledersteger's (1969, p.536) "Prinzip der
Entblé&tterung" (principle of removing layers bounded by two
equisurfaces) . For homogeneous equilibrium figures (MacLaurin
ellipsoids), this principle indeed holds since in this case,
such layers are bounded by geometrically similar ellipsoids,
and it is well known that such an "ellipsoidal homeoid" exerts
no attraction in its interior; cf. (Kellogg, 1929, p.22) or
(Chandrasekhar, 1969, p. 39).

For heterogeneous figures, this principle does not, however,
hold (Voss, 1965). This shows that (47) is only necessary but
not sufficient. Hence, before applying Wavre's procedure

described by (38) and (39), we must first make sure that the
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given stratification really corresponds to a possible figure

of equilibrium, which is by no means a trivial matter.

The deeper reason why Wavre's theory is "incomplete" in
this sense seems to be the fact that he uses only the "local"
Poisson equation (32) but not the "global" condition that the
corresponding gravitational potential V (gravity potential W
minus centrifugal potential) must be harmonic everywhere outside
the boundary surface and go to zero as GM/r for r + o . Thus
Wavre's theory continues to hold if S were surrounded by a
rotationally symmetric mass configuration (such as an equatorial
ring of Saturn type). Then, however, we do not any longer speak
of free equilibrium figures. (In fact, the layer between S(t)
and S(1) 1is such an external rotationally symmetric mass
configuration for the figure bounded by S(t)!)

A final word on the relationship between Wavre's approach
and the approach by Clairaut-Liapunov-Lichtenstein described
in sec. 3. In a sense, the two approaches are "dialectical
opposites". Wavre starts from a given stratification (the geometry)
and determines the corresponding density distribution (the
physics), whereas Lichtenstein starts from a given density
distribution (which is initially spherical) and determines the
configuration or stratification which results from a "small"
rotation w . Hence Wavre determines the physics of the problem
from its geometry, whereas Lichtenstein determines the geometry
from the physics. Also, for Lichtenstein, the spherical
configuration is the starting point, whereas for Wavre it is
a singularity (0/0) !

Wavre's approach is also described in the books (Baeschlin,
1948) and (Ledersteger, 1969), whereas the basic book in English,
(Jardetzky, 1958), does not present it, although he outlines
an approximation method also due to Wavre ("procedé uniforme")
which intends, by an ingenious but complicated trick, to
circumvent the convergence problem of certain series of spherical
harmonics. We shall not treat this here because the author believes
that this problem can be tackled in a much simpler way as we

shall see in sec. 6.
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5. Stationary Potential Energy

In various domains of physics, equilibrium is associated
with a stationary (maximum or minimum, depending on the sign)
value of potential energy. Liapunov and Poincaré have treated
homogeneous equilibrium figures from this point of view; a
modern treatment is found in the book (Macke, 1967, p. 543).
Macke's approach has been generalized to heterogeneous
(terrestrial) equilibrium figures (Macke et al., 1964; Voss,
1965, 1966). This approach is interesting because it reflects
the typical thinking and mathematical methods of modern

theoretical physics.

5.1. Potential Energy

The gravitational energy of a material particle of mass
m in a field of potential V is mV , and that of a system

of particles thus
E = JmV, ; (48)

the sign (+ or =) is conventional.
Thus holds for an external potential field V . If the field
is produced by the mutual gravitational attraction of the

particles themselves:

m,
Vi =6 ]yt (3 #4) , (49)
j ij
then (48) gives
m.m,
G 2 L J
i3 ij

Each term occurs twice, however (interchange i and j ), so

that we must devide by 2, obtaining
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1 m.m, . X
E, = 3637 (3 # 1) ; (50)
13 °1j

cf. also (Kellogg, 1929, pp. 79-81) or (Poincaré, 1903, pp. 7-8).

The continuous analog of (50) 1is

— p (%) p(x") ,
EV = EG,U[ JIJW dv dv (51)
v v

with obvious notations: x, x' position vectors; dv , dv' volume

elements, and £ = |x-x'| . Another form of (51) is
E, = %IHVQdV p (52)
v

where V is the usual gravitational potential. Comparing with
(48) note the factor 1/2 reflecting the fact that EV is
produced by an internal field created by the mass elements
dm = pdv themselves.

For the centrifugal part we have

E, = im0, = H[ spdv , (53)

v

in agreement with (48), since the centrifugal potentiél ¢ acts
as an external field.

The potential energy of the gravity potential W = V + ¢
thus is the sum of (52) and (53):

_ 1
Ew = [(7\l+ %) pdv , (54)
using only a simple integral sign for notational convenience.

5.2. Dirac's and Heaviside's Functions

We recall the basic definition of Dirac's delta function:
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§(x) =0 except for x =0 ,

(55)
8§(0) = = in such a way that
IS(X)dX = 1. ) (56)

It is a somewhat strange "function" but is extremely useful and

popular in physics.

Its integral is Heaviside's step function:

X
6 (x) = Is(x')dx' : (57)
From (55) and (56) it immediately follows that
0 for x<0 ,
8(x) = (58)
1 for x>0
For 6(0) we may take the value 1/2 .
From (57) there follows the basic relation
_de(x) _ .
§(x) = Ix = 0'(x) . (59)
5.3. A Remarkable Expression for the Density
Assume the body to consist of n layers bounded by
surfaces sk and Skt (Fig. 3). The density within each layer
is constant, denoted in our case by Prst *
Let the surface Sk have the equation
fk(g) =0, (60)
and let fk be monotonic with
f.(x) >0 inside S, (61)
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(otherwise change the sign of fk ).

Then the density everywhere within the stratified body can

be described by the single expression
n
p(x) =) (o = o, q)0lE, (x)]1. (62)

The reader is invited to verify this on the basis of (58) and
(61) . Eq. (62) holds with the understanding that Phrl = 0

since the density is zero outside the boundary surface S = Sn .

Figure 3. A layer of constant density

5.4. Variation of the Potential Energy

Let us find the extremum of the potential energy E = Ew

as given by (54):

<]
n

I(%v+ o) p dv (63)

where p 1is expressed by (62). The side condition is that the

volume enclosed by any surface Sk (Fig. 3) remains unchanged:
v, = [dv = const. (64)
Sk
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This equation remains constant when multiplied by P~ Pret !
which gives

M= [(pk = Pyl AV = I(pk— Prs1) O, (x)]av = const. (65)
sk

This expression has the dimension of a mass, but no very direct
physical meaning. Note, however, that the factor e[fk(i)] has
allowed us to extend the volume integral formally over the whole
space because the integrand vanishes outside Sk since
fk(i) < 0 there.

Introducing Lagrangian multipliers A , we thus must

k
minimize (or maximize)

)
E = A M
k=1 k 'k

This leads to the variational condition
AM ] =0 (66)
or
{(v+ 3)6p dv - YA 8M_= 0, (67)
k Kk '

Note that we are-varying the density p by 6p and that, as
compared to (63) the factor 1/2 seems to be missing. However,
by (51), EV is a guadratic functional of p , which introduces
the usual factor of 2 on differentiation, which combines with

1/2 to 1. With the gravity potential W= V + ¢ this reduces to

n
Iw Sp dv -kleksmk =0 . (68)

Now we must express the density variations §&p by Gfk(f)

since 6p 1is caused by a change in the boundary surfaces only.

Now our expression (62) comes in handy: we have

se[f, (x)] = o' [£, (x) Jof, (x) , (69)
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where 0'(x) = 6(x) 1is the delta function by (59); we prefer
the notation 6' to avoid confusion with the variation § .

With (69) everything is straightforward: (62) gives §&p ,
and (65) gives GMk . Thus (68) becomes

n
fdv {2 (P = Ppyy) (W(x) = A0 [fk(gg)]}afk(y =0 . (70)
k=1

The small deformations Gfk(i) being arbitrary, the integrand
between brackets { } must vanish:

’2

(Py= Pysy) (W(X) - Ak)é[fk(g)] =0 . (71)

k=1

Now there is no more danger of confusion, so that we could use
the standard symbol & instead of 6' for the Dirac delta
function.

By the definition (55), d[fk(x)] vanishes everywhere except
on the surface Sk , where it is different from zero (that it
is even infinite there gives mathematicians a shudder but leaves
physicists entirely cold). Thus since d[fk(x)] # 0 on S
we must have

x '

W(x) = Ak = constant on Sk ' (72)

which means that the boundary surfaces Sk of regions of constant

density must be equipotential surfaces.

In the limit n-+« of a continuous density we thus have

recovered the basic fact that the surfaces of constant density

must be surfaces of constant potential. This is our well-known

condition for equilibrium figures.

What is new? Formerly, in sec. 2 we have derived this
condition from (5) by means of the pressure p , a quantity which
we have not used afterwards any more. For some peoples' taste,
it is not very elegant to introduce an auxiliary concept which
plays the role of a deus ex machina and disappears again. Here
we have derived our basic condition p = const. <> W = const.

from the principle of stationary energy, which is logically more
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satisfactory for many people, especially in view of the fact
that maximum or minimum principles play a fundamental role in
physics.

Another beautiful fact: the Lagrange multiplyer Ak admits
a natural physical interpretation; it is nothing else than the
constant value of the potential W on Sk , cf. (72).

5.5. A General Integral Equation

Now we are also in a position to give an explicit
representation for the functions fk(g) which characterize the
equisurface Sk : we may simply put

£,(X) = W(K) - A . (73)

In fact, on Sk we have fk(g) = 0 by (72), and inside Sk
there is fk(§)> 0 since W increases monotonically towards
the center. Thus (60) and (61) are satisfied.

Now, in
W(3(_)=Gj%dv+%m2(xz+yz) (=V+0) (74)
we may substitute (62) together with (73), obtaining
W(x) =GId—"§ (b, = oy, ) O[W(X) = A ]+ 2 w? (x? +y?) (75)
Lyey Tk Frby ki "2

with £=|x-x'| ..This is a nonlinear integral equation for

W(x) ; the Lagrangian parameters Ak are determined by the

condition of constant volume (64):
Uy = Je[wg) -2 Jav k=1,2,...,n . (76)
It is straightforward to let n +« and perform the
transition to a continuous (or piecewise continuous)mass

distribution; then the index k becomes a continuous variable
u
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W(x) = -G Jd—} J dp (u) 6[W(x") - A(u)] + %wz(x2+y2) . (77)

u=0

v(u) = [e[W(g) - A(u)]av . (78)

Doubtlessly, this formulation for hydrostatic equilibrium
figures is extremely elegant and general. Voss (1965, 1966) has
tried to solve this equation by a series expression in terms
of £ , £? , etc. (f is the flattening as usual). The linear
terms again give Clairaut's theory, essentially the linear
integral equation (21). Voss has also computed second-order terms,
but the details are very complicated and these terms can be
calculated much more directly as we shall see in the next section.
Another application of the potential energy approach is found
in (Chandrasekhar and Roberts, 1963).

Thus the main importance of the method described in the
present section is theoretical and conceptual, but it is great

indeed.

6. Second-Qrder Theory

It is relatively straightforward to improve Clairaut's
theory by second-order terms, that is, of order f?, f denoting
the flattening. This has been done by many authors; we mention
only (Darwin, 1899), Wavre (1932), Kopal (1960), and (Lanzano,
1982, ch. 2, to third order), forerunners being Airy in 1826
and Callandreau in 1889. The formulas given, without derivation,
by de Sitter (1924), with corrections by Jeffreys (1953), are
now considered standard,cf. (Jones, 1954), and will ke used also
here.

A theoretical difficulty lies in the use of the Legendre
series for 1/£ , see egs. (81) and (91) below, which may not
be convergent. This has lead Wavre (1932) to devise an ingenious
method (procedé uniforme, already mentioned above) that works
with convergent series only. This complicated procedure is not
really necessary, as we shall see below. Our approach, based

) : : : :
on recent progress in understanding analytical continuation

DOI: https://doi.org/10.2312/zipe.1989.102.02



85

(Moritz, 1980, secs. 6 and 7) is extremely simple and may be

new.

6.1. Interior Potential

The gravitational potential at a point P in the interior
of the body bounded by the surface S (Fig. 4) is

o= fogans ff ff - vior s
%

where IP denotes the interior of the surface SP of constant

density (not necessarily of constant potential!) passing through

P , and EP denotes its exterior, that is, the layer between

SP and S

Consider first only

V. (P) = G m%dv ; (80)
Ip

Then we have the well-known Legendre series, cf. (Heiskanen and
Moritz, 1967, p. 33)

boundary S

Figure 4. Illustrating the computation of V(P)
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'

0 rn+1

n

Pn(cosdl) ' (81)

ne~—sg

PN

which converges if r' < r . The problem is that for r = T,

(Fig. 4) , this convergence condition may be violated: r' may
be greater than r .

The trick is to leave IP and E, but to calculate V first
at a point Q outside SP for which r' <r 1is certainly always

satisfied. Thus we calculate

Vi(Q] = GJH£dv= 2 T G”Jpr‘nPn(cos y)dv

L neo rn+1
Ip Ip (82)
@
= e - -2 -2 4
n);o er Pn(cos 8) " + - Pz(cos 6) +rs P‘. (cos 8)

neglecting higher-order terms. Here r, 6, A denote the usual
spherical coordinates (radius vector, polar distance, and
longitude) of the point Q . Because of rotational symmetry,
there is no explicit dependence on longitude i .

The surface S, can be written in the form

r=qg(1+} € P (cos 8)) = r(q,s)
n=1
(83)

= q(1+ €, P, (cos 6) + e“P,,r(cos 0)) ,

again neglecting higher-order terms and considering equatorial
symmetry. Since the integral of all Pn over the sphere is zero,
q is nothing else than the mean radius of the surface SP '
which by definition is a surface of constant density (but in
general not of constant potential!). In the first-order theory
of sec. 2, we were able to use r also for the mean radius,
but here a notational distinction becomes indespensable.

Similarly, q' denotes the mean radius of the surface of
constant density through dv , which has spherical coordinates
r', ¢ , A' (Fig. 4). Thus we may introduce q', 8', A' as new
integration variables. This has the advantage that
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r

ISR

I o r'=0 o

where g , corresponding to Sp by (83), is now constant; o
denoting the unit sphere as usual.

For the volume element we have
dv = r'? sin ' dr'de'dr' = r'?dr'de , (85)

on introducing the element do of the unit sphere as indicated.
We have

L}
dr'de'dx' = Jdg'de'dr' = %dq'de'dk' , (86)

on evaluating the Jacobian determinant J , using the form (83)

also for the relation
r' = r(q',0') . (87)

Thus, by (84) and (86),
q 1
G I”pr'" B (cos ¥)dv=aG [ dq'e (q') Hr'nPn (cos V) %g.-do . (88)
IP q'=0 <]

The density p , by definition of q , depends only on q (or q').
We now develop r'" into a series of form (83) (this is
possible because powers of the Legendre polynomials Pn can always
be expressed as linear combinations of P, , cf. (102)) and use the

orthogonality relations of P, . The result is (82), where

K = K (q) (89)

are functions only of gq , the mean radius of SP .

The logical trick that made (82) rigorously possible was
to calculate V at an "external" point Q (Fig. 4). The trick
‘then goes on by noting that V(Q) is an analytical (harmonic)

function everywhere outside and on SP . Thus the expression (82)
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continues to hold if we perform the transition from QO to P.

Thus also

vi{P} = M + M P, (cos 6) + K“_(qlp“(cos 9)

- . e . (90)
r

if now r = Ty s 6 = ep

This argument thus is based on the analytical continuation

of a spherical-harmonic series, cf. (Moritz, 1980, pp. 54-55).
The convergence problem does not arise since we are working with
a truncated series only. If the reader insists, we may recur

to Runge's theorem (ibid., pp. 64-65); at any rate, regarding
convergence we are now sitting in the same boat as Wavre (1932)
with his considerably more complicated "procedé& uniforme”.

Now we apply the same trick with Ve(P) in (79): we first
qvaluate Vo (Q) , the gravitational potential of the shell between
SP and S (Fig. 4) at a point Q well in the interior of the
shell, so that always r' > r and the series corresponding to
(81),

)

1 n
9 =nzo ﬁpﬂ(cos T (91)

always converges. Then we perform the analytical continuation
Q-+ P with the result

V_ (P) = Ly (q) + r’L,(q) P, (cos8) + r*L, (q)B, (cos®) ,  (92)

analogous to (90).

The total gravitational potential V at an inner point
P with coordinates r, 6 is the sum of (90) and (92), and the
gravity potential W is found by adding the centrifugal potential.
The result, in de Sitter's (1924) standard notation, may be
written
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4n 3 1 1 r? .2
W= —qg°G D(— + —p= sin“9) -
3q n (r PRt )
2 2
-wz-(sq—+ T%—)Pz(cose) + (93)
5] r q
" 4
+E(Pg—5+§ Qr—s)P,,,(cose)]
35 b 9 q
where
23
5= w"R (94)
GMD

is a dimensionless parameter and on denotes the earth's mean
density. The functions D = D(gq) , S = S(gq) , ..., Q = Q(g) will
be considered later.

6.2. Ellipsoid and Spheroid

It is an elementary exercise to derive the following

equation, accurate to f? , for an ellipsoid:

r=al(l- fcosze-%fz sin?29) , (95)

a and f denoting its semimajor axis and its flattening,

respectively. For a general spheroid of revolution we may write
r=all-fcos?’o - (3£2+k)sin?20] , (96)

so that ak denotes the maximum deviation (at 6 = 45°) of the
spheroid from the ellipsoid that has the same axes a and b

Going from a to the mean radius § , we get from (96)
after some algebra

r = q[1 —% (f+75 £2 +%K)P2(COS 8) +-3% (3f% + 8k) P, (cos 8)],
(97)

which thus represents (83) expressed in terms of the flattening
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f , and the parameter «k characterizing the deviation of the
spheroid from its equiaxial ellipsoid. With de Sitter we find
it convenient to introduce the "reduced flattening"

3

2f’+%|< ' (98)

L]

which deviates from f only by second-order terms so that we
may put f*? = £2 .| Then we have the desired expressions

]
_ a3 4a |, 4 . .
D=8 Jsdﬁ [ e esfas

B
= g8 a 2 a2y g5
S BJGdB[(f*+7f)B]dB:
1
- [ sl 16 ¢2
T-[GdB[f*+21deB B (99)
B
B
o =7 _i 2 § 7
P=8 Jddﬁ [(f + 9K)B]d8 "’
1
- g2 4 -2
Q=28 IGdB [KB ]dB
B
Here
_P _ density
e o mean density of the earth UCLY
and
mean radius of Sp
g = = (101)

R mean radius of earth

are dimensionless quantities; in other terms, we have expressed
the mean radius B using the mean radius R of the earth as
unit. Denoting the integration variable B' also by B8
simplifies the notation without danger of confusion.

Using the binomial theorem, we may in (93) express the
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various powers of r by (97), using the well-known formula
(verify!)

[e, (cos 0)]% = 1 + 2B, (cos 6) + 12 B, (cos o) . (102)
Then (93) becomes (with R as unit)
W = 4Tﬂﬁszm [AQ(B) + A, (B)P, (cos 6) + A, (B)Ph (cos )| , (103)
where
” 1 4 .2, 4 -4 8
B, (B) =D(1 + gu + g5 + gefu) - 52 £S + 75 £T ,
2 6 3 4
) = == [-D(f*+ = f?) + =85(1 + =f) +
A, (B 5 - ) 5 ( 7
(104)
3 8 1 20
+ET(1 - ETf) +3Dp.(1 + Ef)] V

A, (8) %[(—%f’ 40D -2es+ e+ 30+ S0 +pr]

I

Eq. (103), together with (104), expresses the potential on a
surface of constant density, B = const., as a function of its
mean radius B and of the polar distance 8

For future reference, we also calculate

N
>

£a, =%[(%f’ - 40D - 35 + 3P + 30| . (105)

An +

(o8]
|

6.3. Hydrostatic Equilibrium

As we have pointed out several times, the preceding
developments do not presuppose that the surfaces of constant
density p, B = const., must also be surfaces of constant
potential W , i.e., hydrostatic equilibrium is not presupposed.
The only assumption is rotationally and equatorially symmetric

stratification of the surfaces B8 = const., which deviates little
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from an ellipsoidal stratification (the deviation parameter «
is assumed to be of order f? ).
Now, finally, we introduce the condition of hydrostatic

equilibrium. Then W must be constant on the surfaces

g = const., which implies that in (103), A, (B) and A"(B)
must identically vanish since they are multiplied by a function
of ©# : W must be independent of 6 . This gives

Al = 0 (106)
and

Ay = 0. (107)

H H .

A, and A, denote A, and A, as given by (104) for the case

of hydrostatic equilibrium.

Eq. (106) is essentially the same as (8) or (9), but
supplemented by second-order terms. It is treated in the same
way, arriving at a second-order differential equation for £
(or more precisely, f* ), which is nothing else than Clairaut's
equation (1) supplemented by second-order corrections.

Eg. (107) is a new feature. Treating it, or better (105), as we
treated (106), we arrive at a second-order differential equation

for the deviation « . This is Darwin's equation which, following

(Jones, 1954, p. 12) may be written

2__.de + 65_5_% -

B
ds? D dB

(20 - 65y« = f’[3(1 -8 4
D D

(108)
98 1 8§y 2
R A S gl
+ 3 D)n 2 (1 + D)n ]

Here D 1is the dimensionless quantity defined by (99), which
is the mean density inside the equisurface B8 = const. (denoted

by D in (4)) devided by the earth's mean density I and

ol
h

J

(109)

H ™
Qs
™
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is the famous Radau variable used to obtain (10) from (1).
Now (108), as opposed to (1), is an inhomogeneous

differential equation if p # const., so that the solution
k = 0 1is impossible. This confirms the impossibility of a
purely ellipsoidal stratification (sec. 4.4).

It can also be shown (Wavre, 1932, p. 109), that «
(equivalent to Wavre's E ) cannot be zero at the free surface:
otherwise it would have to be identically zero in its interior,

which we have just seen to be impossible. Thus the equipotential

reference ellipsoid cannot be an equilibrium figure.

For a terrestrial equilibrium figure, « must be positive
and decreasing towards the center. At the earth's surface we
have Bullard's (1948) value

k =k = 0.000 000 68 ; (110)
see also (Jones, 1954, p. 13). This means that the equilibrium
spheroid lies below the ellipsoid at a distance which reaches

its maximum ak = 4.3 m at latitude 45°. This effect is

extremely small but nevertheless essential!

7. Real Earth and Reference Ellipsoid

Neither the earth nor the reference ellipsoid (considered
an equipotential or level ellipsoid) are in hydrostatic
equilibrium. Nevertheless, the second-order equations (103) and
(104) hold also in this cases, since they have been derived
without presupposing hydrostatic equilibrium.

However, it is possible to find two correspofMing mass
distributions, one for equilibrium and the other for the level

ellipsoid, for which the f* values are equal for each B
£x o= £xH (111)

In other terms, the coefficients of P, in ( 97), with (98),
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R AR T B N CAIRIE TN
are equal.

This follows at once from the fact that A% according to
(104) is identical for the hydrostatic and the ellipsoidal case
since D, S, T, and p depend only on the density p as a
function of B8 and since in the second-order terms, f may
be put equal to f* , so that « does not occur (Moritz, 1973).

It should be noted, however, that since

k # et (112)

also

£ # £9, (113)

except that in second order terms f may be set equal to £

Thus we have the
Theorem

To each mass distribution in hydrostatic equilibrium there
corresponds a mass distribution for the equipotential
ellipsoid in such a way that the density p is the same
function of B8 and that the values of the reduced
flattening f* are the same for any two surfaces

corresponding to the same value B8

In the sequel we shall always assume that f* is selected
in this way. We then obtain an ellipsoidal mass configuration

which deviates very little from an equilibrium configuration.

On this assumption, (103) reduces to
W =W,(8) + W,(B)P, (cos 6) (114)
since we have been able to take A, = Ag =0

Expressions for W (g) and W, (B) are readily found on

comparing (114) with (103) and using (104). For Wq we get a
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particularly simple expression on subtracting the hydrostatic

value wH , which is found by putting « = " in (104) and which

is zero by (107):

W, (8) = 3ueste 75 [-3k-D ¢ 2 =P+ 0-0M], (119)
where, by (99)
8
9 Hy _ ,-7 d _ H, 7
g(P"P)—B I&a—e[(l( K)B:ldet
0

(116)
1

o-off = BZJ ad% [(K— K“)e'z]ds
8

For the deviation ¢ of any surface of constant potential
from the corresponding surface of constant density we then
easily find (Bruns' theorem!)

1

- W, (B)P, (cos 8) . (117)

Fal
n

where g denotes gravity at the internal point under consideration.

For the ellipsoid we have «k = 0 at the surface. For the

real earth, satellite observations of Jq give the surface value
k = -0.000 000 84 (118)

(Moritz, 1973, p. 48), which is even further off from the
hydrostatic value (110): note the difference in sign! Otherwise,
the preceding formulas also hold for this case, using (118).

The problem is that «k decreases monotonically towards
the center only in the hydrostatic case (110). For both « = 0
and (118) it first increases in absolute value before decreasing,
which is not very satisfactory from an esthetic point of view.

More details can be found in (Moritz, 1973). The problem
of ellipsoidal density models in their relation to hydrostatic
equilibrium figures is particularly addressed in the short note
(Marussi et al., 1974).
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An open problem is to find an "optimal" distribution of
x for the level ellipsoid, e.g. by a condition of stationary

potential energy such as discussed in sec. 5.
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The collected works of Liapunov are:

A.M. Jlanyu#oB (1954-1965): Cobpanue CouuHeHul B 6-TH Tomax,
UspaTenbcTBo Akanemuin Hayk CCCP, MockBa.

The review monograph

WTory Hayku M TEeXHHKH, AcCTpoHomusi, Tom 10: PaBHOBecue Hu
YCTOHNYHMBOCTb TI'PaBUTHPYWHHUX cHcTeMm, pen. M.C.
llep6una-CamoitsioBa, BCeCOW3HUN HHCTHTYT HAYYHOHU H
TexHUuyeckoi uHbopmauuu AH CCCP, MockBa 1975.

gives many references in Russian.

The author is, indebted to Prof. K. Bretterbauer, Prof.
E. Grafarend, Dr. M.S. Petrovskaya and Prof. L. Stange for help
with the references. Mr. K. Rautz has carefully checked the

formulas and the text, and also drawn the figures.

After finishing this paper, the report

Denis, C.(1985): The hydrostatic figure of the earth, Geophys.
Rep.Publ. No. 85/002, Department of Astronomy and Astrophysics,
University of Liége

came to my attention. It is almost exactly complementary to the
present paper, containing detailed numerical studies, geophysical
discussions, and additional references.

I also was delighted to see the recent paper

MomoneHckui, M.C. (1988): 3aBUCHUMOCTb I'PAaBHTALMOHHOTO
moJigd 3eMJIH OT HM3MEeHEeHHsl CKOPOCTH €e BpalleHus,
leonesust u Kaprorpadusi, No. 5, 11-13,

in which M.S. Molodensky occupies himself with the integral
equation of Lichtenstein!
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Agstract

This paper presents the analysis of gravity data for about
1000 stations observed in the Main Ethiopian Rift (MER) system
since 1970.

Analysis of the gravity data has shown that the long wave
length negative Bouguer anomaly, which is characteristic of the
gravity field beneath the East African Rift system (Girdler et.al
1969), is disturbed by a positive anomaly under the entire width
of the Main Ethiopian Rift. On this broad positive anomaly over
the rift floor are superimposed other short wave length positive
anomalies which seem to be situated along the displacement lines
of the Wonji Fault Belt - axial zones of recent faulting,
volcanism, and geothermal and seismic activity.

Due to both, denser spacings of gravity stations and quality
of data, it is believed that the present gravity map of the
Central Part of the Main Ethiopian Rift (CPMER) defines the
locations of these observed gravity anomalies (the negative and
the positive anomalies) fairly accurately.

Crustal models that produce the observed gravity anomalies
matching the main geological and tectonic features of the Main
Ethiopian Rift are generated along a selected profile.

Interpretations of the models interms of mantle derived
intrusions as represting lithospheric thinning beneath the Main
Ethiopian Rift and a comparison of similar interpretation made
for the Kenyan Rift (Searle,1970) and the Afar Depression of
Ethiopia (Makris et.al, 1975) are presented.

Introduction

The Main Ethiopian Rift (MER) forms a part of the East African
Rift (EAR) System (Fig.l) which has long been recognized as a
continental extension of the World Rift System (Ewing and Heezen,
1956) . Regional gravity field investigations across the rift
zone in East Africa have showen long wave length (broad) negative
Bouger anomalies with superimposed short wave length (narrow)
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positive anomalies over the rift axis. The regional negative
anomalies are interpreted by Girdler et al. (1969),Girdler and
Sowerbutts (1970), and Baker and Wohlenberg (1971) interms of an
upward thinning of the lithosphere and replacement by lower
density astenosphere beneath the East African uplift regions. The
axial short wave length positive anomalies are interpreted by
Searle, (1970) as being due to intrusive zones in continuity with
the lower density astenosphere (i.e extreme thinning of the
lithosphere beneath the rift floor in East Africa).

Regional gravity field investigations made in the MER so far
(Gouin and Mohr,1964;Gouin,1970;Searle and Gouin,1972;Abera, 1983)
show that:

1.The western and eastern highlands of Ethiopia bordering the
rift are associated with broad negative Bouger anomalies.

2.Relatively broad positive Bouguer anomalies, which cover most
of the rift,are superimposed on the regional negative gravity
coinciding with the uplifted regions.

3.0n the relatively broad positive Bouguer anomlies, which cover
most the rift floor,much narrower relative positive anomalies
are superimposed locally.

Being based on similar concepts used to interpret the
nature of the gravity field across the rift zone in East Africa
by various investigators:

-The broad negative anomalies corresponding to the uplifted
regions of Ethiopia are interpreted as evidence of upward
propagation on a large scale of the low density astenospheric
material found in East Africa to higher levels and replacing the
upper mantle part of the lithosphere.

-The broad positive anomalies within the MER are interpreted
as being due to the further upward expansion of the low
density astenospheric material into higher levels of the crust
(i.e forming high density intrusion zones reaching to within a
few kilometers of the surface).

-The locally superimposed much narrower positive anomalies are
interpreted as being caused by intrusions associated with
lines of the Wonji Fault Belt (WFB) - axial zones of recent
faulting,volcanism,and geothermal and seismic activity.

This paper describes the results of about 1000 gravity
observationg made on the floor and shoulders of the MER between
latitudes 70 N and 8.50 N. The survey was undertaken with the
following objectives:

1.To present reliable gravity data which will form a sound
basis for further investigation of the rift system.
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2.To define the locations of the observed positive and
negative Bouguer anomalies.

3.To generate preliminary models that produce the gravity
anomalies matching the major geological and tectonic features
of the region.

Geology of the Main Ethiopian Rift

Since the initial work of Mohr (1960),geological knowledge
of the Central Part of the Main Ethiopian Rift (CPMER) has been
enlarged as a result of prospecting work by the Ethiopian
Institute of Geological Survey (EIGS) in the " Detailed
Investigation Phase of Geothermal Resources for Power
Development". The result is that the geology in the CPMER is
fairly known.

Geological Setting

Along its approximately 400 Km length,the MER has a gently
curvillinear plan,convex to the west (Fig.l) and widens out at
its northern end to become identified with south western Afar. At
its southern end,crustal extensions are transposed west into the
seismically and tectoniclly active region of the middle Omo-Basin
The MER maintains a width of 80 +15 Km along most of its 400 Km
length and 65 +10 Km in its central Bart. A major watershed
crosses the rift floor at latitude 9Y N and separates the Awash
Valley and Afar to the north from the CPMER to the south. The
CPMER contains five large lakes - Ziway,Langano,Abiyata,Shalla,
and Awasa (Fig.2).

The MER is offset at its southern end,west into the Turkana
Rift (Fig.1l) from which there is a southward continuation into
the Gregory Rift in Kenya (Mohr & Wood,1976) .

Structure

The MER commenced to form during late tertiary period
(Lloyd,1977) . The rift is esentially a graben formed by the
drifting apart of the western Ethiopian highlands to the west and
the eastern highlands to the east through tensional normal
faulting.

During tertiary time there was a series of regional uplifts and
by the pleistocene the protorift was a topographically shallow
trough (Baker et.al,1976) with deep infilling of silicic
volcanics erupted from volcanic centers close to the rift
marigins. Mohr (1966b) suggests that the marginal faults are
pleistocene in age and that the separation of the western
highlands to the west and the eastern highlands to the east
occured at this time.

Fragmentation of the rift floor formed the youngest structural
deformation,largely concentrated within a narrow, 5-12 Km wide
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belt of normal faults,known as the Won3ji Fault Belt (Mohr et.al,
1980; LIoyd,1977). The Wonji Fault Belt (WFB) maintains a NNE
orientation along the entire length of the MER and has been
forced into en-echelon offsets in order to remain within the rift
margin envelope.In the CPMER,the Wonji Fault Belt runs close or
adjacent to the eastern margin and tends to be axial between the
rift margins along the whole length of the MER. Within the lakes
district between latitudes 70 N and 80 N,the WFB is divided into
three segments,named from south to north,Corbetti-shalla,Shalla-
Ziway,and East Ziway,by two en-echelon offsets (Lloyd,1977).

Volcanism and rocks flooring the rift

A notable feature of the MER is the occurence of young
volcanic centers along all except its most southern
part.Volcanism in the MER is of pleistocene and holocene age
(Mohr 1960,1966a,1966b ; Lloyd 1977). Rhyolite volcanism on the
rift floor of the CPMER is concentrated in four centers,Corbetti
volcanic center,Shalla Caldera,Gademota Caldera,and Aluto
volcanic center (Fig.2).

The rift floor is partially infilled with lacustrine sediments
derived from quaternary volcanic rocks of pleistocene and
holocene age. Contemporaneous with the volcanism the infill
consists of intercalations of silt stone,clay stone,pumices,etc.
Ephemeral lakes have also occupied the CPMER since the earliest
stages of its development and these lakes contributed sediment
to the rift floor. The tops of the rift scarps are covered
extensively by trap basalts of the pliocene to lower miocene age.
These trap basalts are supposed to underlie rhyolites,trachytes,
ignimbrites,agglomerates, and basalts of the upper miocene to
pleistocene age in the rift floor.

The Survey

The gravity measurements were made with the Canadian Sharp
Gravimeter No.128 belonging to the Geophysical Observatory of
Addis Ababa University. Measurements were made at 1 to 6 Km
intervals (i.e at 1 to 2 Km intervals for the Langano-Aluto area
and at 2 to 6 Km intervals for the rest). Some stations had
already been established in this area by Searle and Gouin (1971 ,
1972) along extant roads,tracks,and shorelines of lakes. Most of
their profiles were reoccupied except those along the shorelines
to establish a comparison between our survey and theirs. All the
stations occupied in the study area were tied to the Shashemene
USAF gravity base station (977536.42 mgal) and the Geophysical
Observatory USAF gravity base (977467.07 mgal) .

In the Langano-Aluto area station positions and absolute
altitudes were determined by tacheometry. For stations outside of
Langano-Aluto area elevations were determined using a single
Paulin Surveying Microaltimeter. Trigonometric points and bench
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marks established by the Ethiopian Mapping Agency (EMA) in the
study area were used for elevation control. An accuracy of +lm
for the tacheometric observations and t4m for the altimetric
observations may be guaranteed. The geographic coordinates of the
stations were scaled from sheets of topographic maps supplied by
the EMA at a scale of 1:50000 with an estimated accuracy of
+200m (0.1 minutes of arc).

Simple Bouguer anomalies were computed for the conventional
density 2.67 g cm™°. Theoretical gravity was calculated using the
1930 international gravity formula. Terrain corrections were
determined out to 15 Km for all stations and varied between 0.1
and 9 mgals.The over all accuracy of the Bouguer anomaly values
(assuming the correct density has been chosen) is therefore
expected to be around +2 mgals.

Figure 3 shows a contour map of the Bouguer anomalies of
the study area contoured at 5 mgals intervals.

Description of the Bouguer anomalies

As can be seen from the Bouguer anomaly map (Fig.3), there
exist positive anomalies which are central to the rift floor and
the axis of these anomalies generally coincides with the rift
axis. A typical W-E Bouguer anomaly profile (Profile AA) north
of 7.75Y N across the rift shows that the central positive
anomalies are flanked by relatively two narrow negative anomalies
and two subsidiary positive anomalies on either side of the rift.
All the central positive anomalies and the flanking negative and
positive anomalies situated on the rift floor are flanked by
broad negative anomalies on the rift shoulders. The distribution
of the Bouguer anomalies in the MER in this fashion is considered
as a superposition of narrow positive anomalies on a broader
negative one. This phenomenon is typical of the general
characteristics of the gravity field across the rift zone in East
Africa. The two W-E Buoguer anomaly profiles marked in Fig.3
(Profiles AA ,BB shown in Fig.4) demonstrate this fact,which is
their essential similarity.

The broad negative anomalies are explained as being caused
by the low density astenosphere associated with the "EAR system
and underlying the Ethiopian highlands. The relatively narrow
negative anomalies on the rift floor are explained by the fact
that the stations producing these anomalies are situated either
over large thickness of lake sediments and rift volcanics or are
affected laterally by the low density astenosphere which
underlies the rift shoulders.

Location of the positive Bouguer anomalies
As can be seen from the Bouguer anomaly map (Fig.3) the
positive anomalies beneath the central zone of the rift floor

generally seem to be situated along the displacement lines of the
WEB . In the MER between latitudes 79 N and 8.5% N the central
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positive anomalies culminate in six major positive anomalies.
These are situated north of Corbetti Caldera near Bura,on Shalla
caldera, south of Aluto volcanic center,east of Gademota Caldera
near Admitulu, east of Lake Ziway and north of Gedemsa Caldera
near Dera (Fig.2 & Fig.3)

Separation of the regional and local anomalies

The regional anomaly was separated using the method
(graphical method) described by Searle (1970a). The following
constraints were put on the choice of the regional anomaly.

1.The negative anomaly over the rift has a considerabely greater
width (> 100 Km).

2.The regional anomaly over the rift varies relatively smoothly

3.The resultant residual anomaly due to the outcroping rocks is
zero.

The regional field along the two W-E profiles (Profiles
AR, BB) 1s shown in Fig.4.

Interpretation of the positive anomaly

The central positive anomaly along profile AA is considered
to be produced by a zone of intrusives which could occur
predominantly (a) within a shallow basement (b) deeper in the
sialic crust (i.e existence of mass excess in the lower part of
the crust beneath the rift floor).

Models

For the calculation of the gravity anomalies generated by
the models to be described hereafter,a computer method based on
two~-dimensional mass distribution (Hubbert, 1948 ; Talwani et.al
1959) was employed. Because of the axial tendency of the Wonji
Fault Belt within the rift margin envelope and the linear trend
of the positive anomalies along the axis of the WFB,the two-
dimensional representation assumed may be justified here.

The model calculations that will be considered below are
made for the same profile AA. The observed residual anomalies
used tou calculate the models were obtained by subtracting the
regional field along the profile.

In Figures 5 & 6 are two preliminary models (Models A & B)
corresponding to two possibilities in which the central positive
anomaly beneath the rift is entirely caused by a zone of high
density intrusions.

In model A the excess mass is assumed to be contained as
intermediate intrusions (density 2.77 g cm™3) within the basement
( i.e at less than or equal to 7 Km depth) while the lake
sediments and cift volcanics are assigned a density of 2.5 gcm'3.
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In Model B the base of the intrusive body is_put at 16 Km depth
and assumed to be dense (density 2.87 g cm~3) while the density
of the lake sediments and rift volcanics is taken to be 2.5 gcm 3

Shallow Model (Model A)

With the assumptions made above,model A was_computed. The
model showed that the density contrast 0.1 g cm™3 (2.77-2.67) for
the intrusive body doesn’t give a Bouguer anomaly which fits the
observed profile. If the computed anomalies were to fit the
observed profile,the the density contrast of the intrusive body
should be greater than or equal to 0.33 g em™3 and its upper
surface coincident with the land surface at places(Fig.5). From
a consideration of the available bore hole data and surface
geology,it is unlikely that material in the rift floor can have
such a high density contrast.This value,0.33 g cm™ 2, therefore
represents an upper limit for the density contrast of the
intrusive body. Hence it is concluded that it is impossible to
account for all of the positive anomaly by means of high density
intrusions confined within a shallow basement beneath the rift
floor. Therefore model A is not considered to be a plausible one.

Deep Model (Model B)

If the observed Bouguer anomaly is not the result of dense
intrusives confined within a shallow basement beneath the rift
floor,then the only reasonable alternative seems to be deep-
reaching and high standing crustal intrusions of astenospheric
material or other igneous rocks derived from the astenosphere

Model B (Fig.6)has been computed on the assumption that the
lake sediments plus rift volcanics have a density contrast of
-0.17 g cm™3 (2.5-2.67) while a density contrast of + 0.20 g cem™3
(2.87-2.67) is assigned to the intrusive body. The depth to the
base of the intrusive body is taken at 16 Km . The computed
anomalies corresponding to Model B fit the observed ones to
within *2 mgals everywhere,with the intrusive body reaching to
within 2-3 Km of the surface at places . The model also indicates
that there are three zones of intrusions, a central zone along
the rift axis and two subsidiary zones along the margins of the
rift. A similar feature occures in the Kenyan Rift,although the
magnitude varies ( Searle, 1970).

Comparison with adjacent areas

Makris et.al (1969,1970) have published a paper on crustal
and upper mantle models from gravity measurements across the
Ethiopian Rift between latitudes of 80 N and 99 N. These models
show a thinning of the crustal layers and an intrusion of upper
mantle material beneath the rift.

There is a fair agreement with the concept that,north to
south,in Ethiopia,we proceed from the oceanic crust of the
central Red Sea Graben to the major crustal thinning with some
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oceanic crust at Erte Ale in the Afar ( Makris,1972) and to the
WEFB - the axis of the Main Ethiopian Rift. The gravity anomalies
associated with these featuers decrease from the Red Sea through
Afar to the CPMER (Fig.7). The development of the positive
gravity anomalies seem tc be depedent on the extent to which the
axial intrusives have developed. Over the Gulf of Aden and Red
Sea,the positive anomaly is much more pronounced and here the
intrusion zones are correspondingly larger.

Further south,in Ethiopia,the axis of the MER system is
transfered to the Turkana Rift and finally to the Gregory Rift.
The Turkana Rift has a major positive anomaly with values
comparable to the Afar area. In contrast to the Turkana positive
anomaly the Gregory Rift has a broad negative anomaly with a
superimposed minor axial positive anomaly indicative of mafic
intrusions (Searle, 1970 ; Daracott et.al, 1972).

On the basis of the axial gravity anomaly positiveness as
indicating the development and amount of intrusive activity(i.e
progression towards new crust), the CPMER might be considered as
an intermediate to the Turkana Rift and the Afar Depression. This
fact suggests that the gravity data could be viewed as indicating
a more advanced rift stage in the Turkana Rift and the Afar
Depression relative to the Main Ethiopian Gregory Rifts.

Conclusion

The Bouguer anomalies of the CPMER have been interpreted
interms of varying geological cecnditions. Profile A has been
taken as representative of other profiles crossing the rift and
two models (Figs. 5 & 6 ) which could fit this profile have been
discussed. The main features of the results obtained in this work
may be summerized as follows:

1.Within the rift floor, a central zone of positive anomaly is
flanked, over most of the studied area, by narrow negative
anomalies. These negative anomalies could be ascribed to maximum
depths of lake sediments and rift volcanics confined to two
relatively narrow troughs.

2. The crust is thinner beneath the central zone than under the
flanking basements and this would correspond to zones of high
density intrusives. In the CPMER the centers of these intrusives
seem to be situated at Bura,Shalla,Northern Langano,Adamitulu,
Southeastern Ziway, and Dera (Fig.3).

3. The central positive anomalies are found to be associated with
the axial zones of recent faulting (WFB) ,volcanism,and geothermal
and seismic activity.

4. The models generated show that the positive gravity anomalies
are controlled by high density intrusives and the contributions
of the lake sediments plus rift volcanics flooring the rift is
relatively negligible.
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Without doubt further refinements of the observations,and
consequently of the interpretations,can be made.

Additional geophysical work such as seismic ,together with
more detailed studies of the gravity field will provide better
data for quantitative interpretations.

Further geological work will also be necessary to provide
an improved version of the present work. In addition much density
information is needed for the whole area.
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ON THE INTERPRETATION OF NATURE

Gottfried Anger

Martin Luther University Halle-Wittenberg
Department of Mathematics
DDR - 4010 Halle (Saale)

Most problems in science, technology and medicine are inverse problems.
Studying such problems is the only complete way of analyzing experimen-
tal results. Often these problems concern the determination of prop-
erties of some inaccessible regions from observations on the boundary
of that region, like in geophysics and medicine. Further, the automa-
tization of physical processes leads necessarily to inverse problems,
which absolutely must be solved. The practical importance of inverse
and improperly posed problems is such that they may be considered
among the pressing problems of current mathematical research, In a
certain sense the paper gives final remarks concerning inverse prob-
lemss For inverse problems we have the following principles: only in
exceptional cases can an inverse problem be decided in a purely mathe-
matical way. In such cases, the solution often depends discontinu-
ously on the measured values. In case of ambiguity, only the set of
all solutions can be introduced and studied as a first step. One can
try to choose a solution relevant for the give use on the basis of
laboratory experiments. This result has important consequences for
scientific work. Success may be achieved only through an interdis-
ciplinary approach. For the complex systems of nature, the scientist
largely depends on practical experience, One can find all results in

the author's book on inverse problems,
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For practical applications, the interpretation of experimental
findings is of fundamental importance. Many physical parameters
f do not lend themselves to direct measurement and the effect g
which they induce is then the only known criterion; that is,
often g is the only measurable value, Between f and g there exist
relations based on physical laws which may be formally expressed
as equations of the first kind: Af = g, with f to be determined
by calculation, In doing so, an essential step consists in mod-
elling the process resulting in a symbolic description of A, The
basic equations of mathematical physics are derived by assuming
the knowledge of the material parameters f at each point of the
system considered., Such parameters are known, for instance, for
the atmosphere, for interplanetary space and for materials for
which experiments of high level exist, while in geophysics the
earth's parameters are to be determined by measurements on the

surface of the earth,

The calculation of Af with given f is called a direct problem,
Typically, this does not offer any major difficulties, as it is
possible to use the constructive methods of mathematics, The de-
termination of f from the relation Af = g, with given g, is called
an inverse problem. The solution of inverse problems is the only
way to completely investigate experimental findings. Equations of
the first kind are basically different from the more commonly oc-

curing equations of the second kind: Af + £ = g arising, e. g,
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in spectral theorye. Equations of the first kind often have a great
number of solutions f with Af = g. Each equation of the first kind
describes a particular physical process and a uniform theory for

such equations cannot be expecteds

The first inverse problem leading to an integral equation of the
first kind was solved by N. He Abel in 1823, Suppose we slide a
particle up a frictionless hill with initial energy E and meas-

ure the time T(E) required for it to return, If we vary E and
measure T(E), can we determine the shape of the hill? If s is the
arc length of the hill and h(s) with h(0) = O is its height, then
both the arc length s and the energy V are coordinates suitable

to describe the process as V(s) = mgoh(s). If V is used as an in-
dependent variable, and V ~» s(V) is a strictly increasing func=-
tion, the given problem can be uniquely solved by applying the

laws of point mechanics. If, however, the hill has maxima and
minima, the problem cannot be solved uniquely (J. B. Keller (1976)).
In this case it even has non-denumerably many solutions due to the
many-valued mapping V + s(V) (G. Anger (1987)). Similar condi-
tions apply to the determimtion of the shape of a mountain by

means of light (electromagnetic waves). The back of a mountain
cannot be identified from an observation point. Further, it is not
possible to look into the interior of an obstacle by means of elec-
tromagnetic waves., These examples raise the question of the infor-
mation content of a physical process or of the relevant mathematical
modél: which values f do lend themselves to unique and stable deter-

mination using the mapping A from Af = g?
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Inverse problems occurring in optics can comparatively easy be
understood and formulated, In this field the direct problem con-
sists in the calculation of the emission, the scattering and the
propagation of radiation on the basis of known parameters, both
of sources and of diffusers. On the other hand, the inverse prob-
lem consists in the determination of the parameters of sources,
diffusers, or propagation media by means of the radiation re-
ceived by a detector., We are well aware of the intuitive solu-
tion of the inverse problem: we derive the size, the shape, the
surface finish and the structure of an object from the scattering
and absorption of light perceived by the eye. In doing so, we have
to-take into consideration that the human eye has an extremely
complex structure, The brain is able to synthesize information

in the form of visible light to identify objects, but if optic
information beyond the visual impression, or the analysis of
optic information by means of electrooptic automatic instruments
are required, intuition has to be replaced by mathematical recon-
struction, that means by the solution of inverse problems (H., P.
Baltes (1980)). This is true for practically any physical and
biological process. The highest level of development has been
reached with regard to inverse spectral problems as they are
closely related to equations of the second kind. A first theorem
of uniqueness has been proved by V, Ambarzumian (1929). In the
present book, only a few results along these lines are briefly
outlined, as a number of monographs exist which deal with this

issue,
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Another inverse problem that has been under investisation for
more than 100 years is the inverse source problem in gravimetry.
It consists in the determination of the earth's density 9(x),

x é'R3, by measuring the gravity g = grad u on the earth's sur-
face, with the gravitational field u satisfying the Laplace
equation ~Au = g(x). From the knowledge of u for the whole
space follows the uniqueness of Q. In this inverse problem,

u and grad u are known just with regard to the earth's sur=-
face, while away from the surface of the earth the solution of
the Dirichlet problem or of the problem of the oblique deriva-
tive has to be used to determine them. The lack of information
on u inside the earth results in ambiguity with regard to the
inverse source problem, This fact was already known to G. G.
Stokes (1867), G. V. Schiaparelli (1875), C. Heumann (1906),

P, Pizetti and G. Lauricella (1907 - 1911), as well as to

G. Herglotz (1914). The first uniqueness results (for special
mass distributions) were obtained by G. Herglotz (1914), P. S.
Novikov (1938), and I. M, Rappoport (1940). As far as the in-
formation content is concerned, one can as a first step just
introduce and study the set of all mass distributions producing
the same potential on the earth., The integrals of these mass
distributions are equal for harmonic functions (G. Lauricella
(1911). It has been modern potential theory, one of the most
efficient theories in mathematics (O, Perron (1923), R. Remak
(1924), W, Wiener (1924), M. Brelot (1903 - 1987), J. L. Doob,
G. Choquet, H, Bauer, G. Anger) which, since about the year 1960
has made it possible to consider the characterization of the set

of all mass distributions having the same potential (Ge. Anger
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(1973 - 1976)) from a systematic point of view., Additional infor-
mation is needed to uniquely choose an element out of this set in
order to arrive at a solution., This may be the information that

the density @ is constant but such assumptions are not true for
geophysics or for medicine. It is more essential to consider

various coupled fields. In geophysics coupling of gravitational

and seismic fields (A. S. Alekseev and B. A. Bubnov (1981, 1984)),
as well as coupling of gravitational and magnetic fields (D. Zidarov
(1968 - 1984), M. S. Zhdanov (1981, 1988)) are of particular inter-
est. In addition, satellites introduce the possibility of meas-

uring various kinds of radiatione

We are now observing just the beginning of such investigations,

The results outlined in this book ought to be extended in the di-
rection indicated, i.e., in modelling more consideration should be
given to the complexity of physical processes, Owing to the present
lack of information, we are now unable to determine the mass dis-
tritutions which produce the earth's potentiale The above con-
siderations apply also to sources of electrostatic fields. Never-
theless, profound structural investigations may classify the sources
(measures), which, outside a body, produce the same potential, The
set of these sources is convex and weakly compact. Thus; results

of functional analysis are available for concrete issues in physics,
The attempt may then be made in a laboratory to find, out of the set
of solutions, a solution relevant for a given use., This aspect is
gaining increasing importance in applied mathematics. Owing to the
existing lack of information, only partial processes can be solved

in complex systems by means of mathematics,
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In a sense, the results outlined above apply also to inverse source
problems for other differential equations, as well as to most iden-
tification problems, With regard to the latter, certain coefficients
of a differential equation are to be determined on the basis of
additional information. If, however, the information content of
individual coefficients or of the right-hand side of a differential
equation is not too large, these values can be uniquely calculated
on the basis of additional information /4/. This is true for the
diffusion coefficient k(u) in equation'Dtu-div(k(u)grad u) = 0, for
the density @ in the system § (|{Jul )/:)x']u‘s o2 SV )'Dx2u1 =
—gx up, for the right-hand side f(u) in the equation 'Btu- Au = £(u)
andqfor one-dimensional inverse problems, i.e., the coefficients de-
pend only on one variable, These special problems are a small part

of the set of all identification problems.

The difficulties arising in inverse problems with regard to differ-
ential equations can be characterized in a comparatively simple way.

To do so, we consider the simplest differential equations
ut = f, u(a) =0 .

The solution u depends on the integral of f. Different f may have

the same value u(b) = g, a ¢ be If f is linear the relation between
f and g is one-to-one, The function f is uniquely determined, pro-
vided u is known for the whole interval., However, this information

is not available in practice.

As another example we consider the differential equation

u' - (q(x) +P(x)u=0, u(a) =u 5 P(x)=0 for x ¢ [x,8] ¢ [3,b],
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with the integral of (f being zero., The function  does not influ-
ence the solution u for x ¢ [®,8]. These so-called "non-radiating"
physical parameters are of principal importance for the solution
of equations of the first kind Af = g, as they do not lead to a
unique solution f. They cause particular difficulties in problems
arising in geophysics and in medicine where a unique solution has
to be found. If @Y= 0 and q = q, = const., then q, can be deter-
mined upon one measurement of u(x°). The relation between u(x°)

and 9, is strictly non-linear, which is another difficulty in in-

verse problems,

In both physics and biology, microstructures are gaining increasing
importance., At present, supercomputers rehder possible the pre-
calculation of systems comprising no more than 1000 particles
(Dupuis (1986)). But one cubic centimetre of a solid body contains
1023 atoms, so, modelling of the properties of microstructures
still presents great difficulties. Therefore, one has to continue
to use models based on the continuum, in particular models formu-
lated as differential equations. It is not possible to calculate
the density ?(x) in each point of a body from finitely many meas-
urements performed outside the body. In the case of the earth one
needs non-denumerably many values for this purpose, The same sit-
uation occurs in the coefficients q*(x) of a differential equation,
if the information content is too large. For this reason the infor-
mation contént has to be reduced with regard to @ or a, , respec-
tively, This can be done by integration (averaging) of certain

subsets. As has been said earlier, different @ or a may have the

same average value,
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The present state of inverse theory may be evaluated as follows:
each particular physical or biological problem is of a complex
nafure; the models used in mathematics comprise only a small
number of material parameters. When faced with a multiplicity

of inverse problems, one tries to determine just one parameter

by measurement outside an open set. This approach leads to a
limitation of the problem, which in general can be dealt with

in laboratories only. In laboratories most parameters can be

kept constant, and different experiments can be controlled

(Ge Duvaut and J. L. Lions (1976)). Every inverse problem re-
quires a particular approach. In designing instruments one

finds certain additional degrees of freedom as far as geomet-
rical dimensions and materials are concernede. The great success
in design engineering is due to this fact. Design perception
corresponds to deductive perception in mathematics. On the other
hand, interpretive sciences such as geophysics, soil mechanics,
meteorology, space research, biology, medicine, etc., are facing
particular difficulties. There, one tries to determine a great
number of inner parameters from a small number of measurements,
Lack of information often results in ambiguity, so different inner
parameters produce the same measured values., This ambiguity can
only be eliminated by means of additional information to be ob-
tained from experiment, For inverse problems we have the following
principles: only in exceptional cases can an inverse problem be
decided in a purely mathematical way. In such cases, the solution
often depends discontinuously on measured values (A, N. Tikhonov

(1943, 1953), V. K. Ivanov (1956, 1962), H. !, Lavrent'ev (1962)),
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In case of ambiguity, only the set of all solutions can be intro-
duced and studied as a first step (information content of an in-
verse problem). One can try to choose a solution relevant for the
given use on the basis of laboratory experiments. This result has
important consequences for scientific work. Success may be achieved
only through an interdisciplinary approach (J. Polking (1987)).

For the complex systems of nature, the scientist largely depends
on practical experience. In the future, intense fundamental re-
search on inverse problems will be imperative., The determination

of the information content of wathematical models, that is the
possibility of unique and stable determination of inner parameters,
will be most important. The solution of the direct problem is the

presupposition of a successful approach to the inverse probleme.

We have repeatedly pointed out that an equation of the first kind
Af = g may have non-denumerably many solutions f with the same
image g. Here Cantor's Continuum Hypothesis plays a role., More than
a hundred years ago, G. Cantor of the University Halle-Wittenberg,
tried to prove that any infinite set of real numbers may be mapped
one-to-one either on the set N of natural numbers, or on the set

R of real numbers. K. Godel (1931) and P. Cohen (1963) pointed out
that the existing mathematical axioms are not sufficient to prove
or to refute this statement. Similar assertions are valid for any
inverse problem. Such problems do not lend themselves to decision
without substantial additional suppositions gained from experiments.
It has repeatedly been outlined that with regard to such non-decid-
able problems profound structural investigations may be needed, and

these may be of primary importance for the future,
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It may be that results in inverse theory are most important for
simulation., By means of these results, simulation can use the in-

formation content of the special model considered more effectively.

One can find all facts in the author's book /4/.
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On the mathematical representation of the gravitational

potential and its time variation,

Ko Arnold, Potsdam

The consideration of the spherical harmonics series development
for the gravitational potential W of the Earth begins usually
with the mass integral

(1) W = w(r,pa) = ff\gf am,

with

(2) % s % 22; (%;)n Polcosy), r' <r .,

r is the radius of the test point P, r° that of the mass element
dM, The introduction of (2) into (1) leads to the well-known
harmonics series for W, convergent in the exterior of tho
Brillouin sphere, r = RB.a . But, the condition for the conver~
gence of the development for 1/e, being

(3) r* < r,

is no more valid for the series obtained if (2) is introducad
into (1), The deeper reason for the fact that (3) is lost comes
from the mathematical property of (1) to have an infinity of
maee distributions whioh generate the same potential W,

(4) W = fm Lamg =t \{f%sz - ffé{%-dMa = 593

Thie relation repreeenting the potential W in terms of the
masses has not a unique inverse. For instance, the masses within
the Bjerhammar sphere give riee to a series development conver=-
gent in the exterior of the body of the Earth, % .
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() w = 2_ (H)™w v, (pA) . in 2.
n=o0

Further on, integrating over the masses, it is necessary to
introduce also the condition that only continuous functions
for the potential W have to come out. This condition paralyses
generally the way via the mass integral,(53).

The shortest and most evident proof of the convergence of (5)
is that given by the author in 1978 by downwards continuation.
If WB is the truncation of the series for W neglecting the har-
monics of degree greater than B, we have

(6) W=Wg + Vg .
2. 1,n+l
(6a) W = nz=5 (%) W Yo (9.2) + Vg oo

In the exterior of the Brillouin sphere, r > RB.a , follows
(7) Vg —> 0, if B—+ o i r >Ry, .
(8) Avg=0, in 2 .

(8) yialds from

(9) aw = awg = 0, in % .

Figure 1,
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The sentence about the harmonic continuation, valid for con-
tirtbus potentials only, is: If Vg is harmonic in Ty+ T, ,
and if (VB)1 = 0 is right in Tl , in this case, (VB)i has
a unique harmonic continuation into TE . This continuation

is (VB)2 = O,

Hence, if the residual potential Vg does go to zero for

r s RB.a . VB does go to zero simultaneously also in the
domain between the surface of the Earth and the Brillouin
sphere. Thus,

(¢a) Vg =—> 0, if B —» oo, (in 2 ).

(9a) proves the convergence of the discussed seriss for whole
the exterior space 52 .

The convergence of this series can be proved also by a conside=~
ration of the completeness of a system of base functions. At
the beginning, the potential W was developed in terms of these
base functions, (5),

(10) (H)™L v (¢.A).  (n=0.1,2,..0).

If

(11) t = t (¢.2)

is the geocentric radius of the Earth's surface, we find the
following base functions a%(w,h) valid along the Earth's
surface,

(12)  ey(@.2) = ()" Yole 1) (0= 0.2.20000)
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These functions o are known to be linear independent,
13 é l, « A = 0 only if 1 = 0
(1) 3 1y (¢ y s .
(13a) for i = 0,1,2,¢0¢, C .

The &, system is complete in the space of the continuous func=-

tions, if the relations (14)

(14) _Ggw(tp.l) o, (9,A) 48 = 0,

(14a) (n = 0,1,2,¢0¢),

lead necessarily to

(18) w(y,d) = 0.

w(\p,z) is an arbit‘rarily chosen continuous function. G 1is the
unit sphere. In our applications, w(y¢,1) are the boundary va=-
lues of the potential W. In order to prove the completeness,

the potential K of a surface distribution » along the Earth's
surface S is introduced.

(16) K =Jsf;‘;’ds.

Within the interior Brillouin sphere, r ¢ RB.i' being comple~
tely envelopped by the surface S, 1/e has the expression,

0
(17) % = %Z (_rt‘_)n Pn(cosy/), r ¢ RB.i g T <t .,
n=o

This series for 1/e is introduced into the potential K, then,
the Legendre functions are substituted by Y (y,2), Y (4,2).
Hence,

(==

(18) K(F) = ,E, wr (F)" Y (7.7) gw%)"” Yo (g.2) ds
or

oQ
(18) K = > _wkm (A)" Y, (§.7) fsfwn(z,o.x) ds

n=o
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Figure 2,
With
(20) vds = w (y,4) do

follows

n=o

(21) K = 3o g (A" V@D [[ weR) (. A) d6
@ 2

(22) ¢+ = r(P) ¢ Rg,y

The completeness works with the relation

(23)  f{we,2) o,(y,2) d6 = 0,
G

(23a) (n = 0,1,2,00¢) «

Thus,

(24) K = 0, for r < Rg,y *
Because

(25) .AK = 0, 0¢réoco ,
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the application of the theorem of the harmonic continuation on
the potential K gives

(26) K = 0, 0O¢ré€ c ,

The jump relation for the normal derivative of K at the Earth's
surface yields

@ @ W -
and with (26)

(28) v = 0.

Hence,

(28) w(pd) = »vE = 0.

Thus, the system of the base functions o, is complete.

These o functions, linear independent, can be replaced by
orthonormal base functions pn (Schmidt orthonormalization
process),

(30) w(g.d) = fc:)wiui((p,l) - i}%w’{ Bylg.2)
1= =

(30a) f[ p2de = 47 .

6
Thus, the Parseval completeness relation,

2 2 22, 2
(31) ffw2de = [wi? = a7 5o (M2
3 i=o0

After the completeness of the o, system is proved, the comple~
teness of the ﬁi system is secured also. Consequently, (31) is
right. (31) implies the property of (30) to be convergent in
the mean,

(3ta) ff V3 (t,¢2) d6 — O, if B —s oo, (onS).
G

Because, further on, w ie a continuoue function, the convergence
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in the mean leads necessarily to the uniform convergence of
(30)., The uniform convagence on S means

(32) VB (t,¢,A) —» 0, if B —p» 00 , (on S) .

Therefore,

29 1,n+1
(33) W = > (3 wo Y, (@ad) = Wy o+ Vg
n=o

is uniform convergent on the Earth's surface 8.

The maximum principle of the potential theory signifies that
the maximum of Vg lies on the Earth'e eurface.

(34) lvg (rup, )1 € lvg (t,pR) | max.
(33) and (34) lead to
(38) Vg (r,pd) ==» 0, if B —p o , (inl ),

Hence, the uniform convergence is valid for the whole exterior
space of the body of the Earthe.

The maximum principle proves also the stability of (33): A
small alteration of the boundary values of W,

(36) W (r=t,y,A) = (W)g = w (¢,3)
by

(37) dw = dw (¢,4)

has an impact JW on the spatial W values in the exterior space,
with

(38) 16w (rop) | < [6w (@A) 0y,

As to the time variation of the potential W, if W? is the W
1

potential at the time ?1 '
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(39) w? ” t
3
and

(40) wg , %,
2
at the time 52 , than the time variation is

[~2]
(41) Wg - Wg, = e (%)"“[(wn);i- (n)gJ Yo (£:2)

n=o0

Oor

)
- n+l = 3
(42) W (rp2iE) = 3 )™ w (D) Y .
The range of validity of the convergence can be extended also
to the fourth dimeneion, the time t.

A ehort description of the procedure for the computation of .the
Stokes constante L (5), in terme of the gravitating maeses
should be added, If the gravitating maesee M within the surface
S of the Earth are given, these masees lead to fhe'potential

at the Earth's eurface by

(43) W(S) = W(r=t,9,2) = wwa) = fff[Lam

v
V is the volume of the Earth, e is the straight distance
between the surface point and the mass element dM in the
interior. The series (2) is not needed for the computation of
the integral of (43), The surface S has a star-shaped form,
S is a regular eurface shaped by the topography. The distribu=-
tion of the maeses in the interior has no strict constraint,

but the masses have to yield a continuous function w(y,A) for
the surface potential,

The calculations to get the Stokes constants L happen along

the following line. The functions uh(v,l) are computed for

the given surface S which is shaped by the topographical heights,
(12)., The Schmidt orthonormalization procedure gives the ortho-
normal functone ﬁn(?,l) in terms of the cxi(y,a) functions, (30),
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(44)  Bo(pid) = ¢ o o (ped) o
(48)  By(pid) = oy o o (@d) + ¢y 4 otg(q.d) .

(46)  Bplysd) = cp 5 Og(id) + 05 3 Og(PiR)+ cp 5 05p(¢uR),

From (43), the functon w(¢,d) ie known. From (44), (45), (486),
the syetem of the baee functione ﬁn(?,k), (n=20,1,2,¢..), 18
known. w(y,d) and ﬁn(q,l) allow the computation of the co-

efficiente wz , (n=0,1,2,¢.¢), (30), wﬁ is reached by

(47) W = i?gj w(g.d) Bo(g.2) d&
(48) n = 0, 1, 2, ¢e0
Thus,  the development (49) is known,

(49) w(9d) = 32 Wy Balg.A) .

In (49), the functione ﬁn(?,l) get to be replaced by the
ot (y.,2) functions. The functione (44), (45), (46) are intro-
duced into (49). (49) turne to

(50) w(y,2) = ‘ntaw" o (pd)

with
(61) w = 51-,:0 Wi Gy e
(52) (j_-, k o 0. 1, 2,.00) ]

This are the required values for the coefficients w_ of the
uniform convergent eeries development (5).
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Applying the series (2) on the integrand of (1), the Stokes
constants are obtained by the integrals of this type,

(59 Jff (e v g2 an

This is the traditional procedure., It leads to discontinuities,
divergences. It leads to potentials of a shape not possible in
natural science.

According to the here developed procedure, (51), the represen=
tation of the potential (5) is in harmony with the prerequisites
of natural ecience., It is continuous, convergent, uni.que, and
stable.
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Jerzy B.Rogowski

Warsaw University of Technology
Institute of Higher Geodesy
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STUDY OF THE LOCAL GRAVITY VARIATIONS
ON THE MERIDIAN BASE-LINES AND TEST-FIELDS

Summary

In the paper the authors present an attempt undertaken
to answer the question if the local hydrogeological pheno-
mena and variations in ground humidity may cause variations
in differences of gravity at the gravimetric stations and
time variations of gravity. Measurements of A g and studies
of water relations indicate that there occur variations
in acceleration differences that are bigger than the
observational mean errors and caused by variations in the
water relations on the meridian base-=line points,

Formulae have been worked out for the proper reductions
of gravity to the ground dry matter for the proper
preservation of acceleration.
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DIE UNTERSUCHUNG DER RNDERUNGEN DER GRAVITATIONSKRAFT

AUF MERIDIONALEN GRAVIMETRISCHEN BASIS
UND AUF TESTFELDEN

Zusammenfassung

Die Verfasser probieren im Referat eine Antwort
auf die Frage geben, ob die Ursachen der Knderungen
der Unterschiede der Erdbeschleunigung auf gravimet-
rischen Basis und der xnderungen der Gravitation
in der Zeit die hydrogeologische Lokalerscheinungen
und die Knderungen der Bodenfeuchte, kgnnen sein,
Die Messungen A g und Untersuchungen der Wasserver-
haltnisse seit mehrere Jahre zeigen auf grossere,
als die Mittelfehler der Beobachtungen, die Ander-
ungen der Unterschiede der Erdbeschleunigungen, die
durch Variationen der Wasserverhgltnisse auf den
meridionalen Punken der Linie hervorgerufen sind.
Es wurden Gleichungen zur Berechnung entsprechenden
Reduktionen der Gravitation auf die trockens Masse
des Bodens ermittelt, um die richtige Wartung der
Erdbeschleunigung zu bekommen,
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The development of the absolute methods of gravity measurements
which has been observed for the last few years as well as increase
in the accuracy of gravimetric measurements which took place in the
last two decades make in necessary for us to answer the question
if the results obtained from the measurements of gravity accelerat-
ions and their differences are constant in time,

A negative answer to the above question forces us to formulate
next ones: how far can the gravity acceleration or its differences
vary and what causes the occurance of this phenomenon. The authors
try to answer these questions basing on the results of the investi-
gations that have been carried out for many years on two meridian
gravimetric base-lines of two observatories: Astronomical-Geodetic
Observatory of Warsaw University of Technology at Jézefostaw
and Space Research Center of the Polish Academy of Sciences
~ Astronomical Latitude Station of CBK PAN Borowiec.

Gravimetric observations carried out on these lines are aimed
at studying stability of the plumb-line direction of these observa-
tories and their results have been recently presented at VII
Lohrman Collogium (M.Barlik, J.Rogowski, 1988).

Both the gravimetric base-lines consist of six points that are
distributed symmetrically in relation to the observatory.
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The approximate distances between the points and diffemences in gra-
vity have been presented in Table 1.

Table 1,

No

of the P. Distance Ag

[kms] [mGls]
N 13
N 6
N 3
Observ.
53
S 6
s 13

= O W W o =

Measurements of differences in gravity acceleration have been
carried out since 1976, four times a year, on the average.Astatized
quartz gravity meters - Worden, Scintrex /once IaCoste-Romberg/
have been used in the measurements. Before each measuring cycle the
gravimeters are checked, adjusted and tested at our laboratory.The
value of the actual coefficient of the instrument is determined.

The gravimetr’s constatnt has been determined by means of the
tilt method (M.Barlik,K.Czarnecki,1971) with an accuracy to no less
than 2-107%,

Observations of differences in gravity acceleration were freed
from the influence of the tidal forces: the drift of the instruments
is determined basing on the measurements repeated on all base-line
stations.Indications of the gravimeters have been also corrected due
to the difference in height the reference marks.,

An example of variantions in the gravity differences A g bet-
ween symmetrically distributed points of the base-line in relation
to Jézefostaw N 13 - S 13, N6 - S 6, N3 = S 3, observed in the pe-
riod from 1983 to 1988, has been presented in Fig.1.

As can be seen, variations in the gravity acceleration differen-
ces reach up to 250 pGl = 0.25 ;1m-s-2 when the errors of observa-
tions, on average, reach 20 pmGl = 0.02 pm-s'z, i.e, smaller by one
order., Variations of the same order have been obtained at the base
of the Observatory at Borowiec and in the investigations which have
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been carried out for the last ten years in the geodynamical test -
field of Czorsztyn - Pieniny Mts (Z.Zabek and others,1980) .

In 1981 studies were undertaken on assesing the influence of hy-
drological factors on the observed gravity variations. The distri-
bution of aquiferous layers in the surrondings of each of the base
points has been determined using the method of a geoelectric probing.
Piezometers have been installed on these stands where variations of
the ground water level may significantly effect the measurements of
the values of gravity accelerations.Since that moment, apart from
the gravimetric measurements, observations of the ground water level
depth have been carried out on these points. Basing on the determi-
ned ground porosity, formulae have been worked out which are to help
us introduce corrections to the measured values of gravity accele-
ration (M.Barlik,J.B.Rogowski,1983) .Diagrams of such corrections
for the part of the base S 3 = S 6 of the Observatory at Jézefos-
raw for the period 1983%-1988 have been presented in Fig.2.

The correction made due to the variations in the ground water
level does not exceed 30 pmGl = 0.03% pm's-z, and thus is if the order
of the mean error of the gravimetric measurements.

Another factor which may have a local, systematical alsoy influ-
ence on the determined values of the differences in gravity between
the points of the gravimetric stations are the variations in the
ground humidity.

An attempt has been undertaken to determine these quantities.Ba-
sing on the field investigations and theoretical analyses, formulae
have been developed to let us calculate these corrections in the fun-
ction of the ground humidity variations in the selected places sur-
rounding the gravimetric points.

In order to determine humidity, samples of an untouched structu-
re are taken at the depth of 1 m., Then humidity and water content
in a given sample are determined at the laboratory.

Variations in the ground humidity and water content in the ground
for the points of the base that are placed symmetrically in relation
to Jézefostaw have been presented in Fig.3.

Since 1983 a correction has been introduced to the gravimetric
measurements which is aimed at eliminating the influence of varia-
tions in the water content in the outer ground layer through the in-
troduction of & correction reducing the value of gravity accelera-
tion to such a state in which we will eliminate water from the outer
ground layer (reduction to the ground dry matter) .
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The correction introduced due to the above is much bigger than
the one caused by variations in the ground water level., Its values
for the sections N 13 - S 13, N6 - S 6 and N3 - S 3 for the base
at the observatory of Jdzefostaw have been presented in Fig.4. The
greatest values of the variations of the correction resulting from
the ground humidity variations have been obtained for the shortest
section of the base N 3 - S 3, for which it exceeds 100 pmGl.

A statistical analysis of the gravity differences before and af-
ter introducing the two above mentioned corrections let us state
that in 62% there occured a decrease in the time variations of gravi-
ty, in 28% it did not remarkably influence on the results and in 10%
it caused increase in the amplitude of variations,

For the section N 3 - S 3, in the period from July 1983 to Sep-
tember 1985, there occuried’ a complete compensation of the gravity
variations and in the other period, variations in the gravity accele-
ration differences were similar in character as the influence of va-
riations in water relations in the ground surrounding the gravimetric
stations.

Summing up the results of the works carried out so far, we should
state that hydrogeological effects and ground humidity variations
should be taken into account while, for instance, using the gravime-
tric stations in the calibration of gravimeters. The results obtained
from gravimetric observations, when used in geodynamical analyses,
should be freed from the influence of these local geophysical factors
before their regional and global interpretation (crustal movements,
the Earth’s pole movements, plumb-line variations).
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COMPLEX TREATMENT OF 2D GEODATA

Bartha,G.x, Bényai,L.x, Czompé,J.x, Papp,G.x

SUMMARY

For the security of a big industrial object, controlling
geodetic network should be used to monitor the motion of the
surrounding area. The controlling network should be allocated
on the tectonical possible active parts of the territory.

In the paper a concept of a method for the allocation
and its demonstration are given. The method is based on the
assumption of the common signal caused by tectonical dis-
turbances. The common signal is supposed to be present in the
geofunctions of the territory like topography, gravity anomaly,
magnetic anomaly etc., and the harmonic analysis is used to
find this common signal.

The process is demonstrated by a practical example, and
it is tested by seismic investigations.

*Geodetic and Geophysical Research Institute of the Hungarian
Academy of Sciences, H-9401 Sopron, POB 5, Hungary
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INTRODUCTION

The security of the big industrial objects requires the
geodetic and the geophysical monitoring of the surrounding
area - what can be called as microscaled (10-100 ka) moni-
toring. In the microscaled monitoring the problems are:

1) what signals are to be monitored; 2) where to do it;
3) how to do it.

The answer for the first term of the what-where-how triad
is rather obvious from the aspect of the geodesy: to monitor
the horizontal and vertical movement of a controlling network
by repeated measurement.

The answer for the second question seems to be also
obvious. The controlling network should be allocated to cover
the active, possible dangerous part of the surrounding area.
How to allocate the active zone(s)? Is there any "standard
process" of the allocation?

These questions are investigated in the present paper and
a "standarzible process" is given which is based on the complex
treatment of 20 geodata like the topography, gravity, magnetics.
The process is demonstrated by a real investigation of the sur-
rounding area around an atomic power station.

CONCEPT OF COMPLEX TREATMENT

The physical principle of the complex treatment is: a
common signal f(x,y) is supposed in the 20 geofunctions of the
area (like the topography z(x,y), the gravity anomaly g(x,y),
the magnetic anomaly m(x,y) etc.) which is caused by an active
disturbance (fault). The reality of this supposition is sup-
ported by some earlier work [i.e Syberg, 1972; Kanasewich-
-Agarwal, 1970; LeRoy M. Dorman-Brian T. Lewis, 1970} .
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The mathematical principle of the complex treatment is
the 2D harmonic analysis which provides an unified data
management in the processing of the different dataset.

According to the supposition of the physical principle,
the mentioned geofunctions are written as:

z = f + n
g=1f=+n, 1)
m=f + Ny

where the functions Nys Ny, N3 are the "noise" functions. It
is also supposed that the noise functions are uncorrelated
with the signal function f, further with each other:

o(,n;) = o(ny,n;) = 0 i#3 (2)

Then the cross correlation functions of the geofunctions are
equal to the autocovariance function of f:

c(f,f) = c¢(m,z) = c(z,g) = c(f,f) (3)

The autocovariance function c(f,f) is the Fourier pair
(Fourier transform) of the power density function of f [Béth,
]974] that is:

Fourier pair 2
c(f,f) — > E @, coy) S 3 (wxwy) (4)

where F is the Fourier transform of f. For 2D functions the
next relations hold in digital form Oppenheim-Schafer, 1975

N

Z i o L @PNX, -3 /My

F(n,m) = xlyk) e e
1=1 k=1

2-
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N/2 M/2
f(xlyk) =, + 8y COS (Z'ITH/N)Xl + (2’17"rn/M)yk +
n=1 m=]
N/2 M/2
-
+ by Sin (27/"n/N)><1 + (2Tm/My,
n=1 m=1

ZN:
=
N
a. =% £(x,y,) cos (2T n/N)x, + (2T m/M)
nm = WM Yk 1 Yk
=1
N“"
b = £(xqy,) sin (2T n/N)xg + 2T m/My, (5)

Computing from the digitalized geofunctions the auto-
covariance c(f,f) one can determine the dominant freguencies
C*))i(, w; of function f which are the local extreme of F (peaks
of the spectrum).

If the spectrum F has I and J peaks, then the function
f is given as:

I J
D I I CHRI AR
i=1 j3=1
(6)
) i 3
+bij sin (w§ X +wyyk)
where a b.. are given by Eg. 5 but f(xl,yk) 2¥n/N and

a. .
o’ "ij’ "i) :
2Fm/M are replaced by z(xlyk), c.)i and wj, respectively. The
function z can be considered as a "filtered" version of the
topography function z which should show (if it exists!) the

common disturbing signal of the geofunctions.
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DEMONSTRATION DF THE METHOD

The geofunctions z(x,y), g(x,y), m(x,y) around the in-
dustrial object (signed x on Fig. 1) were given in digital form
an equispaced grid (100 x 100 m). The total area was
6000 x 6000 mz. The functions are given by Fig. 1.

The process given by Eqs 4-6, has been accomplished and
the "filtered' surface is given on Fig. 2. The disturbance
( signed by — ¢-) can be easily identified.

In the area an seismic coss section was prepared to
cross the area located by the previous method, therefore a
chance has been given to test the method.

The cross sections of the geofunctions (the filtered
surface z(x,y), the topography z(x,y), the gravity anomaly
g(x,y), the vertical magnetic anomaly m(x,y)) were prepared
in the line of the seismic cross section (given by Fig. 3)
and they are shown together on Fig. 4. It can be seen that
the "appointed disturbance" is located above the broken part
(fault) of the basin (depth of the basin ~ 800 m).

DISCUSSION

In the previous paragraphs a cenception and its demonstra-
tion of a method for the allocation of the tectonical active
area was given. The method is based on the assumption of the
common signal of the tectonical disturbances in the geofunc-
tions like topography, gravity, magnetics. The digitalized
geofunctions are processed by 2D harmonical analysis - provid-
ing a unified process for data management. In the demonstration
the identification of the active area was strenghtened by the
seismic cross section.

Since the method is rather simple and not so expensive
(usually the mentioned geodata can be collected without extra
field work) that can be proposed as a preinvestigation to
allocate the monitoring network of an industrial object.
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LOCAL GRAVITY FIELD APPROXIMATION
BY POINT MASSES WITH OPTIMIZED POSITIONS

F. Barthelmes

Acadeny of Sciences of the GDR
Central Institute for Physics of the Earth
Potsdam, 1561, GDR

Summary: The approximation of gravity anomalies in local or
regional areas by point masses with optimized positions is
performed. First results of practical computations using gravity
anomalies from the White Sands test area, New Mexico, USA, are
presented.

1. Introduction

The problem of gravity field approximation (globally as well as
locally) became more and more important during the recent years.
Above all, this was caused by the large increase of available
observations since the advent of various new, very precise
measurement techniques, and naturally by the demand to use these
measurements for geodetical, navigational and geophysical
purposes without loss of information.

The activities of IAG made allowance for this situation at
present and in the past and the investigations, first results of
which are presented in the following, have been induced by the
SSG 3.90 "Evaluation of Local Gravity Field Determination
Methods" (1983 - 1987; President: C.C. Tscherning) which partly
continued the work of SSG 4.70 “Gravity Field Approximation
Techniques" (1979 - 1983; President: K.P. Schwarz). The work of
these two SSG mainly based upon data from the White Sands test
area, New Mexico, USA (see: SCHWARZ 1983; KEARSLEY et.al. 1985),
and the work of SSG 3.90 was directed on the evaluation of
available gravity field determination methods, their efficiency,
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stability, range of applicability and their inherent limitations
(see.: TSCHERNING 1987). In this connection the investigation of
point mass techniques was planned too, but could not be realized
up to now.

2. The approximation method

Starting point for elaborating the method was the algorithm which
has been described in detail, including mathematical foundation
and numerical tests, in (BARTHELMES 1986). Nevertheless it is
based on data in form of gravity disturbance vectors equally
distributed over the whole surface of the earth. The basic idea
of this method is to construct a point mass model step by step
approximating the observations not only by optimizing the
parameters (masses), but by selecting the base functions too
(ad justing the positions of the masses, or in other words, the
positions of the knots of the kernel functions), which results in
a non-linear optimization problem.

On principle the algorithm can be formulated (verbally) as
follows:

Assumption: N-1 point masses have already been determined

N-th step:

1. Subtraction of the field produced by the N-1 point masses from
the measurements —— residuals

2. Selection of the position Pmax of the maximum absolute value
among the residuals

3. a) Determination of the approximate value for the N-th point
mass position by putting it below the point Pmax at a
starting depth Do

b) Iterative improvement of the point mass position by
non-linear optimization

4. Selection of those point masses among the N-1 previous masses

up to a fixed number N5 which have the smallest distance to
the new N-th point mass
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5. Common iterative improvement of masses and positions of the
new N-th point mass and the selected neighbouring masses by
non—-linear optimization

In dependence on the datatype the basic equations of the

optimization problem have to be specified. For gravity anomalies

the corresponding relations can be written as follows (see

fig. 1):

The gravity anomaly according to Molodensky is defined as

(1) A4&(P) = g(P) - ¥(Q),

where g denotes gravity and ¥ normal gravity.
Using the anomalous potential

(2) T=W-0 ,

the gravity anomaly can be expressed by:

(3) Ag(P) = lgrad T(P) + J(P)| - ¥(Q)

Because of |grad T(P)| << x%(P),

(4) 2g(P) = ( § + grad T(P)] + ¥(P) - ¥(Q)

holds with sufficient accuracy.
With
(5) ¥(P) - ¥(@) = 3¢ 'Q-c

and

we obtain

(7) Lg(P) = (§ + grad T(P) I + x%T%E N T(P)
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If the anomalous potential and its gradient are represented by
N point masses with masses {mi} (containing the gravitational
constant) and positions {qi}:

N
- 1
(8) W(RY'= & Wi TP o)

and

N T(P,q;)
(9) grad T(P) = Z my g

i=1 1 (P,qi)
then (7) gives the gravity anomaly in depence on point masses.
After this the derivatives a(Ag)/aqi, needed for the non-linear
iterative optimization of the point mass positions a;, are also
derivable without any difficulties. For solving this optimization
problem the Levenberg-Marquardt method - Marquardt’s strategy
(SCALES 1985, pp.115) has proved successful.
The optimization of masses and positions was divided into
alternate improvements of radii and masses on the one hand and
longitudes and latitudes on the other hand - this way separated
regularization as well as limitations for the positions (e.g
upper and lower limits for the radii) became possible.

3. The data

For testing the described point mass method refined Bouguer
anomalies from the White Sands test area were used, where the
topographic irregularities with respect to a smooth mean height
surface are removed (Residual Terrain Model - reduction).
This RTM -~ reduced data were made available by
C.C. Tscherning in the framework of SSG 3.90. For detailed data
description see: (SCHWARZ 1983); the RTM - reduction method was
described in (FORSBERG and TSCHERNING 1981). To compute point
mass models the RTM ~ reduced gravity anomalies covering the area
bounded by 252.85% < & < 254.15° ,  32.85° < ¢ < 34.15° were
selected from the data set, which originally contains 3466
anomalies, resulting in 370 points. A second data set containing
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102 RTM - reduced (control) - anomalies, bounded by
253°% < & < 2540, 33° < ¢p < 340, and not included in the previous
set, was defined to standardize the results of evaluating the
prediction accuracies. Fig. 2 illustrates the distribution of the
data. The anomalies have a standard error of 2 mgal.

4.Results and Discussion

First tests had shown that the full optimization of point mass

positions in all directions actually results in a good
approximation accuracy with only a small number of masses - but
with an wunsatisfactory prediction accuracy. This does not

surprise 1if one considers that the algorithm primarily was
developed having in mind the model approach to physical geodesy,
which implies continuous boundary values or, at the very least, a
discretization as dense as necessary. The reason for the bad

prediction accuracy is that during point mass position
improvement we did not prevent the possibility that some few
masses "slide" Just under data holes, where on the other hand

prediction points exist. To avoid this, the point mass position
improvements (steps 3.b and 5. of the algorithm) have been
carried out 1in radial direction only, but with the described
method of starting point determination. For the number of masses

which has to be improved commonly at each step a value of NE =6
has been proved sufficient, and as initial value for the depth
D0 = 5 km has been choosen.

Fig. 3 shows the results. The numbers of masses for which the
limits of approximation accuracy and prediction accuracy are
reached (N & 70 — 80) correspond very well. The result of
1.8 mgal for the limit of approximation accuracy confirms the
given data noise of 2 mgal. The prediction accuracy of 6.48 mgal
corresponds exactly to the best value reached with collocation
(6.47 mgal) in the comparison of different techniques based upon
the standardized 102 control anomalies (but using indeed a larger
surrounding area of 3244 data points); see: (FOR3BERG and
TSCHERNING in: SCHWARZ 1983).

It 1is remarkable and usefull for a better understanding that the
point mass method is nothing else than collocation (with a
defined type of covariance function), if the number of masses and
the number of measurements are equal, and if the masses are
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located below the observation points by defining the depth by a
Kelvin transformation at the Bjerhammar-sphere (see: FORSBERG
1984; HAUCK and LELGEMANN 1985; BARTHELMES 1986, pp.34).
Considering this connection it 1is understandable that the
described approximation procedure (optimizing the radii only in a
small range) will converge to least squares collocation with an
increasing number of masses. But contrary to collocation, where
additional information is nesseccary to determine the covariance
function, in this algorithm the base functions (the depths of the
masses) were determined automatically using only the information
contained in the data. Fig. 4 shows a classified distribution of
the point masses’ depths.

5. Conclusion

As the test computations have shown, the investigated point mass
method is advantageously usable for 1local gravity field
approximation. The computation of such point mass models can be
rather expensive because of the iteratively setting up and
solving of systems of linear equations - but this expense can be
kept 1in reasonable limits by not improving all, but only the Ne
selected masses at each step, and by the possibility (which was
not used here) of not using all data points, but only. the
observations up to a fixed distance from the point masses which
should be improved at the actual step (see: BARTHELMES 1986).
Once the point mass model is determined, prediction values of
gravity anomalies (and, although not tested yet, on principle of
all quantities of the gravitational field) are computable with a
very high efficiency - in the present case the sums (8) and (9)
must be computed for N = 70 only. The valuation of the prediction
accuracy for deflections of the vertical and the computation of
height anomalies based on point masses are topics of further
investigations.

In addition to the economical aspect a uniform representation of
the gravitational field could be of importance - and for both,
local and global representation, probably no other method is
better suited than point masses (comp. the global application of
the point mass method by DIETRICH and GENDT 1988).
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THE GEOID
AND THE MOHOROVICIC DISCONTINUITY

KresSimir Colié, Nada Vudetid&
and Svetozar Petrovié

Yugoslavias

ABSTRACT:

In the prediction of the Mohorovi&ié& discontinulity
between the measured DSS profiles - besides geological
Information - terrain heights and/or Bouguer anomalies
had been sometimes used for the Interpolation. The
authors of the present paper were the rfirst to Iintroduce
also the application of the geold - the most outstanding
level! surface of the earth’s gravity frield - for such
purposes. At the beginning, the results were dis-
appointing. However, In the course of Investigation It
came out that the geold as such was not responsible
for that, but the small area astrogeodetic geolid model
for the considered region (Yugoslavia), which was
avallable at that time. After the very same model has
been reorfented - using our "method of maximal IlInear
correlation coefrricients”, which resulted Iin the recent
solution POTS88 - the absolute geoid undulations proved
to be the best parameter for the above mentioned
prediction of the Mohorovi&ié& discontinuity. Using the
geold and the Bouguer gravity anomalies simultaneously
gave the most acceptable result. In that way we succeeded
to elaborate the enclosed map, as presently the best
presentation of the Mohorovidid& discontinuity for the
Yugoslav territory.

4 Address: Prof.Dr. Kreg&imir Colié, Nada Vu&etié, Svetozar Petrovié,
Geodetic faculty, University of Zagreb, Ka&iéeva 26,
41000 Zagreb, Yugoslavia
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ZUSAMMENFASSUNG:

Fir die Verlaufsvorhersage der Mohorovi&ié-Diskontinuil -
tit zwischen den gemessenen TSS-Profilen benutzte man
rfriher - samt geologischen Informationen - biswellen
die Geladndehbhen und/oder die Bougueranomallen der
Schwere. Erst die Verfasser dieser Abhandlung rihrten
auch die Verwendung des Geoldes, der ausgezelchneten
Niveaurliache des Erdschwerereldes, frir diese Zwecke
ein. Am Anfang brachte dies jJedoch keine berriedigten
Ergebnisse, aber bald stellte sich heraus, dass sich
dabel gar nicht um die Unbrauchbarkelit des Geoldes als
solches handelt, sondern dass die Ursache In dem damals
vorhandenen astrogeodiatischen Geofdmodell fir das klelne
betrachtete Gebiet (Jugoslawien) gelegen Ist. Nach der
Verbesserung der Raumorientierung von demselben Geoid-

modell - mittels unserer "Methode der maximalen linearen
Korrelationskoerrizienten'" entstand neulich die Ldsung
POTS88 - war es ffestzustellen, dass die absoluten

Geoldundulationen sogar der beste Parameter fiur solch
elne Prognose der Mohorovid&ilé-Diskontinuitat sind.
Gleichzeitige PBenutzung von Geoldhéhen und Bouguer-
anomalien llefert das annehmbarste Resultat. So konnte
die belfliegende Karte erstellt werden, als momentan die
beste Prasentation der Mohorovididé-Diskontinuitat fir
Jugoslawisches Territorium.

i. INTRODUCTION

It is well known that the depths of the Mohorovi&iéd
discontinuity ("Moho™ can be determined by aid of the
expensive deep seismic sounding (DSS) along chosen
profiles. In order to obtain an idea of the shape of
that boundary surface between such profiles, it is a
common practice to use Bouguer gravity anomalies and
terrain heights (dn fact, in place of orthometric relief
heights, one should use the corresponding ellipsoidal
heights) on the whole considered region as prognostic
parameters. But, it is not hard to imagine that some
other quantities - for instance geoid undulations, as
in the present study - could be used for that purpose
as well. Moreover, it came out that the geoid 1is a
very significant - even the most important - parameter
for the prediction of the shape of the Mohorovid&id
discontinuity, at least when the region in question
is the territory of Yugoslavia.

Four years ago, not far from the beginning of those
investigations of ours, we had presented a paper at
the previous symposium held under the same title as
the present one. Now we felt obliged to come again
with first completed results. Besides that, we consider
that the procedure for the prediction of the
Mohoroviéié discontinuity relief between the existing
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DSS-profiles, which 1is presented in this study, can
be successfully applied also iIn other countries,
respectively regions.

2. PREDICTING THE SHAPE OF
THE MOHOROVICI¢ DISCONTINUITY

2.1. Data files

For the computations we have used the following data

files:

- a file containing the measured values M of the Mo-
horovi&ié discontinuity depths along individual DSS
profiles - in all 4 profiles with 173 pointss,

- a file of the mean values Ag of Bouguer anomalies,
given in a 10’°x15’ grid, obtained by a manual digitizing
of the Bouguer map 1:500000 for the whole Yugoslav
territory - 716 points, see e.g. €olié et al. 1984),

- a file of mean relief heights H in a 10’x15°’ grid, see
e.g. (Petrovié et al. 1985), generated by means of a
2.5'%2.5° digital terrain model,

- a file of absolute geoid undulations N, also in a
10’x15’ grid, obtained by the "method of maximal linear
correliation coefficients". We will call that flile
POTS88, and all relevant detaills concerning it and
the mentioned method are contained in the paper
(Petroviéd et al. 1988), which is published in this
same Proceedings.

In order to test the correctness of our approach, we

added this time also:

— a file of geoid undulations n obtained by classical
least squares fitting of a relatively oriented geoid
model (Muminagié 1971) onto the spherical harmonic
model GPM2 (Wenzel 1985), see (Colié et al. 1987/1989).

Of course, a fitting to some other spherical harmonic
model could have served for that purpose as well.
Parallel usage of two representations of the absolutely
oriented geoid for the Yugoslav territory is justified,
because the first solution was achieved by the authors
applying a rather unusual procedure - see Col1é et
al. 1986), or preferably (Petrovié et al. 1988) - and
the second solution was obtained in a more or less
conventional way.

* From our considerations we have already earlier excluded the profile
Cavtat-Loznica-KanjiZa (which is a part of the International protile IlI,
respectively of the Geotraverse |I), because it needed a geophysical
reinterpretation, and the two profiles in Macedonia are too short, see
e.g. (Colié and Petrovié 1983).

DOI: https://doi.org/10.2312/zipe.1989.102.02



171

2.2. Correlation between the DSS data
and the remalining parameters

In order to use any parameters for the prediction of
some quantity, it is necessary to make an assumption
regarding the nature of the really existing relation
between them and the required quantity. To achieve
that in the considered example, we computed first the
linear correlation coefficients between the values M
of the Mohorovi&ié discontinuity depths measured in
the DSS points, and the corresponding values of each
of the remaining three resp. four parameters. Generally
high correlation coefficients (in the sense that their
absolute values were close to 1) have been obtained,
not only for individual profiles, but also when taking
all their points together. Therefore,the Table 1 dis-
plays only those last mentioned, more important values,
together with the resulting interval estimations.

parameters r interval estimation
M and Ag +0.86 +0.79<R<+0.91
M and H -0.81 -0.72>R>-0.88
M and N -0.89 -0.83>R>-0.93
M and n -0.84 -0.75>R>-0.89

Table 1. The linear correlation coefficients r computed
using the considered sample (173 points), and
the interval estimations for the correspond-
ing linear correlation coefficients R of the
universal sets

We see that all linear correlation coefficients have
absolute values close to 1, and conclude that the
existent relations have strongly pronounced Ilinear

components! Further conclusion following from the table
is that, in the considered region, the 1sostatic
compensation takes place mostly inside the earth’s
crust, because the linear correlation coefficient
between M and H amounts -0.81. However, when we con-
sider the relation between the gravity anomalies Ag
and the depths M, the absolute value of the coef-
ficient becomes even larger (0.86). To tell the truth,
the Bouguer anomalies are much more influenced by
irregularities of the mases lying near under the sur-
face, than are the geoild undulations. Therefore, the
largest absolute value has just the Ilinear correlation
coefricient between N and M (0.89), and the estimation
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interval 1Is of course the most narrow Just in that
case. It should be probably added that the positive
sign of r in Table I belongs to the case where one
surface 1is almost a stretched (An vertical direction)
image of the other one, while in other cases we have
a negative sign - one surface 1is close to a mirrored
and stretched image of the other.

2.3. Prediction of the depths M

In order to obtain the formulas for the prediction,
it is first necessary to choose their form. From the
facts described in the previous section, it 1is clear
that it makes sense to consider the linear expressions
of the form:

M(Ag,H,N)=M+a(dg- Ag)+ b(H-H)+ c(N-ND (63}

where M represents the mean value of the parameter
M for the considered region; &g, H and N being the
mean values of the parameters 4g, H and N; while a,
b and c are the required coefficients. In the case
when we wish a prediction with less than three
parameters, some of those three coefficients should
be Iin advance set to zero.

The coefficients a, b and c should be determined in
such a way that the values M(aAg,H,N) of the Mohoro-
vi&ié discontinuity depths, computed by using the for-
mula (1), deviate as little as possible from the values
M measured along the DSS profiles, which can be achieved
by the method of least squares. In such a manner, we
obtained the following relations for the prediction:
M(Lg)=37.9-0.186(Lg+27.7)

M(H)=37.9+0.0131(H-580)

M(N)=37.9+2.92(N-44.28)
M(Ag,H)=37.9-0.138(0g+27.7)+0.0041(H-580) 2>
M(Ag,N)=37.9-0.087(Ag+27.7)+1.83(N-44.28)

M(H,N)=37.9+0.0046(H-580)+2.16(N-44.28)
MCog,H,N)=37.9-0.075(Ag+27.7)+0.0014(H-580)+1.75(N-44.28)
When we In place of the geoid undulations N, use the
geoid undulations n, then the expressions, which con-

tain the absolute geold undulations as a prognostic
parameter, become:
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MN)=37.9+4.42(n-45.74)

M(Ag,N)=37.9-0.118(Ag+27.7)+2.14(n-45.74)
3)
M(H,nM=37.9+0.0067(H-580)+2.63(n-45.74)

M(Ag,H,N=37.9-0.11004g+27.7)+0.0011(H-580)+2.02(n-45.74)

Using all those formulas, we obtained 11 predictions
(7 basic ones, and 4 for the control) for the shape of
the Mohorovid&i& discontinuity wunder the whole Yugoslav
territory. For further treatment, we formed the data
files of those predictions using the same 10'x15'" grid,
which had been used for the files of the prognostic
parameters 4g, H, and N, respectively n.

2.4. Evaluation of the effected predictions

The quality of individual predictions can be estimated
on the basis of their deviations from the measured
DSS data, which can be seen from 7able 2. Having in
mind possible errors in the measured DSS data, neither
the r.m.s. differences, nor the ranges of differences,
should be considered as exaggerated, because they
lie inside the 1imits of the measurement accuracy
itself. Namely, according to the majority of authors,
the uncertainty of the measured depths M amounts up
to several kilometers, and the r.m.s. error has been
estimated to approximately +3km, see e.g. (Geiss 1987).

Of course, the best two predictions are those which
use all three parameters each. However, out of those
two triparametric predictions, better is the one which,
besides Bouguer anomalies and relief heights, uses
our model POTS88 of the absolutely oriented
astrogeodetic geoid for the territory of Yugoslavia.
Analogous statement holds for biparametric and
uniparametric predictions: wherever the absolute geoid
undulations occur, the r.m.s. differences and the ranges
of differences have the smallest wvalues, 1i.e. they
deviate least from the measured DSS data. In other
words, according to both accepted criteria, the best
uniparametric prediction is MNN), the one which makes/,
use of the geoid, and among the biparametric predictions
it 1is Mcag,N), which is based on Bouguer anomalies, and
again on the geold - moreover, that prediction 1is
practically identical to the triparametric M(Ag,H,N).

It is wvisible as well, that also the model of the
absolutely oriented geoid, obtained by the least
squares fitting of the original Muminagié’s model onto
the geoid surface according to GPM2, represents a
prognostic parameter which is surely better then rellef
heights, and almost equally as good as Bouguer
anomalies!
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measured depths M
predicted
depths r.m.s. diff. range of diff.
MCAag) 3.1 13.7
MCH) 3.5 19.9
M (N) 2.8 10.8
Mcag, H) 3.0 15.4
Mcag, N> 208 10.1
M (H, N) 2.6 10.5
MCbg,H, N) 2.4 10.0
Mdn) 3.3 15.0
Mcag, n) 2.7 13.2
3 M(H, n) 3.0 15. 4
McAg,H, n) 2.6 13.4

Table 2. The r.m.s. differences and the ranges of dif-
ferences between the DSS data and the pre-
dicted values for the Mohorovi&ié disconti-
nuity depths - for all 4 profiles taken to-
gether (173 points)

On the other hand, for the evaluation of the obtained
results one can also use the r.m.s. differences be-
tween . individual predictions computed using points
uniformly distributed over the whole Yugoslav
territory. In place of listing all those differences,
we will comment only some most significant among them.
For 1instance, the amount of 4.8km for the r.m.s.
difference between the depths M(N) and M(Ag) seems to
be too large, but, when compared with the figures in
Table 2, 1t shows that those two predictions mainly
deviate Iin opposite directions from the probable position
of the Mohorovidlé discontinuity! Therefore, it seems
to be profitable to use Just their combination for
the prediction. On the contrary, the r.m.s. difference
of Just 1.0km distinguishing the predictions MAg) and
M(ag,H), as well as the 1.4km r.m.s. difference between
M(N)> and M(H,N), speak that the relief heights make no
gsignificant contribution to the improvement of the
prediction. It 18 especially stressed by the difference
of 4.9km, respectively 5.2km, between the predictions

DOI: https://doi.org/10.2312/zipe.1989.102.02



175

M(H) and MN), respectively Mm). However, it should be
mentioned as well, that the difference between the
predictions which use the N-values, respectively the
n-values, alone, 1s characterized by an amount of even
3.3km. But, to avoid eventual misunderstandings, it
should be emphasized that the corresponding pairs of
the predictions, obtained using the two considered
alternate geoild representations, are In principle much
more close, than any two predictions which are more
heterogeneous with respect to the applied parameters
- regardless whether uniparametric or biparametric
predictions are considered.

When we finally look at the relations between the
biparametric and the triparametric predictions, we are
led to conclude that the Inclusion of the relief as a
third prognostic parameter brings no such Improvement,
which would Justify that step. Namely, the prediction
Mcag,H,N) resp. MAg,H,n) is practically identical to the
prediction M(Lg,N) resp. M({Ag,n) - both considered r.m.s.
differences amounting only O.3km. All that does not
mean that we completely exclude the relief heights as
a possible prognostic parameter. We only establish
that - at least on the considered territory - the
Bouguer gravity anomalies, and especially the absolute
geoid undulations, are significantly better for that
purpose.

2.5. The choice of the optimal prediction

On the basis of the just completed evaluation, we can
conclude that the consideration of biparametric
predictions of depths M really makes sense, which can
not be said for the triparametric ones. The conclusion
can be confirmed by considering the contribution of
every single parameter In biparametric and tripara-
metric predictions, which we did in a somewhat unusual
way. Table 3 offers the lJinear correlation coefri-
cients between the predictions and the Individual
parameters which took part in them.

From the upper part of the table it 1s easily seen
that the Jinear correlation coeffricient assoclated with
the geoid undulations N Is always the largest,regard-
less whether in the prediction the N-values are com-
bined with Bouguer anomalies, with relief heights, or
with both those parameters simultaneously. Therefore,
it may be stated that - at least on the Yugoslav
territory - the geoild undulations are the best
prognostic parameter for the determination of the shape
of the Mohorovidié discontinuity Iin the space between

the existing DSS profiles. In accordance with the
expectations, the corresponding linear correlation
coefficients for the n-values are Just somewhat

lower. Therefore, the prediction with the use of geoid
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Lg H N n
Mcag, H) +0.98 ~0.89 - =
Mcog, N +0. 87 S -0.96 -
M(H, N) - -0.81 -0.98 -
McAog,H,N) +0.87 -0.80 -0.95 -
Mcag, nd +0.91 - - -0.88
MCH, n)» - -0.85 - -0.93
Mcoag,H, n) +0.91 -0.81 - -0.88

Table 3. The linear correlation coefficients as a meas-
ure of the contribution of individual parame-
ters in miscellaneous predictions of the
Mohorovié&ié discontinuity for the Yugosiav
territory

undulations should be considered also when the geoid
is represented by this other model, which has a slightly
different absolute orientation and completely the same
detailed forms.

On the basis of everything that has been laid out, it
is obvious that the final choice falls on the prediction
Mcag,N), presented in Figure 1, which is the optimal
solution Iin the considered case. One could almost use
geoild undulations combined with relief heights as well,
and even the geoild undulations alone. However, in the
emergency case, the prediction based on Bouguer
anomalies alone (Colié et al. 1984) could be applied,
or better Iin combination with relief heights (Petrovié
et al. 1985).

For the sake of completeness, let us emphasize that
for the Mohorovi&ié discontinuity on the Yugoslav
territory - besides our former predictions - there

exists from the earlier times also a presentation
given by geophysicists (Aljinovié et al. 1985), which

we examined in (Colié et al. 1985) and used at a time
as well. Although it was not obtained Iin a completely
exact manner, that map coincides rather well with our

solution M(4g,N), presented here in Figure 1; it is, of
course, also close to our forrer solution MLg), see
«&ol1ié et al. 1984), respectively to M(bg,H), (Petrovicé
et al. 1985). Its r.m.s. deviation from the measured
DSS values along the profiles amounts to 2.7km (after
the Jevel difference of 2.5km has been removed), the
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Figure 1. The map of the Mohorovi&id discontinuity pre-
dicted by aid of absolute geoid undulations
and Bouguer anomalies; the positions of the
4 used DSS profiles are also presented

range of differences being 11.7km. According to those
two criteria, our predictions - M((bLg,N), and even MH,N)
~ are not only produced in a more correct way, but are
also somewhat more accurate.

3. CONCLUSIONS

This study completes our investigations of the relation
between the geold and the Mohorovi&ié discontinuity.
The eventual objection that we "closed the circle"™ -
i.e. that we used the DSS profile data for the absolute
orientation of the astrogeodetic geoid model POTS88,
and then predicted again the Mohorovi&i¢ discontinuity
for the whole Yugoslav territory - i1s out of question.
Namely, for the absolute orientation of the geoid we
could use only the Bouguer anomalies and the relief
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heights, or even the Bouguer anomalies alone, but it
is obvious that it is better to use all the three pa-
rameters at the same time. Besides that, it came out
that in place of the absolutely oriented geoid model
POTS88, for the purpose of prediction could almost
equally well serve the geoid model obtained by the
least squares fitting of the astrogeodetic original
onto the geoild surface according to GPM2, or onto
some other recent (and kindred) spherical harmonic
model.

As far as we know, we were first to introduce the
use of absolute geoid undulations into the prediction
of the Mohorovié&¢ié discontinuity shape in the regions
between the existing DSS profiles. Now it came out
that the geoid is the best prognostic parameter, and
that the prediction of the shape of MohoroviZié dis-
continuity depths by combining the geoid and the Bou-
guer anomalies represents the most reliable solution.
Therefore, our map - determined in an exact way -
can surely replace the Aljinovié’s preliminary one, as
the best presentation of the Mohorovid&ié discontinuity
for the Yugoslav territory available at the moment.
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Summary: By wusing the capabilities of the POTSDAM-5 software

and LAGEOS laser randing data of 12 months a gravity
field model of the earth based on point masses was derived. A 70-
point-mass model computed by BARTHELMES(1986), which is an
approximation of the GEM 10 model, served as initial one. The
positions of the masses were fixed and their magnitudes were
improved.

The new POTSDAM EARTH MODEL POEM-L1 is tailored for LAGEOS;
the orbital fit rms values for 5-, 15- and 30-days arc length
(3rd deneration laser devices) are 6, 8 and 10 centimeters. After
transformation into spherical harmonics the nonzonal part of the
field up to degree 5 was compared with other models. A rss value
for geoid wundulation differences between GEM-T1 and POEM-L1 of
+14 cm was obtained. This value illustrates the accuracy of the
gepgesegtﬁtiom of the long-wavelendth part of the geopotential in

oth models.

1. Introduction

The determination of the geopotential is a fundamental aim of
geodesy. The progress in this field of research during the last
few years has been remarkable, and satellite geodesy has played
an important role in this context. Satellite laser ranging (SLR)
data can be used to improve a gravity field model - on the other
hand the gravity field model used in the force part of orbit
computation software is one limiting factor for the accuracy of
all parameters determinable by SLR data analysis (e.g. station
coordinates, earth rotation, plate tectonics, earth tides).

In the present paper we have tried to determine a gravity
field model tailored for the mostly used Laser Geodynamics
Satellite LAGEOS. For this investigation we applied our own
software and also an alternative parametrization of the gravity
field. We adjusted a set of point masses, which contains - as we
think - a quite independent estimate of the long-wavelength part
of the geopotential.

2. Initial model and software

The 1initial gravity field model used in the computation is a
70-point-mass model with optimized positions named PM2/70G and
published by BARTHELMES (1986) together with a detailed
description of the applied algorithm. It is an approximation of
GEM 10 (LERCH et al. 1979). The horizontal positions of the
masses are shown in Figure 1. In addition to the 70 point masses
one point mass was placed in the geocenter. To approximate
efficiently the =2zonal term C 0 (and C,,) three masses (one in
the geocenter, two at the g—axis, 588 equal to =zero) were
computed and not improved. Thus the complete model contains 74
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point masses.
The potential V of a point mass m at the position p inside the
earth can be written as follows:

(1) V() = w1 e

Expressing the reciprocal distance 1_1 between p and r in
spherical harmonics one gets

(2) V(E) =G *m —R;_ Z (‘H&) P (COS ‘V E)

If one inserts the spherical coordinates A and % of p and r
describe cos w finally eq. (1) can be rewritten (see BARTHELMES
1986, p.32):

N

OORW

= Gome E i .

(3) V(r) = G°m NEO ENIT ﬁzéCNMOOS MA +Sypsin MA ] PNM(cosﬂr)
r

where the (fully normalized) coefficients Cy,,, SNM are functions
of the position vector p of the point mass ggly In this way the
potential of a point mass model can be transformed into spherical
harmonics.

The power spectra of the models PM2/70G - after transformation
into spherical harmonics - and GEM 10 (Figure 2) clearly reflect
the fact that with the limited number of point masses especially
the 1lower degree harmonics of GEM 10 were fitted by PM2/70G,
whereas with increasing dedgree N (beginning at N about 10) the
power of PM2/70G falls more and more below that of GEM 10.

We estimated that the PM2/70G model could be advantageously
matched to the gravity field information contained in LAGEOS
laser randing observations, because both the sensitivity of
LAGEOS with respect to the gravity field (see e.g. LERCH et al.
1982) and the PM2/70G model are focussed on the long-wavelengdgth
part of the 4deopotential. This was one main reason for the
decision to choose this approach in our investigations.

The gravity field model PM2/70G was implemented in the
POTSDAM-5 orbital program system and replaced here the GEM-L2
model which has served as the standard up to now. All other
software components were in accordance with the MERIT standards
(MELBOURNE et al. 1983). This includes solid earth tides (WAHR
model without permanent tide), ocean tides (SCHWIDERSKI model),
solid earth tide effects on station coordinates and ocean loading
site displacement, +tidal variations of UT1, precession and
nutation. Relativistic effects were not applied.

As the initial set for pole coordinates we used the values
determined at our institute in the frame of MERIT and post MERIT
activities, UT1 data were taken from IRIS-Earth Orientation
Bulletin. For the station coordinates we introduced our own
determination from MERIT named SSC(ZIPE)85L02. A comparison of
this coordinate set with those of other analysis centers of MERIT
Campaign by a similarity transformation showed rms values of the
residuals of 2...3 centimeters.

The orbital fit rms value for the initial point mass model
PM2/70G (monthly arcs for LAGEOS) was in the order of 40
centimeters, the same value for GEM 10 was within 20...30
centimeters.

The coefficients of the observation equations (partial
derivations of the unknowns) were computed for all geometric
parameters during the orbit integration, whereas those for
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dynamical parameters were determined separately by integrating
variational equations. Later the observation equations and
finally the normal equations for each pass containing all
parameters of interest were constructed and stored. The parameter
estimation was performed in a separate program part named SOLVE,
which can select and combine the normal equations. Arc length,
solve-for parameters, station weigths etc. can be varied here in
a wide range.

3. Data

For the improvement of the gravity field model 12 months (30-
days intervals) of LAGEOS data in the time span of 1983-1985 were
introduced. The distribution of the data and the stations are
summarized in Table 1. No other data or information were added.

4. Estimation technique

The technique for parameter determination is 1least squares

ad justment. The following parameters were determined:

- magnitudes of the point masses

- orbital elements and empirical acceleration for 15-days
intervals

- pole coordinates for 5-days intervals (No adjustment of LOD).

In test computations also station coordinates were adjusted, but

it turned out that this had practically no influence on the

magnitudes of the point masses. The adjusted station coordinates

agreed within 3 cm with the initial ones (rms after similarity

transformation), so that 1in the final computation the station

coordinates were fixed. As the introduced UT1 values from IRIS

are very accurate (and for strengthening of the solution) we

decided to exclude an adjustment of LOD.

Individual weights for the stations were applied. These weights
did not only depend on the precision of the laser devices. To
secure a balanced influence of the observations with respect to
the coverage of the orbit also the density of stations in a
certain region was taken into consideration.

The final normal equation matrix for the magnitudes of the
point masses showed - as expected for this typical improperly
posed problem - a bad numerical stability. TODD’s condition
number k computed by an eigenvalue decomposition:

by
(4) K = —MAX

MIN

was in the order of 1011.

To improve the numerical stability of the normal equation
matrices in our software a special kind of congruence
transformation is applied as a standard, which normalizes the
normal equation matrix before inversion in such a way that all
diagonal elements are equal to one.

The application of this transformation is especially useful, if
the condition 1is affected by very different scales of the
unknowns. But also 1in the present case k could be slightly
improved by a factor of 10 (see Figure 3). Nevertheless the
problem is improperly posed and a numerical stabilization of the
normal equation matrix 1is necessary. We used TICHONOV’s
regularization, known as a standard for solving improperly posed
problems (see MORITZ 1980, pp. 240), which 1leads to the
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minimization of the following sum:

T

(5) vIPV + o xTx — Min

with: residuals

weight matrix of observations
solution vector
regularization parameter

QX<

The choice of an optimum value of x needs further investigations
(see SCHWARZ 1979), but also numerical experiments and experience
are profitable. We decided to iterate in our computations. In a
first step we determined an interim field. Here the second term
in eq. (5) was in the order of 20%¥ of the first one. In the final
solution however o was fixed on a smaller value so that the size
of this second summand was about 1% of the first one.

To realize the coincidence of the center of gravity and the
origin the three corresponding condition equations were added to
the normal equation system. It is interesting to note and gives
an insight into the stability of the solution that without these
conditions the deviations of the center of gravity from the
origin were in the order of a few centimeters in X and Y and in
the order of one decimeter for Z.

5. Results

The computed gravity field model named POEM-L1 (POTSDAM EARTH
MODEL for LAGEOS No.l) is presented in original form in Table 2
and , transformed into spherical harmonics up to degree and order
20, in Table 3. The model includes the permanent tide. -8
The sum of all point masses (relativ to GM) is m = -0.3355 10
The value of G 2 introduced into the computations was
GMe = 398600.440 km“/s“, the agjuéted GM for POEM-L1 is therefore
GM = GMo (1+m) = 398600.439 km"/s

6. Evaluation of the results
6.1. Orbital fit of LAGEOS and station coordinate comparisons

For the evaluation of the model four months of LAGEOS data,
which are not included in the determination of POEM-L1, were
selected (month 6,7,14 and 15 in the scheme of Table 1). For
these four months the gravity field models GEM-L2 (LERCH et al.
1982), GRIM-3B (REIGBER et al. 1983), our model POEM-L1 and -
just published - GEM-T1 (MARSH et al. 1988) were used for
comparative investigations. Software, data and standards -
excluding the gravity field model - were identical. The achieved
orbital fits are shown in Table 4. POEM-L1 has nearly equivalent
orbital fits as GEM-T1 and GEM-L2, but significantly better ones
than GRIM-3B. One weak point for POEM-L1 should be mentioned:
monthly arcs with adjusted empirical acceleration for the whole
month gave orbital fits of about 15 ecm, an indication, that the
modelled along-track-component in monthly arcs differs slightly
more from reality.

As already mentioned in the introduction also geometric
unknowns in SLR data analysis are affected by the used gravity
field model. We selected the station coordinates adjusted in
these computations for some investigations. The rms value of
station coordinate differences after a 7-parameter similarity
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transformation served as a measure of the accuracy.

In Table 5 these values for all pairs of gravity field models
used and for different arc lengths are shown. The agreement of
coordinates derived by using POEM-L1 compared to those of GEM-T1
and GEM-L2 is by a factor of about 2 better than the agreement of
these three solutions with the GRIM-3B solution. For the further
evaluation of each model the coordinate sets from different arc
lengths and from data subsets were analyzed in the same way
(Table 6). The results show the consistency of the POEM-L1
solutions compared to the other ones. A more detailed interpreta-
tion can be left to the reader.

6.2. Spherical harmonics and geoid undulation differences

It is a good property of a point mass model that it can easily
be expressed in spherical harmonics. In this way POEM-L1 can be
compared to other geopotential models. In Table 3 we have
presented POEM-L1 up to degree and order 20. It was clear before
that only coefficients of lower degree could be determined with
high accuracy. The presentation of higher order terms in Table 3
was performed mainly to facilitate possible tests of POEM-L1.
With increasing degree the coefficients contain more and more the
a priori information of the initial point mass model PM2/70G and,
finally, of GEM 10 as the starting point of the PM2/70G
determination - as far as the point masses could approximate
them (see Sec. 2). This is emphasized by the fact that the power
spectrum of POEM-L1 had the same quality as that of the initial
model PM2/7OG (cf. Figure 2)

By wusing only one satellite also larger inaccuracies for all
zonal harmonics had to be expected in advance. This inaccuracy of
the =2zonal terms 1is no severe problem because they are in
principle much better known than the nonzonal ones.

If one takes all these facts into consideration, it is useful
to analyze the long-wavelength part of our model. In Tabel 7
spherical harmonic coefficients up to degree and order 5 are
compared. GEM-T1 is taken as a reference, and the differences of
the C and S for different models containing LAGEOS information
(GRIM3-L1 from REIGBER et al. 1985), additionally the initial
point mass model PM2/70G and its source GEM 10 are presented.

A correct estimation of potential coefficient accuracies is a
difficult quyestion (see e.g. LERCH et al. 1985, MARSH et al.
1988, KLOKOCNIK 1985, SJOBERG 1985). As far as published we have
added in one column accuracy estimates of the authors of some
geopotential models. At present we cannot offer serious accuracy
estimates for our results. As POEM-L1 is a relatively independent
estimation we therefore investigated the differences to other
models. At first glance the deviations from GEM-T1 and GEM-L2 are
quite satisfactory, except - as expected - the zonal terms.

To have a more detailed viev we decided to compute rss values
of the geoid undulation differences per degree (without =zonal
terms) using the relation:

('3 cnal o
(6) rssy = Ry -VMEI(ACNM + ASZ)

The results for POEM-L1 and GEM-T1 in comparison with the
other models are shown in Figures 4 and 5. The following
conclusion can be drawn: The initial point mass model was
significantly improved up to degree 5. On the other hand an
increasing relationship of POEM-L1 with the initial model PM2/70G
for higher degrees is valid. In Table 8 the geoid undulation
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differences up to degree 5 between all models under investigation
are summarized. One can state a value of 14 centimeters between
GEM-T1 and POEM-L1, which 1is behind GEM-T1/GEM-L2 (12
centimeters), but about a factor of 2 better than all other
combinations (except GEM 10 and PM2/70G, which are not
independent) .

7. Conclusions

It could be demonstrated that the applied approach of using a
geopotential model described by p01nt masses for gravity field
improvement using LAGEOS laser ranging data was convenient. The
derived model can be used either in its original form or after
tranformation into spherical harmonics.

The creation of the model POEM-L1 was our first attempt in
gravity field determination using SLR data. Taking this fact into
consideration one can be satisfied both with the achieved orbital
fit of LAGEOS and with the accuracy of the nonzonal harmonics up
to degree 5.

Further refinements and deeper investigations at different
stages of the applied procedure seem to be useful. An extended
data set should also contribute to a further improvement of POEM-
L1. Moreover one should consider an introduction of additional
information on the zonal harmonics from external sources.
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Table 1: Number of LAGEOS passes introduced into the computation.
"month" means 30-days interval after Aug. 30th 1983
(MJD =45576.5)
'I Station | months after Aug. 30th 1983 |SUM
| No. Name | 1 2 3 8 9 10 11 12 13 19 20 21|
7907 AREQU| 40 43 41 24 37 34 43 50 48 8 12 34| 414
7939 MATER| 20 18 7 24 32 35 41 48 386 8 9 14| 292
1181 POTSD 2 7 6 9 5 5 6 10 9 1 2 4 66
7834 WETTZ 5 20 23 24 29 21 24 32 21 2 7 8| 216
7112 PLATT| 10 14 11 27 9 20 6 10 9 : . .| 118
7121 HUAHI 5 14 9 13 14 13 10 8 1 10 2 . 99
7109 QUINC| 49 21 3 44 60 34 43 54 39 11 22 33| 413
7210 MAUI 31 29 26 35 52 44 23 18 30 3 3 6| 300
7838 SIMOS 3 23 23 10 14 9 22 21 3 7 33| 168
7086 FTDAV| 10 3 11 16 14 8 11 9 16 1 1 71 107
7839 GRAZ 6 23 14 11 8 11 19 9 13 2 9 9| 134
7105 GREEN| 16 27 20 13 41 15 11 17 23 29 24 25| 261
7833 KOOTW 3 7 25 9 7 5 6 B : . . 62
7122 MAZAT 4 21 16 3 .11 . 10 11 23 14 25| 135
7840 HERST 20 13 28 10 26 45 33 31 32 11 9| 258
7110 MTPEA 32 11 28 24 47 25 41 43 25 47 39| 362
7090 YARAG . 22 12 35 36 21 14 36 42 55 62| 335
7805 METSA 1 3 6 3 ) 4 10 i g % 24
7835 GRASS i 3 1 4 10 4 2 7 16 9 586
7400 SANTI 24 10 i F . : 5 : . 34
7401 CERRO 13 39 " - . 52
7810 ZIMME 1 2 9 13 6 31
7886 QUINC ¢ 3 4 30 14 48
7837 SHANG 1 P 2 15 18
SUM 204 322 257 373 424 413 365 444 434 207 241 317|4001|
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-0

188

2: Gravity field model POEM-L1 expressed in point masses.
units of
in units of the earth mass %

Coordinates

in

Rp=6378144.11 m,

(GM=398600. 440 km3/s2). The
included in the model.
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X

. 03091647
.21898278
. 30980759
. 41560249
.20550109
.00936872
. 49126417
. 24783491
. 55239449
. 40308854

.31126292
.57540743
. 17701807
. 53652776
.30127224
.01971268
. 04047954
. 59784890
. 48764136
. 59910600

.67620645
. 37032208
. 44219299
. 80694390
.69742346
.27095883
.09124126
. 35746291
. 39784295
.22881256

. 42658979
. 16881973
. 06828015
.09727218
.52495482
.60143125
. 29370554
. 77737580
. 06538622
. 44117995

.21389846
. 85060805
.60076664
. 28077017
. 45195217
.78933916
. 64547409
. 11475806

Y

.03825675
. 40299749
.25507156
. 19614976
. 13979503
. 34417242
. 17465094
. 41934422
.15660396
. 10222966

. 45869962
.38653651
. 46227166
. 16288297
.37721474
.70251528
.45323646
. 28398710
.55212153
. 32279645

. 48873893
. 41870726
. 42805147
. 02503858
. 19072962
. 35484992
. 59744213
. 23021395
. 68729004
. 44169185

.71596998
.65768258
. 78598216
. 69809454
. 37770350
. 63799155
.78917993
. 30969505
. 70980228
. 37452632

.56571578
.03452125
.18500108
.79611061
.34783115
.34311120
. 49538389
. 38618306

masses

OOO0O0 O000000O000 O000000O00O0 O0O0000000O0

Z

.89905777
.76265564
. 71042076
.67624113
.66115045
.65187833
. 64175950
.63367255
.61379885
.55883479

.55554780

53295342

. 49167781
. 471138615
. 43669394
.41419209

37618863
36308728
36055080

.35524931

33399041
33313859
33029770

.31909956
.29450892
. 284954867

22146788
21407169
21402384

. 13379864

.12094230
. 05001890
.04635578
. 04434223
.00189175
.01516987
. 03693428
. 04046316
. 09143593
.11134059

. 13605268
. 16314741
. 17642314
. 17793424
. 18747316
. 20290570
. 23072037
.23584466
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the

earth

radius

permanent tide is

i1
16.
3.
-8.
9.

-0.

ik

=i

-4.
15.

4.
0.
-6.
-0.
-1.
-24.

M

.26434589
. 32476566
.33680035
.22151567
. 33392582
. 16029592
. 44445059
. 05814385
. 16886462
.32315917

. 63284465
. 78047103
.51293153
.63738593
.14133479
.81541833
.28210665
.51153688
.76019485
. 46347016

.23994832
. 37227259
. 80540128
. 45657080
.15629539
. 49571982
. 07119237
. 26696792
. 18441071
. 01573010

33999674
32363615
26719620
98452711
93078353
66192887
58453336
69776441
52768941
92841186

8.10794735

76098315
77736600
96099767
19858633
52282395
02863262
95947460



Table

QU B W W

=

[eXeleolololoYolotoT o)

O DN R D) WO

[eeleoXe]
[eYelele]

. 29617572
. 34439496 =

.87523563
.57753269
.77117329 S
.67673999
.03770777
. 17171771
.21874576 =
.32870861 =
. 43467166
. 47632593 =

.62184335
.05076759 =
. 410143786
. 26090032 =
.32122637 =
. 24253066 =
. 46701659 =
.09868695
.18731348
. 03458882 =

3: POEM-L1

0.72588646
0.73929192

0.07531701
0.57576628
0.15990049
0.21932926
0.42871341
0.68152922
0.52358814
0.34171071
0.54528630
0.13390025

0.01273509
0.67203700
0.42596269
0.32027211
0.24158864
0.16490348
0.02820318
0.16935682

.13814358

.26183815

o000 OO
[eeleole]

normalized

0.0
0.0

.31551979
.31880287

.32460033
.37346717
.40155640
. 43341767
. 44505304
. 46373011
. 48427753
. 49563800
. 49844390
. 49976093

.50065194
.53900134
.64109066
.70808931
.70957275
.72971651
.74769976
.78628617
. 82455419
. 84798774

0232198947

-0.00466249241
0.0

coefficients (unit of 10~

C20 includes permanent tide

C

~-484.162270
0.5225
-0.1307
0.0437
0.0497
0.02386
-0.0073
0
0
0

s

0000OHOO
w
o
0
(o)

DT B W

M

[elelolololololole]

D) OTQ) = W = NN

QOO0O0O0O0
o
o
Y
o

-0.5394

-0.0878
-0. 4454
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0.83534024
0.85128530

3.27337787
~0.32013614
~-0.18908392
-0.96231358

9.99645881
-0.60699076

3.77953017
-7.84618829
-0.85707527

4.42485218

-1.61500429
-0.46724169
0.56258590
2.11508792
1.33252599
-2.12208208
-0.38115210
2.04588850
-0.69503138
0.34626674

-1.12478271
-66755021. 95
-33244978.05
100000000. 00

40

-1.3984
-0.6159
-0.4733

-0. 0967
-0.2128

-0.3450
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6 3 0.0645 0.0031 6 4
6 5 -0.2672 -0.5392 6 6
7 1 0.2882 0.1134 7 2
7 3 0.2451 -0.2105 7 4
7 5 0.0273 0.0457 7 6
7 7 0.0084 0.0217 8 1
8 2 0.0680 0.0597 8 3
8 4 -0.2429 0.0714 8 5
8 6 -0.0660 0.3130 8 7
3 8 -0.1232 0.1308 9 1
9 2 0.0077 -0.0362 9 3
9 4 -0.0222 -0.0045 9 5
9 6 0.0572 0.2395 9 7
9 8 0.2014 -0.0073 9 9
10 1 0.1059 -0.1308 10 2
10 3 -0.0292 -0.1582 10 4
10 5 -0.0654 -0.0213 10 6
10 7 0.0232 0.0160 10 8
10 9 0.1050 -0.0345 10 10
11 1 0.0140 -0.0077 11 2
11 3 -0.0483 -0.1231 11 4
11 5 0.0716 0.0541 11 &6
11 7 0.0173 -0.0692 11 8
11 9 -0.0267 0.0220 11 10
11 11 0. 0407 -0.0728 12 1
12 2 -0.0045 0.0042 12 3
12 4 -0.0427 -0.0269 12 5
12 6 -0.0068 0.0358 12 7
12 8 -0.0197 0.0005 12 9
12 10 -0.0040 0.0611 12 11
12 12 -0.0119 -0.0038 13 1
13 2 0.0253 -0.0462 13 3
13 4 -0.0247 -0.0063 13 5
13 6 -0.0259 -0.0020 13 7
13 8 -0.0216 0.0065 13 9
13 10 0.0097 -0.0130 13 11
13 12 -0.0026 0.0646 13 13
14 1 -0.0093 0.0266 14 2
14 3 0.0448 -0.0058 14 4
14 5 0.0222 -0.0026 14 6
14 7 0.0028 -0.0261 14 8
14 9 0.0238 0.0157 14 10
14 11 0.0203 -0.0201 14 12
14 13 0.0142 0.0320 14 14
15 1 0.0054 -0.0033 15 2
15 3 0.0053 0.0064 15 4
15 5 -0.0114 0.0099 15 6
15 7 0.0389 0.0224 15 8
15 9 0.0043 0.0161 15 10
15 11 -0.0023 0.0029 15 12
15 13 -0.0197 0.0069 15 14
15 15 0.0022 -0.0021 16 1
16 2 -0.0111 0.0295 16 3
16 4 0.0391 0.0064 16 5
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-0.0072 -0.0080 16 7 0.0018
-0.0020 -0.0034 16 9 -0.0071
-0.0094 0.0092 16 11 0.0134
0.0155 0.0049 16 13 0. 0069
-0.0308 -0.0248 16 15 0.0024
-0.0136 0.0003 17 1 -0.0109
0.0068 0.0048 17 3 -0.0161
0.C025 0.0176 17 5 -0.0106
-0.0088 -0.0130 17 7 0.0090
-0.0045 0.0092 17 9 -0.0068
0.0138 0.0007 17 11 -0.0115
0.0173 0.0113 17 13 0.0030
-0.0198 0.0185 17 15 0.0023
-0.0091 0.0039 17 17 -0.0247
-0.0058 -0.0152 18 2 0.0026
-0.0075 0.0002 18 4 0.0172
0.0108 0.0188 18 &6 0.0029
-0.0008 -0.0005 18 8 0.0168
-0.0133 0.0042 18 10 -0.0022
-0.0059 0.0153 18 12 -0.0243
-0.0051 -0.0126 18 14 -0.0174
-0.0298 -0.0095 18 16 0.0035
0.0010 -0.0019° 18 18 -0.0160
-0.0098 0.0024 19 2 0.0018
-0.0107 -0.0091 19 4 -0.0063
-0.0076 -0.0108 19 &6 -0.0062
0.0019 0.0041 19 8 0.0086
0.0014 0.0040 19 10 -0.0076
0.0084 0.0144 19 12 -0.0056
-0.0112 -0.0201 19 14 0.0028
-0.0114 -0.0087 19 16 -0.0079
0.0100 0.0006 19 18 0.0158
-0.0010 -0.0050 20 1 0.0037
0.0017 0.0035 20 3 0.0011
0.0028 -0.0083 20 5 -0. 0009
0.0051 0.0013 20 7 -0.0071
-0.0023 0.0002 20 9 0.0008
-0.0095 -0.0046 20 11 0.0029
-0.0048 0.0106 20 13 0.0022
0.0025 -0.0113 20 15 -0. 0006
-0.0018 -0.0067 20 17 -0.0057
-0.0015 0.0071 20 19 0. 0066
0.0056 0.0009
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Table 4: Orbital
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fit values for 4 months

rms LAGEOS data in
dependence of the gravity field model and the arc
length. First value: all stations, in brackets: only 3rd
generation stations.
Additionally adjusted: station coordinates, empirical
acceleration (15 days), pole coordinates and LOD
(5 days)
|
model | b5-days arcs | 15-days arcs 30-days arcs
| |
POEM-L1 7.8 (6.0) 8.9 (7.7) 10.9 (9.9)
GEM-T1 7.4 (5.8) 8.5 (7.3) 10.6 (9.86)
GEM-L2 7.9 (6.5) 8.9 (7.8) 10.5 (9.8)
GRIM 3B 10.1 (9.0) 11.5 (10.7) 15.0 (14.3)
Table 5: Station coordinate comparisons between different
gravity field models from 4 months test data.
The rms value after a 7-parameter transformation is
shown (unit centimeters)
GEM-T1 GEM-L2 GRIM 3B
arc arc length arc length arc length
length [days] [days] [days]
[days] 15 30 15 30 15 30
5 3.0 3.3 6.2
POEM-L1 15 3.1 3.9 6.0
30 3.6 4.5 6.2
5 2.2 5.9
GEM-T1 15 —_— 2.5 5.7
30 2.4 6.1
5 6.5
GEM-L2 15 _— _ 6.6
30 _ 7.1
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I PM2/70G 1 = | = | = | =

Table 6: Station coordinate comparisons from 4 months test data
within different gravity field models. Coordinate sets
obtained with different arc lengths (left side) and by
further division of the data into two subsets (right
side). The rms values after a 7-parameter transformation
are shown (unit: centimeters).

| 4 months data || months 6+14 versus f
| || months 7+15 |
5-days 5-days | 15-days || arc length (days) |
arcs arcs arcs
Model versus versus versus
15-days |30-days |30-days 5 15 30
arcs arcs arcs
POEM-L1 1.9 3.2 2.1 6.4 6.3 7.3
GEM-T1 1.8 3.2 2.3 6.4 6.1 7.2
GEM-L2 | 1.9 3.9 2.6 6.3 6.6 8.4
|
GRIM 3B { 2.2 3.7 3.1 7.7 7.4 8.7

Table 8: Undulation differences between different models up to
degree 5 (without zonal terms).
rss-values in centimeters.

1 | | | | | | I

l :GEM—Tl :GEM—LZ :GRIM 3B |GRIM3-L1|PM2/70G lGEM 10

|

| POEM-L1 | 14.1 | 16.5 | 36.6 | 33.1 | 33.8 | 31.7 |

| GEM-T1 | - | 12.0 | 30.0 | 27.1 | 31.3 | 28.2 |

| GEM-L2 | = | = | 31.6 | 30.2 | 31.3 | 26.9 |

| GRIM 3B | = | = | - | 26.6 | 47.4 | 44.3

| GRIM3-L1| - | = | - | s | 50.7 | 47.3 |

|
|

- | 16.0 I
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Table 7: Comparisons of different gravity field models up to
with the most recent GEM-T1 model.
o for some models published by the authors

models are added. (Point mass
permanent tide (k2=0.29)L

minus GEM-T1

Units:

5,5

Error estimations
of these

1

modelglocorrected for
0 . Sign. :model

T 2 T
N M GEM-T1 c i POEM-L1 GEM-L2 GRIM 3B | GRIM3-L1 PM2/70G | GEM 10
C S Tl L2 GR3-L1! AC  AS AC A8 AC A4S Jal AS AC A5 | AC A4S
20 -4841650 o 3 10 . +67 0 +21 +36 +73 | -4
30 9572 o 1 5 | -44 +5 I+ 9 0 -15 +12
j 4 0 5387 10 10 10 | -162 +26 L+42 +72 +97 | +24
150 688 0 10 10 -200 + 4 +28 +39 -37 ! -2
!2 1 0.0 0.0 0 10 - 0 +20; -1 +10 0 o} 0 0] -35 —2! +10 -24
2 2 24389 -13998 0 10 10 +22 +14 -10 + 7 431 +4: +9 +9| -79 +4. -49 +8
31 20297 2496 | 10 30 60 +35 - 9.- 9 + 1 -37 -20y +13 -17, +88 +12 -12 +24
32 9035 -6204 | 10 20 40 +16 +45'+ 5 +44 +117 +92) +85 -13| -90 -37 -108 -30
33 7210 14132 |10 30 50 -22 + 4-+22 +20 + 91 +58?+135 +656 |-196 -26 -207 -7
141 -5334 -4751 |10 30 30 -59 +18 -18 +88 .+ 17 +19ﬂ -26 -481!-139 +81 -18 +59
| 42 3470 6640 | 20 30 70 -68 -85 +76 -32 - 88 +75; —-43 +17 +4 +38 +51 0
4 3 9910 -2006 | 10 20 40 -6 + 2 +23 -21 + 72 -47| +44 -28) -25 -37. -25 ~-1Z
4 4 -1900 3085 |10 20 30 +14 -11 -21 -14 + 35 ~30 +7 +4: -33 -36: -53 -96j
51 -590 -955 !30 40 100 -88 -11:+49 + 41+227 +121] +11 +92 +57 -9, +78 +17
5 2 6558 -3234 | 30 60 120 ¢ -39 -66 -48 -72 - 71 +1401-234 +161: +64 -39/ -43 -43
5 3 -4482 -2151 | 20 50 100 © +28 +23;-18 +23'+ 75 +215 -166 +211-167 +106 -189 +121
5 4 -2948 524 | 20 40 90 +63 -90°'+32 -28 -111 +42; -92 +114 +11 -23 +73 -25
55 1777 -6660 | 20 40 70 | + 3 +15.+ 2 +53;+ 49 —31i +66 —8(—289 +109 -216 +62
e - I i = i : -
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Figure 1: Distribution of the point masses of the initial model
PM2/70G (from BARTHELMES 1986)
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Figure 4 and Figure 5: Geoid undulation differences per degree N
(without zonal part) between POEM-L1 (top) resp. GEM-T1
(bottom) and GEM-T1 resp. POEM-L1 (o), PM2/70G (0),
GEM-L2 (X), GEM 10 (+), GRIM 3B (A) and GRIM3-L1 (A)

DOI: https://doi.org/10.2312/zipe.1989.102.02



198

APPLICATION OF FFT TO FREE AIR ANOMALIES WITH LITHOSPHERIC
SIGNAL FOR MODELING THE DISTURBING GRAVITY POTENTIAL

M. Doufexopouloux and J. Czompéx*

Summary

Free air anomalies with lithospheric signal were used
to compute 2D power and amplitude spectra which were aver-
aged to receive isotropic (radial) ones, for the purpose
to estimate the effect of lithospheric sources in terms
of the harmonic expansion degree n. This estimation was
done assuming the simple anomaly degree variance model A/nx.
The estimated parameter x (exponent) of the model, shows
dependence on the location of the data windows used for the
FFT. In the best case, this model can be applied until.
n=360, but the computed values of x are 3 times higher than
in the Tscherning-Rapp model (x=1). This result is compared
with the same modeling but through a local covariance func-
tion derived in the space domain. Both results agree con-
sidering the different data manipulation in each case. The
deviation from Tscherning-Rapp model is discussed. The
spectral information of the used data set is limited due to
the lithospheric sources at various depths and to the lim-
ited length data window, as it can be confirmed in the am-
plitude spectra where the noisy part starts at n=1000. The
results confirm previous investigations in the same area
and promote a mass modeling, instead of the use of a low
degree spherical harmonic model, to combine with local data
for the purpose to model the disturbing potential.

Higher Geodesy Lab. of N.T.U. Athens, 9, H.Polytechniou,
157-73 Zographou, Greece

* Geodetical and Geophysical Research Institute of the Hungarian
Academy of Sciences, H-9401 Sopron,. P.0.B. 5, Hungary
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Introduction

Modeling of the disturbing gravity potential is needed
in geodesy and geodynamics, mainly to assist at accurate
positioning. In the related models the assumption of a
stochastic mass distribution in the interior of the earth
is kept. The average gravity field spectra show an exponen-
tial form of decay when the frequency (or the degree of
expansion in terms of spherical harmonics) increases. The
global/local structure of the gravity field is represented
by the degree variances of the different gravity field
quantities. Oegree variance modeling had been restricted
mainly to the low part of the spectrum of gr. field quan-
tities (e.g. Tscherning-Rapp 1974, Moritz 1976). The auto-
covariance of gravity anomalies had been used to fit the
rest of the spectrum for a predefined structure of the

degree variance model. The structure of degree variances
describes the speed of decrease of the spectrum for high

degrees of expansion in spherical harmonics. These degrees
represent the local structure of the gravity field.

The frequency domain methods for the analysis of
gravity field data are used in geodesy (e.g. Forsberg 1984,
Schwarz 1985) in spite their extended use in geophysics
with other potential fields (Spector and Grant 1970, Hahn,
Kind, Mishra 1976). These methods include the Fourier ex-
pansion for periodic data and the Fourier transform for
random data.. The FFT (Fost Fourier Transform) technique is
suitable to analyse data belonging to the anomalous gr.
field because an evaluation of the information about the
local structure can be done. However the FFT technique is
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mostly used for the high frequency part of the spectrum

mainly for two reasons:

- The best known and most influencing the signal, gravity
field sources ars located within the upper lithosphere.

- The increasing accuracy of instrumentation and of the
space positioning techniques require the refined gr. field
modeling at the high frequency part of its spec¢trum.

In the present work a set of about 6000 F.A anomalies
5'x5' in gridded form is used to compute 2-0 (and average
radial) power and amplitude spectra. The radial spectra are
used to estimate the speed of decrease of the power when
the- degree of expansion in spherical harmonics increases
for harmonics degree 70-350. This speed is expressed with
the power to which the harmonic degree is raised, in a
simple degree variance model. The (radial) amplitude spectra
can be used in order to estimate the depth difference of the
dominant sources which produce the local gr. field and to
recei ve an estimate of the harmonic degree, beyond which the
signal is due to noise. This data set belongs to East
Mediterranean part (Greece-Aegean), an area which 1s highly
oomplicated in the tectonic pattern. Within it,major tec-
tonic sources occur like:

The sinking lithospheric slab of African plate which
creates the Aegean trench with F.A anomalies at the level
of -200 mgal. The mean slab length is estimated to be
~ 250 km (Paparachos and Comninakis 1971).

The continuation of the Alpine fold to South-East
Europe which produces large Moho depths (~48 km) in the
continental North-middle part of the region (Makris 1977).
Various microplates and faults are also occuring in this
area.

The purpose of these numerical estimations is to re-
ceive a picture whether this tectonic background can have
an effect upon the analytic local gravity field modeling,
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i.e. to investigate deviations from available degree vari-
ance models like e.g. Tscherning'-Rapp's (1974) andvmeaning-
ful results f{or degree variance decay can be received only
for degrees up to 360. Due to the limited extend of the area
(60), the F.T of Ag can give information beyond the degree
70 of a spherical harmonic expansion. However it is of inter-
est to mention some earlier investigations in the same area
concerning lower degrees than 1=70. The investigations were:
done in space domain.

A comparison among GEM108, GRIM3B, GRM3L1 and 0SUB1 models
with the same set of local data in space domain showed that the
referencing of local data to any model increases the variabil-
ity of the residuals Agr = AgModel" AQF.A in terms of in-
homogeneity of the Ag field. This increasing of variability
starts since 1=20 and achieves its highest value around n=45
(Doufexopoulou-Papafitsorou 1986). This result is confirmed
recently (Doufexopoulou-Paradissis 1988) with the use of ac-
curate doppler undulations and the 0SUB1 model, independently
of the grav. field data.

'mc\ev.L
lo
5
y n
30 90 150
Fig. 1.

Planar approximation is used not only because the area
is small (6%x6%) but also because the expedted signal is
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much stronger than the corrections for a spherical earth
(Jordan 1978). Also, no gravity field model is subtracted
from the data as it is wished to keep the original informa-
tion. If any long wavelengths are present, they will not
affect the decrease of the power at higher (1 > 70) degrees.
However, spectral leakage cannot be avoided due to this
treatment.

Frequency information of the gravity field

The degrees of a spherical harmonic expansion ot
gr. field are related to the law, medium and high frequency
information as:

2 <1< 36 low
37 €1 < 360. medium
361 < 1< 3600 high

(e.g. Schwarz 1985). The anomalous potential T and gravity
anomalies Ag have different behaviour in the corresponding
spectra, as it can be seen in the following table (derived
for the global behaviour of these functionals):

Table 1
Functional low % medium %
T (or N) 99.2 0.8
g 22.5 41.9

% information of the gr. field spectrum for low and medium part and

for the disturbing potential T and grav. anomalies Ag.

The high frequency part of Ag contains still 37 % of in-
formation. A frequency analysis of Ag to resolve informa-
tion about the medium and high part depends on the following
factors: data density, overall coverage, data accuracy.
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Additionally, the "weighting" between the global and local
information for the gr. field modelling depends on how much
of the total spectral power of the grav. .anomaly field is
contained in a solution of a sph. harmonic expansion (model)
and on how "good" is the approximation given by a specific
model of sph. harmonic coefficients.

The power spectrum of the gravity field. - Degree variances

The power spectrum of a potential field expressed in a
spherical harmonic expansion, is given by the (numerical)
coefficients of the expansion. For the disturbing potential
of the earths gravity field, the spectral estimate for the
degree n of expansion is given:

n
62=2 (& +5) m
m=0

where 5§ is the degree variance of the disturbing poten-

tial and Cgm’ ng are the harmonic coefficients used as

orthogonal base functions, for the expansion. The plot of
the 6% from n = 2 gives the power spectrum of the disturb-
ing potential. The harmonic coefficients Cnm’ gnm differ
between various spherical harmonic models. In addition, the

sph. harmonic models exist for degrees of expansion which
belong to the low and medium frequency in formation. However,
most of the currently used models are of degree 36 (e.g.
GEM10B) or of degree 180 (e.g. 0SU81, GEMI10C). Higher ex~-
pansion models also exist. Therefore the computation of the
degree variances 6§ is based mainly on the modelling of

the behaviour of the sph. harmonic coefficients. The first
attempt of this modelling is Kaula's rule (1966):

62 = (2n+1) (1077/n2)2 (2)
n
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Other approach is of Tscherning-Rapp (1974) etc. For degrees

n » 60 this rule gives higher power than which the spherical
harmonic models give(Fig. 2). The corresponding degree
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Fig. 2. Kaula's rule and degree variances Gﬁ for Rapp 81 and GRIM3
models

variances for the gravity anomaly

Ag, the anomaly degree
variances cﬁ, are related to 6'21 with (Meissl 1971):

2 _ p2 2.2
c, = R (n-1) 6, (3)

It is evident that since the more frequently used gravity
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field quantity is the gravity anomaly, degree variance
modeling starts from the anomaly degree variances. For this

nbdeling,a basic assumption should be valid: The spherical
harmonic coefficients for the various degrees of expansion
are uncorrelated. The consequence of this assumption is
obvious: On the sphere the Ag or T quantities are inde-
pendent of the azimuth i.e. the operations:

m {4e]  or w{r] )

on the surface of the sphere, have meaning.
The spectrum of a quantity can be received with one
of two methods:
- As the Fourier transform of its covariance function.
- As the square of the functional quantity expressed in the
frequency domain.
The covariance function of the disturbing potential T

can be received following its definition:

K = M {T(R), TC(] (5)

where T(P), T(Q) is the disturbing potential at the points
P, Q. The expansion of Eq. (5) in Legendre polyonyms is:

(==
Kep = Y s ﬁ P (cos¢ ) (6)
n=2

¢ is the spherical distance between points.
When the assumption Eq. (4) is valid, Egs (6) and (1)
(for each n) form a Fourier pair. There is equivalence of
the Fourier transform pairs between the spherical and
planar case which is only formal.
Any change in the spectrum or in the covariance function

(isotropic) on the spherg ‘s expressed through the change of
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the degree variances.

Fourier transform and its meaning in grav. field modeling

The spectral analysis of a functional series of data

in time or: space domain is done with a) Fourier series
expansion (for periodic data) and b) with the fourier
transform (for random data).

The direct Fourier transform (spectrum) of Ag(x) is
given:

=]
5gg(t) = ngm e IEX 4y ol (7

=0

where Ag(x) is a function (e.g. gravity anomaly) in space
domain
is the frequency (cycles/unit of distance)

eiZﬁfx = cos (2mfx) + j sin(2mfx) (8)
Sgg(f) is the power spectrum of Ag(x).

If Sgg(f) is known, Ag(x) can be expressed by the
inverse Fourier transform:

o

Ag(x) = ngg(f) gd2mEx e —eo < x< o (9)

~az

The sets Eqs (7) and (9) form a Fourier transform pair in
the continuous case:

Ag(x)-——sgg(f) (10)

The spectrum of the disturbing potential can also be re-
presented by a pair of the form (10):
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N n
(¥,A) = 2 X (€, cos mA o+ gnm sin m\ ) an(cos% ) an
n=0 m=0

Con EE] Aial ~ cos m\
Togmm =1 ™1 =L L P (cosd) LT A 2

nm n=0 m=0 SEUNL

where 4 K1 is the grid spacing (discrete function) of the
T(3,A) values. The corresponding covariance function T g(41)
(¢ = radial distance) is also expressed in terms of the
spectrum (Gg) (see Eq. (6)). Thus,

2
K =
gD =—rT () =6 a3)
For flat earth approximation, the circular frequencies
( w= 2rrf) of a radial (isotropic) spectrum are related to

the degree n of a spherical harmonic expansion:

n+ oy

where R is the mean earth radius (Forsberg 1984, Schwarz
1985). The degree variances of the disturbing potential
6 g are related to those of the gravity anomaly through
Eq. (3) (spherical approximation), through the degree n of

the spherical harmonic expansion by a factor n—z. But

since the degree variances cg or 6 2 are the coefficients
of the corresponding covariance function expanded in
Legendre polynoms ((6) for the c.f. of disturbing potential)
the knowledge of the spectrum of gravity anomalies, permits

the estimation of the anomaly degree variances ch because:

- = 2
cgg(q;) Sgg(M = ©, (15)
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The modeling of the anomaly degree variances can be done if
it is adopted that they show a decrease when the degree n
increases. This decrease is expressed as exponent of the
degree n like e.g. in a model:

A
ct = A (16)
n."

where A and x are parameters. This model has been used in
Schwarz (1985). From these two parameters A is a scaling
one,related to the variance of the field (and to the vari-
ance of the covariance function). The x (exponential) is
more important because it is related to the speed with
which the infinite series of type (6) converges to a closed
analytical expression. Its physical meaning is related to
the wavelengths which dominate in the field under investi-
gation. Taking the logarithms of Eg. (16):

21ncn = 1nA - x1lnn (17)

For known n and c, (derived by the spectrum), the para-
meters A, x are estimated with a simple regression adjustment.
From the model Cﬁ one can shift to the model for cﬁ by

taking into consideration:

2 =22 -2 A 1
—_ N (18)
n n n* nx+2

Relation (18) can give an approximate model of potential
degree variances.

Application of the FFT to the local data set

The total data file consists of a matrix B84x72 mean
Ag values (Fig. 3). From this set,four data windows were
selected. These windows are full 64x64 matrices for a 2-0 FFT.
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Fig. 3. Area covered by the total data set 84x72 matrix of
F.A anomalies

The three have the same latitudes on the rows but from each -
to cthe next, a shift of 10 columns (~ 85 km) is done, from
west to east. The fourth window is located in the longitude
of the second one, but there is a shift of 10 rows to the
north.

The 2-D amplitude and power spectra were averaged and
the isotropic (radial) corresponding spectra were evaluated
at the frequency (wavenumber) (n+%/R). The amplitude spectra
were received in semilogarithmic form for further investiga-
tions and only marginally will be refered here.

The four isotropic power spectra were used to derive
the power x with which a model of type (16) for the anomaly
degree variances,decreases when the expansion degree n in-
creases. The part of the modeled power spectrum (degree
variances modeling) is between n=70 to, at maximum, n=350.
Numerical results are presented in the following table and
in Fig. 4.

Table 2. Results for the anomaly degree variance model (16)

Window Modeled degrees n Value of exponent x RMS

GRW1A n=70-210 5.91 0.7 (Q12%)
GRW2A n=70-280 3.83 0.39 (7.6%)
GRW3A n=70-350 3.20 0.80 (25%)
GRWSA n=70-420 3.86 0.70 (18%)
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Fig. 4. Linear fit of anomaly degree variances to the power spectra of F.A Ag
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From this table it can easily observed that the values of x
and the RMS of estimated x, vary considerably within one
part of the area to the nearest one. Thus, a common x value
for the total area can't be adopted.

The averaged amplitudes represent spectra (log A-f,
Fig. 5) which show straight line segments decreasing when
the frequency increases. In all the four amplitude spectra
these segments are two. Beyond this part, the noisy part of
the spectrum starts at a degree n*® 1000 in a spherical

harmonic expansion. This behaviour of the log. amplitude

spectrum occurs when sources at different depths exist. The
greater depth sources are stronger while the spectrum due
to the upper layer dips more gently. The layers at all
frequencies produce amplitudes as well as the noise does.
The waves with greater amplitude are undisturbed by smaller
waves but the smaller waves are hidden by the stronger ones
(Ciancara and Marcak 1976).

Comparison with the spectrum derived from a local covariance
flot earth model

In earlier investigations (1984) with the same data
set, a local covariance function was computed: The 5'x5'
mean F.A Ag's were averaged to 15'x15' mean values. Then
the file was referenced to the spherical harmonic model
GEM10B (n=36). The final data matrix was used to compute a
2-D local covariance function. The c.f. inspite the crude
low pass and high pass filtering (averaging and referencing
to GEM10B) was anisotropic (Fig. 6). This c.f. was made
isotropic (radial) by averaging the covariance values at
8 azimuths and for distances up to 2€ where & is the
correlation distance parameter.

The final isotropic c.f. was fitted to Gauss, 2d order
Markov, Hirvonen and the simple exponential, local models.
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Fig. 6. 2-D covariance function in the study area. 5'x5' mean F.A anom-
alies used. Reference to FEMI0B model. Estimated representation
of information in harm. degree n=36-720 (Doufexopoulou 1984)

The best fit (considering up to 1.5 distances for fit-
ting (e.g. Schwarz 1980)) was for the exponential model:

C(y) = 5080 exp(-P/64.4) (19)

The Fourier transform of this exponential function is
(Bdth 1974, p. 92):

2
-ax 23 X
e ———— with a = —— (20)
(32+m2) 64 .4

2
2a . .
The spectrunm — 5 1is a simple Markov process. The "model"
az+w

spectrum of (19) when (20) is considered and with the sub-
titution w = n+-]f/R, becomes:

2
Sgg(Mw 2R g7} (21)
8g " R +(n+1)2?2 P :
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2
n
n=70,140 ... 350 were computed, assuming again the simple

model (16). The value of the exponent x was found in the
straight line fit:

For spectrum (21) the anomaly degree variances c_ for

x = 2.60

Thus a local anomaly degree variance model up to n=350
behaves as

n-2-6

when n increases.

Concluding remarks

The exponent values received via the FFT (radial)
power spectrum of gravity anomalies (Table xx) for n=350
are very big and vary after the location of the data
windows. The spectrum computed from the model covariance
gives also a big number (2.6) for the exponent of the same
anomaly degree variance model (relat. 16). The global
anomaly degree variance models of Kaula or Tscherning-Rapp
(1974) assume x=1.

The numbers in this work deviate largely also from
similar computations reported in Schwarz (1985) for the
Canadian area and for higher sph. harmonic degrees
n > 1000 (1.6+0.13 for flat areas and 1.16+0.23 for moun-
tainous areas). It can be stated that the area of applica-
tion shows an average exponent x=3.2 for the medium degrees
of sph. harmonic expansion n=70-360. This speed is very
fast and for potential degree variances can be more faster
(from relation (3)).

This result can be explained only when attention is
paid to the lithospheric structure of this area. In fact
in a limited area a variety of depth sources acts upon
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the gravity anomaly field. The effect of shallower sources
is hidden due to the deeper ones in the corresponding
spectra, which practically give not detailed information
about the local grav. field structure in analytic form for
n > 360. The found (approximate) exponent 3.2 of the de-
creasing power in an anomaly degree variance model is 3
times bigger than in the model of Tscherning-Rapp. This
result is in accordance with the earlier result
(Doufexopoulou and Barbaroussi 1983) where local geoid
undulations referenced to GEM10B (n=36) model gave an RMS
of SN differences 3 times bigger than the RMS (§N) com-
puted with Kaula's and Tscherning-Rapp model.

The application of FFT to extract information on the
high frequency paft of the gr. field spectrum (n > 360}
can be - used only when the local data set is referenced to
a low degree model. For this purpose a mass model can be
more effective than existing sph. harmonic models. Finally
the careful consideration of the amplitude spectra can
support to the construction of the mass model.
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ON THE THEORY OF THE GEOID DETERMINATION IN CONTINENTAL AREAS

P. Holota
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Summar

In the paper a free boundary value problem is formulated for the geoid
determination from surface initial data. On the geoid an additional boundary
condition is deduced by means of Green's identity. The problem is linearized
in a sense of the Fréchet functional derivative. A boundary integral condi-
tion is deduced for the linear perturbation of an initial model of the grav-
ity potential which has to be met on the surface of the model of the geoid.

Peamve

B moxiane mpuBomuTca YOpMyJMpoBKa KpaeBoil 3amadu ¢ cBOGOI-
Ho# TpaHmue#l U1 ompeleJieHHd Ieoufa X3 IOBEPXHOCTHHX Havasb-
HEX HNaHHHX. Ha NOBEepXHOCTHM IreoyIa BHBOIUTCA IONOJHUTEJIBHOS
TDaHAYHOE YCJOBME C IIOMOMBD TORNECTBa I'pmHa. 3alada JMHeapH3d-
pyeTca B chvucige $yHiumoHanbHof mpom3BoIHO# dpeme. BuBomATCH
TPaHW4YHO® YCJOBHE MHTEIDAJPHOT'O THNla LIA JEHEHHOro BO3MYyLeHUA
UCXOIHOY MOIeJ® NOTEHOMaJa CHJH TIKeCTH, KOTOpoe HOJIKHO OWTH
BHIIOJIHEHO Ha NOBEPXHOCTX MOIEeJM I'eoHna.

1. Introduction

The geoid is represented in oceanic areas by the ("mean") see level,
in land regions one would have to regard as "geoid" surface the hypothetical
continuation of the sea level into land. The sea level represents an equipo-
tential surface of the gravity field, its continuation would therefore be
the continuation of the same equipotential surface on land. The principal
departure of the geoid from a spherical shape is due to the rotation of the
Earth around its axis. Moreover, an inspection shows that there is a slight
"pear"-shape present in the geoid.

Gravity, however, is essentially measured only on the surface of (or
above) the ground. If an equipotential surface is to be determired, it is
therefore first of all necessary to continue the gravity field downward to
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the geoid surface. Inasmuch as the gravity field depends on the masses pres-
ent, and the distribution of the latter is somewhat hypothetical, it is seen
that the shape of the geoid depends on the model of the subsurface which one

envisages.

Apart from the above drawback of the geoid, the traditional definition
of the figure of the Earth as the figure of the geoid has not fully lost its
importance up to the present time. It is only the principal difficulty of the
geoid determination in continental areas which motivates the use of the no-
tion of the quasi-geoid in a rigorous approach to the theory of the figure of
the Earth, cf. (Pellinen, 1978, p. 6). The quasi-geoid is uniquely defined
(apart from a space shift) through the astrogeodetic, gravimetric and level-
ling measurements made on the surface of the Earth, it coincides with the
geoid on the seas and oceans and it is very close to the geoid in the conti-
nental areas.

Paradoxially the gravity field over the oceans has now become far better
determined than over many continental regions of the Earth. In oceanographic
research the investigation of the geoid, its height variations, steps and
slopes, has a very important position. In comparison with the continental ar-
eas the shape of oceanic parts of the geoid is known with a relatively high
accuracy, particularly due to satellite altimetry and recent developments of
space technology. Obviously, there is a desire to extent this degree of accu-
racy globally and to increase it homogeneously. For that reason and others,
new satellite projects have been conceived, e.g. satellite gravity gradiome-
ter mission, to map the detailed gravity field of the Earth independently of

whether it be over the oceans or continents.

In this connection one usually speaks about the geoid in terms of its
planetary notion. The geoid is taken for* a level surface of a potential func-
tion which is an extension of the Earth’s external gravity potential inside
the Earth, especially inside those parts of the Earth’s body which are given
by land topography. Under this extension the harmonic part of the Earth’s ex-
ternal gravity potential is analytically continued inside the Earth and, as
a rule, it is expressed by means of a spherical harmonic expansion. Obvious-
ly, the gravitational effect of the masses situated between the geoid and the
surface of the Earth is ignored in a global approach like this. A pertinent
discussion may also be found in (Moritz, 1977).

The geoid is a surface of an important physical meaning and recently new
stimulations appeared for a discussion on the materialization of its defini-
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tion in practice. A relevant reasoning may be found in the IUGG collection
of open problems in geodesy and other branches of geo-science, e.g. in the
contributions by (Grafarend, 1987), (Holota, 1987) and (Moritz, 1987).

Undoubtedly, the geoid has an important position in the geodetic and
geodynamical research, see (Anderson and Cazenave, 1986), (Pellinen, 1978) or
(Kakkuri, 1985). Moreover, the essence of its determination is not typical
for geodesy only. E.g. the investigation of the thermal field inside the lito-
sphere leads to a very similar problem, see (Matyska, 1986). Here an optimal
shape design method has been used to determine the geometry of the bottom of
a solution domain, provided that the temperature and the heat flow are measur-
ed on the Earth’s surface and an additional boundary condition is known on the
bottom (and sides) of the solution domain. The analogy with the determination
of the geoid is quite obvious.

A feeling could appear that our aim is to discuss a renaissance of the
theory of the so-called non-regularized geoid. This theory was investigated
by several authors especially in the twenties and thirties, see (Moiseev,
1934), (Malkin, 1935), (Molodensky, 193¢, 1945) or also (Neklyudova, 1950)
and (Moritz, 1961). A general review may be found in (Pick, Picha and
Vyskotil, 1973, Chap. X).

Bearing in mind the reasoning above, we can conclude this somewhat long-
er introduction with a claim that the geoid is an important notion in geodesy,
geophysics and geodynamics and that the refinement of its theory still de-
serves some additional work. A contribution in the mentioned direction is
also the aim of this paper.

2. Initial Data and the Geoid Determination Problem

In our paper we will discuss the problem of the geoid determination
within a continent. We will assume that we know the shape of the surface of
the continent as well as the mass density distribution p of the uppermost
layers of the Earth’s interior within the continent where the figure of the
geoid has to be determined.

In addition let us recall that at the surface of the continent gravimet-
ric measurements give the length |G| of the gravity vector G and level-
ling combined with gravimetric measurements gives the differential of the
gravity potential W , and thus‘yields W apart from an additive constant.
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We will also assume that the Earth is a rigid body and that our data are de-
purated from luni-solar tidal effects and other temporal variations, so that
our problem is independent of time.

Finally, we will assume that w0 = const. is the given value of the
gravity potential on the surface of the geoid.

To determine the shape of the geoid’s segment within a continental area
we have to reconstruct the internal gravity field of the Earth in a necessary
extent. It is obvious that the way which leads to this goal under the above
assumptions, means to solve an initial value problem for Poisson s
equation. However, it is well-known that the solution of the problem like this
does not continuously depend on the data, see an example in (Courant, 1964,
Chap. 2, §6.2). Indeed, we will also show that our study leads to a formula-

tion of a’'boundary integral condition.

Let D be the domain between the surface of the continent and the sur-
face I' representing the part of the geoid under consideration. Let 3D de-
note the boundary of D . Our aim is to determine the geometry of TI' so
that

2

Aw = - bnkp + 20 in D 4 (2.1)

w=W on a0 -1, (2.2)

|grad w| = |G| on 8D-r (2.3
and

w=W on r (2.4)

o]

where w is the gravity potential, k is Newton's gravitational constant
and © is the velocity of the Earth’s rotation.

Let us note that there are two boundary conditions given on 3D - T in
our formulation above. (2.2) is of the Dirichlet type. However, (2.3) is al-
ready less traditional. Obviously, it represents a non-linear boundary condi-
tion and its application is connected with a number of non-trivial and even
open problems. In general they concern the existence and uniqueness of the
solution of a particualar problem under consideration and also techniques
for its calculation, see (Backus, 1968) but also (Aleksidze, 1987).

Nevertheless, taking into consideration that (apart from the Earth’s
rotation) grad w results from gravitational effects of all masses of the

Earth, we can easily verify the well-known fact that the direction of
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grad w is very close to the geocentric radial direction. For this and also
simplicity reasons we will substitute (2.3) by

aw/ar = - |G| on a0 -T (2.5)

where 9/dr means the derivative in the direction of the geocentric radi-

us T .

We will suppose, in addition, that I may be parametrized by means of
the usual spherical coordinates B, L, i.e. by the geocentric latitude and the
geocentric longitude, respectively. Let o be that part of the surface of
the (geocentric) unit sphere which corresponds to T .

Generally our problem is to find a function r = r(B,L) , B,L 66 , such
that

Aw=-dnkp +202 in D (2.6)

w=W on a0-r (2.7

aw/ar = - |G| on @90-T (2.8)
and

w[ r(B,L),B,L ] = W,  for B,L €o (2.9)

where p represents a mass density distribution.

(2.6) - (2.9) is a kind of the free boundary value problem. In contrast
to the usual situation there is only one boundary condition given on the free
part of the boundary (i.e. on [) while the known part of the boundary is
covered by two boundary conditions. Recall, however, that the problem above
is actually a way how to reconstruct from the surface initial data the neces-
sary part of the internal gravity field of the Earth so as to be able to de-

termine the investigated segment of the geoid.

To use the data given in (2.6) - (2.9) for the determination of r(B,L)
we will start with Green’s third identity. We easily deduce that

= 4nk S (1/1) pdd - 2 @2 I(l/l’)dD - _[(l/l)aw/an'ds -

0
D D r
- J [ (/1) |6|cos(n,r) + (W - W)3(1/1)/3n ]ds (2.10)
b -r
where n is the outer mormal of D , Q' =-n and 1 (resp. 1 ) is the
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distance between the variable point and the computation point of integra-
tion. The latter (we will dentote it by P ) belongs to T . Obviously,
(2.10) may be takem for a boundary condition for w given on T.

3. Linear Problem

We will confine our study of the problem (2.6) - (2.9) to an examina-
tion of the linear equations. Supposing that we have r, W, |G|, w, 3w/dr,
i as above which are smooth and depend smoothly on a parameter t . Denoting
the derivatives with respect to t by a dot, we obtain from (2.6) - (2.10)
that

Aw=-4nkpn in D (3.1)
w=W o0 a-T (3.2)
w/ar =- 6| on 3 -T (3.3)
w[ r(8,1),8,L ] + r aw[ r(B,L),B,L J/ar = 0 (3.4

for B,L €s and

o
"

bnk I (1/1) p dD - 4nk I(f/l) w0 lds -
D r

1

an(fp/rp) [_][ (/2 + (rg Y Judd +

+

2 w2 l (r/1) 07ds + (nz(fp/rp> J [+ (rg - 221 Jao -

- j [ (1/1)|Glcos(n,r) + Wa(1/1)/an ]dS -
ab - T

J(l/l)(aw/an')'ds N (ip/zrp) [(1/1)(aw/an')ds -
r r

(3/2) J. (1/1)(0w/an')(1.‘/r)d5 + F(8w/3n’,r,grad r,i‘,grad ) (3.5)
r
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where the quantities with and without the subscript p are referred to the
computation point and the variable point of integration, respectively; 2z is
the length of the position vector of the variable point in the volume inte-
gral,

F = F(3w/an”,r,grad r,f,grad r) =

= - E (l/l)(aw/an')(f/r)lgrad r|20_2d5 +
s
+ E(l/l)(ﬁw/&n') {grad r,grad f> Q—ZdS +
=

+ (1/2) X(l/ﬁ)(aw/an')(f/r - 1 /e -t (3.6)
r

with ¢ ,> denoting the scalar product and

Q= (1 + |grad rlz)l/2 ; 3.7

Obviously, the right hand side of (3.5) is nothing else but the Fréchet
functional derivative of the right hand side of (2.10), cf. (Holota, 1976).
In addition let us recall that f actually expresses a perturbation of the
length of the radius vector of the equipotential surface WD = const. of

an adopted model of the gravity field given by the potential w and w ex-
presses the corresponding perturbation of w .

Equation (3.5) contains a number of gquantities which should be adapted
to an initial model adopted in the linearization of our problem. As an illus-
tration we give the following example.

Example. Let us take for the model of w in D the analytical continua-
tion of the external gravity potential of the Earth, provided that it exists.
In consequence W =0 , |é| =0 and also p=0 . In case that the mention-
ed analytical continuation is not possible we will use the Runge property of
Laplace equation to approximate the harmonic part of w by a function with
a greater domain of harmonicity, see (Bers, John and Schechter, 1964, p.
140). A more ample discussion on this problem may be found e.g. in (Moritz,
1978). Finally, let p = p . Now for the model specified above equation
(3.5) attains the following form
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0=4nk X (1/1) pdD - l (1/1)(3w/an") dS +
D

+ (fp/er) j (1/1)(@w/dn")ds - (3/2) I (1/1)(3w/8n ") (r/r)dS (3.8)
r r

where F and the terms multiplied by mz were neglected and

r

-@wer)Yw  on T (3.9)

in view of (3.4). In addition

(w/an’) = dw/an” +r Pwnar  on T - (3.10)

as may be easily verified. Denoting by M the total mass of the Earth and
putting approximately

w = kM/T in D, (3.11)

we immediately obtain

w/dn’ = dw/dr = kM/r’ : (3.12)
(w/an’) = dw/dn” + (2/tw . (3.13)

The substitution in (3.8) yields

£ I (1/r%1)ds - 3 I(l/rl)v'vds +2 _[(1/1)[ w/an” + (2/m)w 1dS =
r r r
: ank] (1/2) p dD (3.14)
D

o JWFZUE‘S . I(l/rlmds +2 _[(Ul)(aWBn')dS =
r

: Bnk ] (1/2) pdD . (3.15)
D

Equation (3.15) represents a boundary integral condition for Q on I
which together with

w=0 on 4D-T (3.16)
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and

w/er =0 on D -T (3.17)
may be used to determine Q in D so that

W= - ldnkp . (3.18)

The corresponding r s given by (3.9). Obviously, we have a choice which
one from the two boundary conditions (3.16)and (3.17) to use in combination
with (3.15) for the determination of w in D . It is also possible that a
common use of (3.16) and (3.17) will be of advantage for a stabilization of
the solution in practice. The final reply, however, requires an analysis.

Remark. To have a comparison with literature we will suppose that I'
represents the whole surface of the model of the geoid and that, approximate-
ly,

r sr:R . (3.19)

In this case
j (1/1)dS = 4nR (3.20)
r

and (3.14) turns into

‘;p - (3/47R) j (1/D)wdS + (1/27) J (/1) [ aw/en” + (2/t)w 1dS =
r r

2 2 jr (1/1)pdd . (3.21)
D

Formally (3.21) has a structure which is very close to eq. (X-32; 12) from
(Pick, Picha and Vysko&il, 1973) derived by Malkin:

T, - G/4nR) § (1/1)TdS - (1/2 %) J(1/1>Agprds -
r r

= 2T, = % J (1/¥) pdD . (3.22)
D

Here, in contrast to (3.21), T represents the usual disturbing potential
and AgPr is Prey’s anomaly which actually eliminates the mormal derivative
3T/an” from (3.22). Although (3.22) is an integral eguation for the value of
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T on the geoid, its use is not free from serious problems related to the
determination of Agpr - Equation (3.22) was derived within the theory of

the non-regularized geoid which is essentially based on gravity reductions.
The gravity reductions depend on the mass distribution which is somewhat
hypothetical up to now. This problem has already been discussed many times

in the past. In addition, in the computation of the reductions the shape of
the geoid and also the gravity field inside the Earth are used prior to their
determination. Clearly, without a sound modification having an iteration na-
ture the computations result in a vicious circle.
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An overdetermined boundary value problem for a nonspherical
boundary.

by

Wolfgang Keller
Dresden University of Technology

Abstract :

Recently, in a number of publications overdetermined BVP are
discussed. In the most cases a spherical boundary surface is
used. Thig paper is an attempt to treat a overdetermined BVP
for an arbitrary surface. By an imbedding technique the non=
spherical problem is decomposed into a sequence of spherical
BVP. The spherical BVP are solved by an estimation procedure,
based on a Hilbert-space technique.

Zusammenfassung:

Gegenwdrtig werden in einer Reihe von Veroffentlichungen
lberbestimmte Randwertprobleme diskutierte. In den meisten
Fallen wird eine Kugel als Randflache benutzt. Dieser Beitrag
ist ein Versuch, ein Ulberbestimmtes Randwertproblem fir eine
beliebige Randflache zu behandeln. Durch eine Einbettungs=
technik wird das nichtsphéarische Problem in eine Folge von
spharischen Randwertproblemen zerlegt. Die sphérischen Rand=-
wertprobleme werden durch ein Schétzverfahren gelést, das

auf einer Hilbertraumtechnik beruht.
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The claccical Molodensky problem is one to one. We have two
types of data: gravity and potential and two unknowns: the
gravitational potential outside the earth and the earth's sur=
face.

The progress in space technique, especially GPS, now provides
a good knowledge of the size and the shape of the earth's sur=
face. Consequently the number of unknowns reduces to one. On
the other hand, mew kinds of data like gravity gradients or
gradiometer measurements became available. We are confronted
now with an overdetermined boundary value problem (BVP).

There are already a number of publications on this topice Most
of them use, in the one or the other way, a spherical surface
in order to take advantage of the orthogonality of spherical
harmonics. The good knowledge of the geometry of the earth's
surface is frequently not fully exploited.

This paper is an attempt to discuss the overdetermined BVP for
a nonspherical surface. The problem will be decomposed into a
sequence of overdetermined BVP's for a spherical boundary.
Each of them can be solved by a least=square approache.

The paper consists of three parts. In the first part the
decomposition technique used by us will be illustrated for a
finite=~dimensional example. In chapter two, the approach will
be generalized to the infinite-=dimensional case. The appli-
cation of this infinite=dimensional approach to our overdeter=
mined BVP yields a sequence of overdetermined BVP's for the
sphere. For each of them the differential operator and the
boundary conditions are the same; only the boundary values
vary from step to step.

Consequently, all these overdetermined BVP's can be solved by
the same method. Here we will apply a least=square approach.
The least-square approach in terms of a Hilbert=space technique
will be given in chapter three.
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1, Nonlinear adjustment in the finite-~dimensional case

The overdetermined BVP for a nonspherical surface is a non=
linear adjustment problem in an infinite-=-dimensional space.
It will be treated by an imbedding procedure. In order to
demonstrate how this procedure works, a finite dimensional
anology should be considered before.
Let be
F, F, :0c R*"— R™ , mrn (1)
D = domain,

nonlinear mappingse. Furthermore let be vy, Yo € ﬂz"ﬁ
Let exist a x° e‘ﬂé“ such that

Yo = F (xg) (2)
holds. We suppose that a random vector g

Ee=0, Egg; = 8;*-6}2‘ , b= Amm (3)

exists such that

%=F(x) t+ € (4)

for a certain X ETR? holds.

We are looking for an estimation Q of Xe

The situation can be described as follows: The problem (4)
is an overdetermined problem which we want to solvee. In the
“neighbourhood” of (4) there exists a "trivial™ problem (2)
with a well known solution X .

Now we want to construct an imbedding which gives a conti=
nuouys transition from the "trivial problem to the problem
under consideration. For this imbedding we have to make some
comparatively strong assumptions:
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We assume that there exist:
- a stochastical vector field E(t), analytical on [p,i] with
E(0) =0, E(1)=¢€ (5)
- analytical curves x(t), y(t) with
x (0) = x5, x(1) = x, y (0) = y,, y(1) = vy (6)

= a function H(x, t) analytical with respect to x and t
such that

H (xr 0) = FO (x), H (x, 1) = F (x) (7)
holdse
Finally, we assume that

y(t) = H (X(t), t) + E(t), t € [0,1] (8)

is valide We see that for t = O the problem (8) isidentical
with the trivial problem (2) and for t = 1 to the problem (4).
We know the solution of (8) for t = O, and what we have to do
is to continue this solution up to t = 1.

Please notice that a very simple possibility to construct an
imbedding H is the following:

H (x, t) = t F (x) + (1=t) F  (x), .
y (t) = ty + (1-t) y,, £(t) = t€ . (8%)

But this simple possibility is not necessary the best.

Because all quantities are supposed to be analytical, the
equation (8), can be expanded into a power series with respect
to t:

g _v & ¥ (9)
‘E‘%("’(o) = ZE@[H(X(H’“]LQT! Zs‘“ ‘

y=0 y=0

If we compare the coefficients of corresponding powers of t,
we obtain the following equations:
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v=0: Yy, = H(x);0) = F,(x,)

v= 1 (é: 25 X,,0)" X + ;&(XMO) t€

(10)
Lo L TH 2 M 1y o). X v H
V=2t Y= S5 (%,0) X+ GU %00 X+ 2 o (X5,00%
?°H
+
S Xe0) # 3
V=
In the equations (10) and in the following the derivation
with respect to t is denoted by a dot.
As we can see, we have decomposed the nonlinear adjustment
problem (8) into a sequence of linear adjustment problems
° _ oH = oH .y 4 ¢
v=11: (%,— 61) . ,5? X+ &
e OH OH o L dHY_ °H. (11)
v=: (- =5 X -2 o x+w)_ X tE

Each of these linear adjustment problems has the same
design-matrix QH/9X , only the left-hand sides vary with V .
The left=hand sides contain the results obtained in the
previous adjustment steps. Therefore, the lin/e\arAadjustment
problems (11) can be solved subsequently for X, Xee. and

we obtain

2
X

X = X_ 4+

+
o

X + eeo (12)

[ad B
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We will close this chapter by considering a special case,
which adapts this common procedure to our overdetermined BVP,
Let be A a linear mapping from HZP toTRr‘, depending on k
parameters bl' voe, bk’ Furthermore, let be b(t) an analyti=
cal curve in R with

b (0) = bo. b (1) =b . (13)
Now let be

Fo (x) = (Ao bo) X, (14)

F (x) = (Aob) x (15)
and

H (x(t), t)i= (Aob(t)) x(t). (16)

Hereby, the composition of two mappings is symbolized by a o

fog (x):i= f (g(x))e (17)

If we denote the derivation of A with respect to b by a
prime

... 0A
At 5t (18)

R
and the scalar product inR by (-,-), we can write the equa=
tions (10) in the following form:

v=0: Yo =H(X,0) = (Aeby)x, = F (%)

v=1: §=SHxwp

d .
= Z[(Acbl) xt)]
t=0 a3 l{=0
(Nob, b))%, + (Aeb,) %

d (e ) d*
ar ) L=°— d—g[(Aob(‘L))X(ﬂ]‘{::o

(19)

vy=2": E

= ((A"b,,b),b)x, + (Aoby,b)x,
+2 (Aobg, b))% + (Acb,) X
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In this form the equations are well suited for the application
to the overdetermined BVP.

2. An overdetermined BVP

We now want to adopt the procedure presented in chapter one to
an overdetermined BVP.
Let be

R cos N pim T

S. O = | RAm N pm
R cos

(20)

a parameter representation of a sphere with the radius R, and

rQ\9) cos A amay
SO = r(\Y) ph o (21)
PON) cos

a parameter representation of the earth's surface.

We assume that S is continuously covered with gravity data g
and vertical gravity gradients data [" . The data are supposed
to be already corrected for gravitational and centrifugal
influences. We are looking now for a function V such, that

AV SN =0 r>rE)
g9 = - gl'f 0o SOV + 52(7\){}) )

(22)

L
PO = - 2o S0 + £.09)
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holds. Hereby Q% and EP are modelling (the measuring errors.

Now, we are looking for an estimation \/ of V.

Beside this, we also consider a trivial problem in the
"neighbourhood” of (22): Let be

9, N9

]

-2
fﬂl p (23)

/u.— constant of gravity ¢ mass of the

earth
-2y
ML) = 2uR (24)
We are looking for a function V0 such that
AV, (nIN =0, r>R
%o = "B—\/"o S,
or
2%V (z)
ro= —'O—r’- ° S°
holds. Of course, the solution of (25) is well known
-1
V, = pre (26)
Let us now relate these problems to the procedure, presented
in chapter one. There is the following correspondence
xw & Vyt
y® 2 (o, ghdt) | TOLHENT
E®) 2 (o, 55080 £ 0T
(27)
2 -2 RN
A - (A ) or / or: )
b 2 S
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Inserting these relations in the equations (19), we arrive at

v=1: . . fo
0 AV
' AL Mo, S £
™ . +(V(% ) ) e
] Y, .
r oS + (V2% S‘”Sl e
VX w
0 AV . ) .
y = |2V 5 +2(V (-‘il’)oso)s)+(‘7(-?"’°)°5° s)
r oS, +2(V(-3~r,,)05 S)+(v )030,5)
fo) (29)
(T (-2%)05,, S), $) | &
(v (3V VoS, 5),S S) Ep
Obviously, we have
voYe = 2 wrt v.._o—érxrs
ke L
(30)

;
Vz?}: =~ 2p (1 lr"x ) A ='§:‘%(I—5)%)

rt 2re

DOI: https://doi.org/10.2312/zipe.1989.102.02



238

Inserting (30) in (28), (29), we obtain

V=f4‘
AV=0 .
9,+%(XJ‘5) = 3V°S +£%, .
M+ @g—;-(x,'S) =-g~rL°S.,+é,,
\"iZ,:
AV = . i
. ¢ . S
%+Z(vglr/oso)s)+%§(15l 4(" ’) =-,§%’os°+g%)
: (S
f42 (25, , §) + ;{é(lg\l-s(%i)) L Bog g, 2

We have a sequence of overdetermined BVP‘s for the sphere.
They are of the following type

AU =0, >R,

2U
{, 'e_r°5 il

]

(33)

In the next chapter we will discuss a procedure that gives an
estimation U for U.

Before, we will consider an example, to illustrate how our
imbedding procedure workse.
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Example:
Let be

r=r\0) = R4 +apmd)  o>o0 (34)

and
rOT) cosA N;YM?'I
S = | PO Mo oV
r(AY) cos U

(35)

Obviously, we have taken an ellipsoid for our surface S.
Furthermore, we use a spherical gravitational fielde.

V= e’ (36)

\\\ 1 )('3
o NN
\\\\\\\\\\ T
isozenidhial O
field i ]{ S
RUAto)— 7 &

This field produces on S the following boundary values:

- -
e S P S

(37)

_ 2 A
(o) TR 4 aLsind)3
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We use
-1
V, = prt = V (38)

as reference field and construct the following imbedding:

)= M
g ¢) R(U+totpm I )
(39)
MG t)= 2
’ 'R?(4+Itmsinw?)3

R (4 + tacsind) A cos\
SOTt) = [R (U4t mm®) pmd) s
R (14t D) cosV

Now, we expand this imbedding into power series with respect
to t:

g ) = go (M=20tt ) +acdt2pm? ... )

MOt)= T, (4= 3t wnd + 6ot .o )

(40)

SONI;E)= S (14t pm),

Herefrom, we can derive 'g, 'g-, M N r B S and insert in (31),
(32)

v=1:
AV =0, r>R
- 20U 20 : - - a\’/n . (41)
?,&pm\'}+TR‘}§pm0 g §°+5%)
- - = < Vo5 4¢
S T B Y = - SRS, v ey
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V=20
aAV=0, r>"Q.}

6%% i+ 2 (Rosintd - hRiolmn?) = - QoG +E

—I‘—"z"‘z”‘.”‘l‘?'z + O (Ralpintd— SRoLsint?) = -ﬂoS +E 2
Rr2 #5 o ot Yo r:

A

The estimations V, are easily found from (41), (42):

<> <D

A
V =

= 0 (43)
A
and we obtain an estimation V of second order for V by

A N

o
A 40
V=V0+V+-£V

=V, (44)

Due to the academical nature of our example the estimation
gives the exakt solutione.
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3. An estimation procedure for a linear overdetermined BVP

3.1. The Hilbert-space L2(So)

Let be LZ(SO) the set of all functions u, defined on the
sphere So' for which the condition

4 3
E“_—,R?SU-AS £ + oo (45)

o

is fulfillede. We introduce a scalar product <)) in LZ(SO)
by

<u)v} L= z‘:—,w_ &u-v ds | (46)

It can be proved that L2(So) is a Hilbert space with respect
to (46). We now construct a complete orthonormal system in
L2(S°). The functions

= (m) Z !
P Ccos?) cosmn 4‘{@ ) M=04,..,n
V = (47)

am
~ (-m) .
-P( m (cos'\")smm}\ , M=, =q
n
belong to L2(S,) for every n€ Wu{o} , m€fwn,cccirt
Furthermore, we have

Vo Vo7 = 6"f‘ 8"'1 .
np € NU {o} , me{-n ...,n}’qre {-p,-,P}

(48)

DOI: https://doi.org/10.2312/zipe.1989.102.02



243

Consequently, the functionsV, . form an orthonormal set in
LZ(SO). It can be proved too, that this set is complete.
Occasionally, the following property of the base functions

v will be used:
nm

P (costp) = _2 AROASAANTAY
M e (49)
COS'l{.I = cosY cosl?‘-k D,\}nij'mn:ms"cos O\-N)

Each function u€ L2(So) can be developed into a series of
these base functions

U=ZZ. Vam y\m y Wi = (U)an} (£0)

n=0 ma-n,

Consequently, for u, v € L2(S ) with

U=za nm) V‘ZZ Vam nm
=0 ma=-n,

n=0 m=-n (51)

the identity

oo n
(U,V> = ZE Unm Vam (52)

n®o0 m=e~-n

holdse. Now we introduce an isotropic kernel function K
A
S, X S, —> R

(53)

1 — 2 )
ANIN) =T T &nm\/mcq))vmm) _

N=0 me~-n,
A,> 0
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The kernel K has the following properties

A

(1) K@) € L(Ss)
@ KENIN) = KN, T,N) -
3) KEONIN) = i«ﬁn'?“(cosw)

n=0

With the help of the kernel K, we construct a mapping K by

12¢s,) — LE(S,)

(55)
wrs (KON, ), uY
Obviously, the mapping K is linear and bounded.
Explicitely, we have
co n
E Warn s 56
Ku = /&'n. nmz-n*q nm : (s86)
n=0 ma-n
3.2. An estimation procedure in L2(So)
Let us now return to our overdetermined BVP.
AU = o , YR,
U
= -= o + €
‘f-‘ dr So 1, (57)

U
'fL:—’arL °S, T &
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The idea is the followinge If U is harmonic outside the
sphere S,+ its restriction u on SO will belong to L2(So)

AU=o0, R = u:=UsS, € (s, )

Hence it will be sufficientto get an estimation G fo,( the
restriction u. From this estimation IL} an estimation U can be
obtained by Poisons formula.

We now introduce the isotropic kernels

L= Dt Taosy) |, ien2

n=o (58)

= 2n+1 = 2nt1
Lap = S5 (41 f%n-ﬁ(mﬂ(hm

ne Nv{o},
Easily it can be seen, that for u = U e Sy

‘%oso = <L‘l)u>

NV =
= ‘b_r.-o 80 <LL)U>

holds. If we modell the observation errors 51, i=1,2 by
homogeneousisotropic stochastical processes with

Ee; =0, Egeg = G 83,& ]

o0 o
C'Ii=“Z=6.G§;\FPn ) 6‘5,1\)0; ;36’;)“('4' o° ) (59)
=12 , € Nu{o},

we can reformulate our problem as follows:

DOI: https://doi.org/10.2312/zipe.1989.102.02



246

For an arbitrary a € L2(SO) and for u according to
ue B(s,)
. g (60)
fi=<Lup e =2

find the best linear unbiased estimation (BLUE)

a, u) for <a, u) .

S
We make the following ovﬁoﬂi for <a, u> H

~ 2
{a, u> = Z <°i' fi> ) (61)

i=1
and try to determine the cy € LZ(SO), i=1,2 according to

the BLUE principle.

First of all, we consider the condition of unbiasedness
VS rN 2
{ouy = E{aqu) = E.%(Q;f‘.) = Z(C;,Efﬁ
= =1
£
Z;;<f:i)<L“)u>>

= <?;<C;,L‘.> U7

Because this condition has to be fulfilled for every
u € L2(SO), we obtain

(62)

a = é <ci, L), (63)
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Next, we discuss the condition of minimum variance

E{,(;(C;,ﬁ) - E;(Q,fﬁ)z} —> min

(64)
We have
> L
= {(;(C;,fﬁ S E(C;,fﬁ) 7}
Y
- E{( oY = E{E )
2 (65)
ol DR CHAICEA
LR EY ]
rN
= 7.4¢,45,Ci0 .
1=
Consequently, our minimum variance condition reads:
p
L {ci,4q, Gy —= min (66)

=

The formulae (63) and (66) together lead to the following
optimization problem

min {i (e y¢ei, Gy \ i CRA 0‘3

2 i=A 1= .
c e L5(s,) (67)
We solve this problem by introducing a Lagrange function

2 2
Cb(CﬂCL D\) “‘Z_,(CI)(CUC”>> ¥ Z<\J&E <C{, Lg} -0'> (68)
=1

i=q
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Now we are looking for a saddle point. That means, we have
to solve

0Q; .
0-3% e Gy v LY e

2 (89)
°0;
O=,a7\ _Z\» (cq L&> @
A=a
To solve the normal equations (69), we write them by com-
ponents
© n
2 , 2, > -
N=0 me-n
2, oo n o n (70)
B = \
ZZ Z 2,h+1[{*,"'ci*»""‘\/“m Z Z:O'"" R
Req N=0 Me-n =G Py=ei
=42
First, we solve the equations (70) for S nm
Lin N
Comm = = 2l
Gi)n.
=12, n€ Nvio} wm ef{-n. n}, (71)
Inserting (71) in (70), we obtain
\)\ 2 Qvim
T e S LE
Zl {n /OJ“.‘“
R ! (72)

neNvioy m e {-n.n}
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and finally

1. a
- 2n+1 i,n nm
CE,nm T o 2 @i.n (73)
’ 6‘
EE% 1k.n / k,n

i=1,2,neNV{o}, nsfn..cnk

Introducing the abbreviations

we can compress (73) to

- = o 20¢1 Pi,n 1i.n
i,nm 2 nm 2

=1 pk,n 1k,n

(75)

i=1,2, n€lNUpY, n=f{-n...n}

This is our final result. We obtained the coefficients

c; of the functions c., which give the best linear unbia=
. NM I~ o3

sed estimation {a, u) for (a, u} @

A further discussion is possible only for special choices
of a. Expecially interesting is the choice

fnm = Snno 8mm neN V{O} s om ={_-n,...,r?,-

(76)
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In this case

<§, d) = Un m (77)

. q . A
holds and formula (75) gives the estimation unom for the

o
coefficient Usm ¢
oo
+1)(ngt2)
Pan, (Re+4) + Pz.ﬂ,(“o o ,?
20 N,
. sl " R S (79)
NgM g % L
Pan, (nt1) + Pung(ngt1lne+2)
R? R
To verify this result, at the moment we assume that no
measuring erroi occurs
€ =8 =0, py,; =Py, =1
_ (n+1 - (n+1) (n+2)
f1,nm - R Ynm? f2,nm R2 Ynm (79)
i=1,2 n€INV{o}, maln,ecernbe
This leads to
2 2
§n+1)2 T . (n+ n+2) u
A RZ nm R4 nm
nm © 2 2 2 = Yam (80)
(n+1) . n+1)“(n+2)
R R4
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In the case of missing measuring errors the estimation procedure
gives the exakt values.

Finally, we want to consider the extreme cases of very good
gravity data and very bad gravity gradients and vice versa

very bad gravity data and very good gravity gradients. We
introduce

2
3.= EJ'I,n /R 6;-;\ jne N V{OS (81)
and obtain the estimation formulae
o R(n+1) §
L (n+1)2 + qn(n+1)2(n+2)2 0L
(82)
ap R2(n+1)(n+2)
+
(n+1)2 + qn(n+1)2(n+2)2 2,nm
newu {05, m’{’-n,oo..r}
case 1: @, >y r? 6, . (bad gravity data)
4, —> ©°°
2
A R
Unm —2 (n+1)2(n+2)2 fz.nm
(83)
neWN U{o}, n ={-n,ese.n}
case 231 &, < rR? GTZ n (bad gravity gradients)
R
Unm = Tl f1,nm
(84)
n €NV {o), m={necc,nj
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Formula (84) is basically the well known Hotine=rormula.

Up to now we have an approach to solve an overdetermined
BVP of type (57)e Our original problem was of type (22).
In chapter 2 we have decomposed (22) into a, sequence of
nroblems of type (57). If we applyour estimation
procedure on each of these problems we obtain

2
0 . Rineq (94 aRl , VoD
nm

(n+1)2' + 9. (n+’|)2 (h+L)L

6 (x S)
32 R (n+1)(n.+z,)<r1+ ) nm> €:5)
(l"l‘f’” + q_n(n+1) (n"‘L)

+

heE {0V UN m=-n. n

. av/'\ T 3 b x,S) S)
o e (205, 8) st N V, )
nm

(n+1)% « D (n+ 1) (n+2)*

(86)

S(x,S) S
q,\"R (nm(ma(l"afz V= SO)S) ﬂ&(ls,lZ R" >

(n+4)2‘ g, (e (e 2)*

he {0 UN |, m=-n_ n.
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4, Conclusions

We have decomposed our overdetermined BVP for an arbitrary
boundary into a sequence of overdetermined BVP's for the
sphere. Each of these spherical BVP's has the same mathemati=
cal structureonly the boundary values vary from step to stepe.
We developed a procedure which gives the best linear unbiased
estimation for the solution of our spherical overdetermined
BVP. Because the solution of the nonspherical overdetermined
BVP is a superposition of the solutions of the spherical over=-
determined BVP's, we estimate the solution of the nonspherical
problem by a superposition of the estimates for the solutions
of the spherical problems.

Further investigations should concern the statistical property
of the estimations and the transformation of the estimation
procedure in an integral formula forme.

The applied decomposition method works under the above mentio-
ned severe assumptions. If we do not suppose anything, the
implicite function theorem ensures the convergence of the
decomposition for t sufficiently small. For the interesting
case t = 1 about convergence nothing can be said get.
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O KAMEPHOJ T'PABMMETPYM

A.B.Komaes, E.A.MoHaxo, M.Y.Caruros
Mockosckuit I'ocynapcTBeHHu YHUBEpCUTET ,
locymapcTBeHHu# ACTPOHOMUUECKU MHCTUTYT
nM. [.KH.llrepuGepra (TAMI MIY),

OTJeN T'paBUTALMOHHLIX U3MepeHHUil,

119899 MockBa, YHuBepcuTeTckuit mpocr., 13

Paspa6oTaHt TeopeTHueckue, OSKCIIEPUMEHTANEHHE Y BHUMCIUTENBHEHE
METOAb OJA YUuéTa BIMAHMA HEOJHOPOJHOCTH JOKAJIBHOT'O I'paBUTAaIM-
OHHOT'O TOJNA (hyHAAMEHTAJbHLHX I'DABUMETPUUECKMX JaGopaTopHit Ha
peayNbTaThH MPEUM3HOHHHX ['PABATALMOHHBIX W3MEPEHHIA.

ABOUT THE CHAMBER GRAVIMETRY

A ,V.Kopgyev, E.hA.Mongkhov, M,U.Sagitov
Moscow State University,
P.K.Sternberg State Astronomicel Institute,
Department of Grgvitationgl Measurements,
119899, Moscow, USSR, University prosp., 13
The theoretical, experimental gnd calculgtiongl methods
have been developed for taking into account for the in-
fluence of the local gravitational field inhomogeneity

of the fundamental grgvimetric laboratories on the re-
sults of the precise gravitational megsurements.

[lpy ompeneneHun CUIb TARECTH GAIUCTUUECKUMU U MAATHUKOBHMA
rpaBUMeTpaMu, & TaKke P PeNyKLMM MOJYUEHHHX pe3yJbTaToB HeoO-
XOAMMO THATEeJbHO YUMTHBATH BJMSHAE HEONHOPOJHOCTM IDaBUTALMOH—
HOT'O TOJA (PyHOEMEHTANBHHX rpaBuMeTpuueckux JaaGoparopuit / 6 /.
9To ABJAETCH OCHOBHON 3anaueil KamepHO!l rpaBUMETpUM - MOJOLOit
HayKM, BO3HUKmel Ha CThKe r'paBuMeTpuu ¢ Merpoxorueit / 5 /.

JU1a KOppeKIMM ¥ pefyKIMU pPesyJbTaTOB U3MEPEHWUil CHJIEl TARECTH
B coorBerctBue ¢ / 2, 5 / Heo6XomMMO 3HATH NPUPANEHHS CHJH TH-
KECTM OTHOCUTEJBHO MapKyi B HEKOTODPOM OGbEME IPOCTpaHCTBa HaN,
[OCTaMEeHTOM, & TaKXe HEeKOTOphe BTOphEe MPOU3BOJHLHE I'PaBUTaLJOH—
Horo moreHumana / 4 / B aToM e o6BbéMe. Jig BTOrO Mi paspaGoTa-
JU CHeLyalbHyl METOAMKY W3MEPEHU!l CTATUUECKMMU I'paBUMETpaMu U

BapuoOMeTpaMy IO MPOCTPAHCTBEHHO! CeTM TOueK C MCMOJIb30BA&HUEM Me-

TOMOB ONMTUMANBHOrO miaHupoBanua / 3 /. Jna o6paGoTku B KauecTBe
anmpoKcuMupyomux QyHKUMA MCHONb3YOTCA I'apMOHMUECKU® MOJMHOME B

KOMGMHAIMM CO CIeIMaNbHEMY "napasnenenunenanbHsmMu’'dyuxpamuy /1 /.

Henmoab3oBaHue MeTona HaMMeHbuMX KB&NpAaTOB I03BOJIFEeT CrJIaxMBAaTb
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MyME M3MEpEeHMIt X KOMGMHMPOBATH I'paBMMETpPUUECKME HaHHHE C Bapuo-

Merpuueckumu / 4 /. CoanaH creupanbHuil OMAIOrOBH KOMIJIEKC Mpo-
rpamM. BuroJsHeHH ¥ o6paGoTaH: MPOCTPAHCTBEHHHE CHEMKM B HECKOJIb-
KUX QyHNaMEeHTaJbHHX I'paBUMETPUUECKMX JaGopaTopudX, B TOM uMCIeE

B naGopartopuu "JlEnoBo" B okpecTHocTM Mapku M 5035 MexnyHapomhoit
onopHoit rpaBumeTpuueckoil ceTu. [IpoBemeHHbHE UCCIELOBaHUA BEHABUIN

SHAUMTENBHY HEONHOPOIHOCTb IDABMTALMOHHOTO FOJA HAN TOCTaMEHTa-
MM, & TaKke BpEMEHHHE BADUALMA BEPTUKANIBHOTO TDANMEHTA CHIH THA-

XECTM PA3NUUHON nepuouuHoCTH (BO BCEX JIa60paTOpUAX).

350 ++ + + + + + + + Puc. I

3aBHCHMOCTM BEpPTMKEIBHOT'O I'pa-
IMEHTa CHUJH TAXECTH OT BEICOTH
IJs IBYX NMYHKTOB Ha& IOCTaMEH-
rax Jgadoparopun "JEmomo", pas-
HeCEHHbX Ha 2 M. Mcrmoab3oBaH
TOJILKO I'paBUMETpUUECKUe NaHHbIE.
o Bepruxam - Mxlan/m. [lyHx-
TUpHHE JMHUK - 95 %-Hbe HoBepu-
20+ + + + + + + + + TEJbHHE WHTEepBalk.,
0.0 0.4 0.8 I.2 1I.bwm

I6+ + + + + + + + + Puc. 2
1.4 + + lleranbH.  3aBUCHMOCTB BTODOIO
BEPTUKAJIEHOT'O I'paJMeHTa CHJIH
1.2 + + THXECTH OT BHCOTH Haj Mapkoit
I.0 + + ® 5035 MexnyHnapomHoit omopHo
0.8 + + rpaBuMeTpuueckot ceru B JIémoBo.
Ucnonb3oBaHe TOJNBKO BApUOMETPH-
0.6 + + yeckue JaHHHe. [0 BepTUKaM -
0.4 + + orsem/cM. [lyHKTUpHHE JMHUM -
0.2 + o 95 %-Hhie NOBEpUTeJbHHE MHTep-
BaUTH,

0.0+ + + + + + + + +
0.0 0.4 0.8 I.2 1I.6mM

CoBMecTHas KoOMObTEpHad 06paloTKa NPOCTPAHCTBEHHLHX I'DaBUMET-
PHUECKUMX M BapyOMETpUUECKMX CHEMOK IO Hameil MeToauke NMpUBOOMT K
NOCTPOEHH ONTUMAJTbHOM MOLesM IpaBUTALMOHHOIO MOJA B BuAe Hadopa
KosdpuLmeHToB Iya Kamnod ¢yHmameHTalbHO! I'paBMMETpUueckoit Jadopa-—
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TOpUKM. OTa MeTOIMKa yXe NpUMEHAeTCA Ha MyHkTax [ocynapcTBeHHOR
rpasumerpuuecko’t ceru CCCP. Ham mpepncraBisercs nepcrnekTUBHEM
NpemJORMTb UCMOJb30BATbH €€ M mpu cosmaHuu MemnyHapomHoit a6cosmoT-
HOJ OMopHO# IpaBUMETPUUECKOil CeTH.

I.6M+ + + + + _+ Puc. 3
1.4 M +Tx~=314 + BeprukaibHOE ceuvedwe NOJA Bep-
1.2 M+ 310 — + TUKATBHOTO TPANUEHTa CWilbl TA-
,/"’ KECTM Hal OCHOBHHM [OCTaMeH-
LOwM + 300‘*\\\+ ToM naGopaTopun "Jénoso", mpo-
0.8 ™ +///// + xonAmee uepes Mapky ¥ 5035
0.6 M + 302 . MexmyHaponHOit OMopHO# rpaBuMET-
//”’ ™~ puueckoit cer. McnojiibaosaHa
0.4 M + //,”298““~+ KOMGUMHALMA PPA3UMETPUUECKHX
0.2 M + Z—29=—, I&HHHX C BAPUOMETPUUECKUMM .
== 2% ’;;: MsonuHuu mpoBeneHs uepes
0.OM+ +-+ + %4 +

0.0 0.4 0.8m 4 wxTan/m.
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TESTING THE COMPATIBILITY

OF DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS

B. Middel & B. Schaffrin
Geodetic Institute, Stuttgart University,
Keplerstr. 11, D-7000 Stuttgart 1,
Federal Republic of Germany

Abstract

The spherical harmonic coefficients of earth's high degree gravity models are
usually determined by a combination of global gravity data (i.e. gravity
anomalies and geoid undulations) and the lower coefficients of a satellite
derived model. In this contribution the method of "robust collocation" is
applied where spherical harmonics derived from terrestrial observations are
merged with the coefficients of a satellite model. In this solution incon-
sistencies between these two data groups can be detected and taken into
account by a special weighting procedure. By comparing the result with the
traditional collocation solution, based on the appropriate statistical test,
a sure judgement of the solution becomes possible at a chosen significance
level.

1. Introduction

In the early eighties the permanent improvement of spherical harmonics'ex~
pansions for the Earth's gravity field finally led to high resolution models
such as GEM-10C, OSU 81, GPM-2 or OSU 86F; see, e.g., F.J. Lerch et al. (1981),
R.H. Rapp (1981), H.G. Wenzel (1985) and R.H. Rapp/J.Y. Cruz (1986a,b). On

the other hand, the lower degree terms could be derived most accurately from
Satellite Laser Ranging (SLR), thus arriving at models like GEM-L2 or

GRIM-3L1 which in this part further improve GEM-10C and GRIM-3/GRIM-3B,
respectively; we particularly refer to F.J. Lerch et al. (1982; 1985) and

Ch. Reigber et al. (1985).
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In this situation measures are required which enable us to discriminate
between the different sets of coefficients with respect to their quality
and/or reliability, thereby allowing us to judge more realistically upon
the respective data sources, too. For this purpose, one method had tenta-
tively been introduced by B. Middel/B. Schaffrin (1987) proving useful

under certain circumstances. In the following we generalize this concept,

simultaneously extending it beyond the reasoning of L.E. Sjsberg (1987).

2. Data and Prior Information

Beside the (supposedly most reliable) GEM-L2 coefficients up to degree and
order 20 which are described together with their variances in F.J. Lerch et
al. (1982; 1985) we consider two different data sets for either single or
joint combination: namely, 35008 gravity anomalies as terrestrial data, and
34380 geoid heights derived from SEASAT-1 altimeter data together with their
respective standard deviations, both types being mean values in a 1° x 1°
grid. In order to get an uniform parametrization we first calculate the
corresponding spherical harmonic coefficients up to degree and order %

max
36 by a simple least-squares adjustment within a GauB-Markov Model of type

271 .

i (2.1)

E{yi} = AiE B D{yi} =0

Here i1 € {1,2} denotes the index of the data set which is collected in the
observation vector Yis with the Jacobian matrix A of size nyoxom, n, being
the number of observations (n1 = 35008, n, = 34380) and m the number of co-
a F DP - 4= 1365); o s the
variance of unit weight, Qi the ng oxong a-priori weight matrix while E de-

efficients in the parameter vector £ (m = (2

notes "expectation" and D "dispersion".
Then we obtain the respective solutions (i = 1,2)

2 = fal =1 AT —
£y = (AiQiAi) AiQiyi =Ky (2.2a)

with the estimated variance-covariance matrix

a2y = ~2,,T -1 _, ,-1

D{Ei} = ci(AioiAi) =1 Pi (2.2b)
where we introduced the estimated variance component

~2 _ vl a2 (T pz

o = (ni m) (.V:I A"IE"I) Q"I(‘yi A.]E.i) . (2.2c)
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In addition, we confer the index i = 3 to the combined solution
. _ T T -1,,T T .
83 = (AQUAT*ALQA) T(A1QY FALQ,Y,) =1 kg (2.3a)

with the estimated variance-covariance matrix

acs o 22,,T T L |

D{£3} = 03(A1Q1A1+A2Q2A2) = P3 (2.3b)
and the estimated variance component

@ - " .2

83 = (nynymm) 7! [(n-m)ad + (ny-m)35) (2.3c)

which nicely follows from the "addition theorem" for normal equations.

In order to compare these estimated coefficients with those coming from the
GEM-L2 model, we introduce the latter in the form of an expanded vector
z = [z¥,z¥ﬂT with the corresponding error vector e := [e¥,e¥1f>being dis-

tributed as

0 0 Tim el
e->0

where the ¢ x 1 vector g contains the GEM-L2 coefficients up to Emax = 20,
i.e. £ = 437; Pe denotes the appropriate 2 x 2 diagonal weight matrix whereas
the second part of the vector z, namely zpq> Can be chosen arbitrarily due to
its vanishing weight matrix. Now we are in a position to define a suitable
Mixed Model in which the adjustment can be performed in a robust way thereby

taking care of any errors in the vectors <5 (i =1,2,3).

3. Combining Different Sets of Coefficients

The computations for combining the different vectors of coefficients, K5 and

z, are carried out in a Mixed Linear Model (i = 1,2,3) given by

E(x) = x; given , e, ~ (0,P;1) , Clej,ey =0, (3.1)
P 0
e-(ophy, o= | *
0 Tim el
>0
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n this rather flexible form X denotes the m x 1 random vector containing
the coefficients to be predicted, z and K5 contain the sets of coefficients
which are combined, e and e; are the error vectors of z and x, respectively,
and PO, Pi are the corresponding weight matrices. The vector z is treated in
this model as an observation vector and Ky as prior information of the para-
meter vector x. The character of a "mixed model" is given by the assignment
of e; with the weight matrix Pi as defined in (2.2b) or(2.3b) to one of the
vectors K; (i = 1,2,3), nevertheless resulting in the vector x = <5 + e;

independent of the index i!

0f course the question about a convenient assignment of the coefficient sets
arises. In the case of the traditional "geodetic collocation" according to
H. Moritz (1973), which turns out to be the Best inhomogeneously Linear
Prediction (inhom-BLIP) of x, we get the solution as a weighted mean of the
two sets

= =1 =
X5 = (P0 + Pi) [Poz * PiKi] » & € {1,2,3}.. (3.2)

The corresponding "matrix of mean square prediction errors" is given by

MSPE(R,) = D(E.-x) = (P, +PO)TT, i€ (1,2,3) . (3.3)
The situation changes considerably with the transition to "robust collocation"
which is according to B. Schaffrin (1985; 1986) the Best homogeneously Linear
(weak) Unbiased Prediction (hom-BLUP). In this procedure the vector Ky con-
taining the prior information is compared with and fitted to the observation
vector z. Of course, with this treatment the assignment of the coefficient
sets becomes of particular importance. For each least-squares solution
Ei = kg we have two alternatives, either to handle the GEM-L2 coefficients
in g := z as prior information and to fit them to the coefficients Ei or
to take the satellite solution superior for the longer wavelengths and to
fit <5 = 51 to the vector z.

The possible solutions are given by

= _ =1
xij = (P° + Pi) [aojPOKo + aijpiki] \ (3.4)

¥€e(1,2,3y 53¢ (1,2} ..
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The new index j describes the chosen character of the two combined coefficient
sets.
In the case j = 1 a formal replacement is done in the following way:

z > E£. with Pi

i€ {1,2,3} (3.5)
K. > k_ With PO

while for j = 2 we still have

k_ »z with P0
: i€ {1,2,3} . (3.6)
E. > k., with P..|

The factors akj = akj(i) appearing in (3.4), which are responsible for the
fitting of Ko to Eﬁ or K, to z, can be taken from the following table:

k=0 k=i

T

j=1 a1 KOPO(P°+P1)_ P].Ki 1 (3.7)

o T -1
i=2 1 ais Kipi(Po+pi) POKO

with the factors %5 = akj(ﬁ) being computed from the table:

k=0 k =1

— T = —
j=1 [KOPO(P0+P1) PiKO] 0 (3.8)
=1 i

s T
=2 0 [kiPL (PP TP k]

Corresponding to (3.3) we can also give a formula for the "matrix of mean
square prediction errors"

MSPE(;ij) s D(iij “xp= (e, + P
+agy(Py + PPk kiP (P + P)TE 4 (3.9)
+agy (P, + PO PP (P + P
i€(1,2,3) , j € (1,2) .

Obvicusly MSPE(iij} has slightly increased in comparison with (3.3) by a
rank-1 modification.
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4. Statistical tests

In order to compare the three different solutions which are possible for each
set of coefficients Ky, We present in the following a test strategy in three
steps.

At first we want to examine whether the two hom-BLUP results coincide with the
result from inhom-BLIP. Obviously different solutions are caused by a deviation
of akj from 1 in (3.4). Therefore our first test considers the null hypothesis

H :a

AR N(1,e§akj) . JE (1,2} , kE€{0,i}. (4.1)

The proper test criterion is given by
(1-a .)2

- 21y, s, ke (o). (4.2)
% *kj

T(akj) =

0f course, we can also check the compatibility between the two used datasets
which is done in a second test regarding the null hypothesis

Hyox = Wl Pt) K€ (0,4} . (4.3)

In the case of "geodetic collocation" the proper test statistic is distri-
buted as

R, F(2,d) for k=0 (if j = 2)
(k) = — - (4.4)
Eak F(E,ni—m) for k=i (ifj=1)
with
R: 1= (k.~%X:) TP (k% )+H(ko=%:) TP (kem%e) 5 1 € {1,2,3} . (4.5)
1 0 1 o' 0 1 1 1 1 i | 1

d is the degree of freedom in the original GEM-L2 solution, namely d = 442428.

If the "robust collocation" is applied we get a different test statistic
being distributed as

R.. F(e-1,d) for k

0 (if j = 2)
k) 1= —H o . (4.6)

s =
ij (g-l)ai F(z-l,ni-m) for k =i (if j = 1)

with
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+ (aini = Xﬁj) Pi(aﬁjKﬁ = Xij) 3 (4.7)

i€{1,2,3, Jje {2}

Note that for the application of the test statistics (4.4) and (4.6) we assumed
the estimated variance factor of the original GEM-L2 solution to be Gi = 1; the

same choice oi = 1 has been made in (4.1).

Finally we want to check whether the use of the prior information - even if
the second test has failed - leads to an improvement of the prediction.
For this purpose, in a third step, we test the hypothesis

H . MSPE{iﬁ) < MSE{x

o W ke {01}, (4.8a)

for the "geodetic collocation" and

H, Msps{iij} < MSE{x K€ {0,i} , (4.8b)

k},

when the "robust collocation" is applied. Under these null hypotheses our
test statistics (4.4) and (4.6), respectively, are distributed as

o[-

F'(e,d; 9 < 3) for k = 0 (if j = 2)
Ti(k) - A (4.9a)

L F‘(l,ni-m; 9 s %) for k =i (if j = 1)

F'(2-1,d; 95 3)  for k=0 (if § = 2)
Tij0k) = 1 . ; (4.9b)
F'(2-1,n,-m; 8 5 3) for k = § (if j = 1)

9 being the appropriate non-centrality parameter.
A weaker form of this test is based on the null hypothesis

Ho tr(W o MSPE{ii}) < tr(W - MSE{Kk}) (4.10a)
or

Hy @ tr(W - Mspﬁ{iij}) S tr(W + MSE(k,}) (4.10b)

with
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= 15 _ o
W= P (P + PP = (P

3 ) IR (4.11)

Then our test statistics obey the following distributions

F'e,d; 9 s %) for k=0 (if j=2)
T (k) ~ (4.12a)

F'(R,ns-m; 9 S %) for k=i (if j=1)
F'(2-1,d; for k=0 (if j=2)

(k) ~ (4.12b)
F'(Q-l,nﬁ-m; 9 < for k=1 (if j=1)

IA

T
1

under the null hypotheses. More details about the theoretical background of
these test procedures can be found in B. Schaffrin (1987; 1988); we only
mention the relation
G207, (k) - TL(0] = L 0Tk - o T(a)) (4.13)
k-"1j i A k kj '

for i,j,k as above which seems to be of particular importance for numerical
calculations.

5. Results

After describing the mathematical approach we are now presenting the test
results, which are given in tables (5.1) and (5.2). Table (5.1) contains the
results we obtained for j=2, where the GEM-L2 coefficients are used as obser-
vation data and the coefficient sets K; as prior information.

The test statistics Ti(k=0) obtained by the "geodetic collocation" indicate
only for the coefficient set Ko containing the coefficients derived from geoid
heights a good compatibility with the GEM-L2 coefficients in vector Ko+

The criteria for the other two data sets are higher than the proper fractiles

and therefore these tests have to be rejected.

Following the test strategy described in chapter 4 we can interpret the re-
sults in table (5.1) for the "robust collocation". The test criteria T(aIZ)
and T(a32) show that the solutions are significantly different from the
traditional collocation solution while T(azz) indicates nearly identical
solutions. Therefore it is not necessary to test the compatibility between
5 and Ko since the test statistic T22 must lead to the same decision as

T2 (k=0) whereas the compatibility of 3] and Ky with Ko is to be tested
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separately. Both test statistics indicate that the used data sets are not
compatible, and hence the used prior information will not improve the pre-

diction results.

Table 5.1: Test results for j=2

i=1 i=2 i=3
Ti(k=0) (2.85417) 0.23626 (2.50668)
as, 0.74559 0.99415 0.96807
T(aiZ) (328.586) 0.93787 (37.7244)
T;,(k=0) (2.10594) 0.23452 (2.42459)
Fractiles:
significance level
0.95 0.99 0.999
F(2,d) . 1.11388 1.16417 1.22230
F'(2,d; %) 1.11516 1.16550 1.22369
F'(e,d; %) 1.66086 1.73165 1.81333
F(2-1,d) 1.11401 1.16437 1.22257
F'(2-1,d; %) 1.11529 1.16570 1.22397
F'(e-1,d; &:l) 1.66105 1.73193 1.81371
x2(1) 3.84190 6.63722 10.80858
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It has to be mentioned that all test statistics Tiz(k=0) are automatically
lower than the corresponding Ti(k=0) which points out that, with this choice
of prior information and observation data, any tests based on the "robust
collocation" are less sensitive and thus more realistic (in a way) than those

based on the '"geodetic collocation".

Table 5.2: Test results for j=1

i=Z i=2 i=3
T, (k=i) (2.86276) 0.22938 (2.55263)
a, 1.01184 1.00210 1.00241
T(a,;) 0.52414 0.12005 0.20740
T, (k=1) (2.86657) 0.22950 (2.55662)

Fractiles for significance level 0.95:

=1 i=2 i=3
F(2.n-m) 1.11467 1.11469 1.11424
F'(2,n,-m; 3) 1.11595 1.1159 1.11551
F'(2,n5-m; 2) 1.66211 1.66213 1.66143
F(2-1,n,-m) 1.11480 1.11482 1.11437
F'(2-1,n-m; 3) 1.11608 1.11610 1.11565
F'(2-1,n-m; 251 1.66228 1.66232 1.66161
x2(1) = 3.84190

Remark: Brackets indicate values above the respective fractiles,
and therefore the corresponding null hypotheses are to be

rejected.
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In table (5.2) we present the results of case j=1 where the GEM-L2 coefficients
are used as prior information. Here the test statistics Ti (k=1) lead to the
same decisions as those in case j=2; again only Ko is accepted to be compatible
with Ko The test criteria T(aol) indicate for all three data sets ) that the
robust solution is not significantly different from the solution obtained by
geodetic collocation. This is confirmed by the numbers T1.1 (k=1) which are in
fact nearly the same as the corresponding Ti (k=1), thereby leading to the

same decisions.

As a common result if regarding both T22 (k=0) and T22 (k=1), we may well con-
clude that the coefficient set <y obtained by a least-squares-adjustment from
34380 1° x 1° mean geoid heights is indeed completely compatible with the GEM-L2
coefficients up to degree and order lmax = 20 in vector Ko In view of the large
differences between the two (non-homogenized) coefficient sets this is a very
surprising result; but as soon as we homogenize the coefficient vectors with
respect to the weight matrices we get, in fact, nearly identical vectors. This

behaviour has to be explored in further investigations.

6. Conclusions

In this study the new method of "robust collocation" is exploited for the com-
bination of different sets of geopotential coefficients, together with a test
strategy to judge the obtained results.

We point out that it is of essential importance how these coefficient sets
are combined. When using the robust method with the GEM-L2 coefficients as
prior information of the coefficients to be predicted and with coefficients
derived by gravity anomalies and/or geoid heights as observation data, we
obtain nearly the same results as with the application of the "geodetic
collocation".

However, by interchanging the character of the two data sets to be combined,
the "robust collocation" yields a completely different solution with a clear
tendency to be superior to the solution of the "geodetic collocation" as con-
firmed by the corresponding tests. Nevertheless, inconsistencies between the

respective data sets are easily detected and can thus be taken into account.

A11 these results prove that robust alternatives to "geodetic collocation"
can indeed help to improve the merging of terrestrial and satellite derived

data in order to estimate geopotential coefficients most reliably.
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ABSOLUTE ORIENTATION OF THE ASTROGEODETIC GEOID MODEL
FOR THE YUGOSLAV TERRITORY ACHEVED BY THE METHOD
OF THE MAXIMAL LINEAR CORRELATION COEFFICIENTS

SveTtozArR PeTrOVIE, NapA VUCETIE anD KrRESMIR Coud
Yucsosuo.vm\'1

ABsTRACT

The paper critically considers possibilities for a geometrical
interpretation of the 1linear correlation coefficient 1in the
investigation of the correlative relationship between such data
which can be represented by surfaces. It 1is shown that this
coefficient between two surfaces 1is the consequence of two
components of their actual relationship: the relation between
their shapes, and their mutual position 1in space. A new
procedure is offered which enables the separation of those two
components, and which is the basis for the "method of maximal
linear correlation coefficients”". By that method, the absolute
orientation of a geoid model can be effected using measured
DSS-data, Bouguer's gravity anomalies and terrain heights. We
have already used the method earlier in order to improve the
absolute orientation of solutions obtained by the least squares
fitting of the relatively oriented original astrogeodetic geoid
model for Yugoslavia onto spherical harmonic geoid models. Now
we have offered the improved solution POTS88 obtained by our
method, and also we have demonstrated that the result does not
depend on the used intermediary solution. Therefore, the method
can be applied for the direct absolute orientation in space of
relatively oriented geoid models as well.

ZUSAMMENF ASSUNG
In der Abhandlung werden die Méglichkeiten fiir eine geometrische

Interpretation des linearen Rorrelationskoeffizienten zur
Untersuchung der korrelativen Beziehung zwischen verschiedenen,
durch die Flachen darstellbaren Daten kritisch betrachtet. Es
zeigt sich, dass dieser Koeffizient eine Folge zweier
Romponenten ihres aktuellen Verhdltnisses 1ist: erstens der
Beziehung zwischen ihren Formen und zweitens ihrer gegenseitigen
Raumlage. Ein neues Verfahren wird angeboten, das die Trennung
dieser zweli Komponenten ermoéglicht, und die Basis fiir die

1Address: Svetozar vretrovié, Nada Vuletié, Prof. Dr. Kre¥imir
Colié, Geodetic faculty, University of Zagreb,
Ra&ideva 26, 41000 Zagreb, Yugoslavia
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"Methode der maximalen linearen Korrelationskoeffizienten" 1ist.
Mit dieser Methode kann die absolute Raumorientierung eines
Geoidmodells mittels gemessenen TSS-Daten, Bougueranomalien der
Schwere und Gelandehohen vollgebracht werden. Vorher benutzten
wir die Methode um absolute Orientierung der Losungen 2zu
verbessern, die durch die nach kleinsten Quadraten erzielten
Anpassung des relativ orientierten urspriunglichen astrogeo-
ddatischen Geoidmodells an einer der Kugelfunktionsmodelle
gewonnen wurde. Nun bieten wir die verbesserte, mittels unserer
Methode gewonnene Losung POTS88 an, und zugleich beweisen, dass
das Ergebnis unabhidngig von der verwendeten Zwischenlésung ist.
Daher  kann die Methocde auch fur unmittelbare absolute
Raumlagerung von relativorientierten Geoidmodellen eingesetzt
werden.

1. MoTivaTion

In (Colié et al. 1986) we have reported about the first
successful application of the method of the maximal linear
correlation coefficients, and have . also given a short
presentation of it. Later on, in the paper (Petrovié et al.
1987) - published in Croato-Serbian language - we explained the
way of thinking which was the base for the method, and gave the
formulas for practical computations. In the meantime, we
formulated in a more strict and general manner that same method
in the study (Petrovié et al. 1988). Being sure that our new
approach to the interpretation of the 1linear «correlation
coefficient makes sense in a lot of cases, when one wishes to
investigate correlative relations between data which result out
of measurements effected in individual points in space - 1i.e.
when the data manifest surface-like or curve-like behavior - we
give here, before the description of the subject application of
the method, also a theoretical basis together with the
application hints.

When studying the existing relations between the geoid model
surface, the Mohorovi&ié discontinuity ("Moho"), the relief of
the earth's physical surface and the Bouguer anomalies, we
wanted to investigate to what extent is the shape of each of
them reflected in the shapes of the remaining three. In order to
achieve that, we computed the linear correlation coefficients
between the geoid undulations, the Mohorovi&ié discontinuity
depths, the values of Bouguer anomalies and the relief heights
on the Yugoslav territory. The results were published in
succession in (Colié, Petrovié 1983), (Colié et al. 1984),
(Petrovié et al. 1985), (Colié et al. 1985), (Colié et al.
1986), (Colié et al. 1988). The computations itselves have been
done in usual way, and as samples representing the considered
surfaces we chose an appropriate ..mber n (finitely many) of
points, distributed over the whole, cr over a part of the region
of interest.

Now, there emerges the question of the interpretation of the
obtained results. When the 1linear correlation coefficient is
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almost +1 (respectively close to =-1), the really existing
relation between the considered two parameters has a strong
linear component. In the discussed case - when the parameters
are representable by surfaces - it can be interpreted as
expressively similar (respectively similar, but mirrored) look
of the two surfaces. Such a geometric interpretation is
completely correct.

On the other hand, when the linear correlation coefficient is
close to zero, the stochastic relation between the parameters
does not contain a pronounced linear component. If we remember
that really the aim was to investigate the relationship between
the shapes of the respective surfaces, the 1lack of 1linear
component should be interpreted geometrically. In accordance
with the interpretations common up to now - a conclusion offers
itself naturally: the relationship between the forms of the two
surfaces is not simple, it is, there is no visible similarity
between their shapes.

n Alas, this 1last conclusion is
erroneous. Namely, when the 1linear
correlation coefficient is close to

09 zero, it may, but it is not
necessarily the consequence of
essential differences between the

08 forms of the two surfaces.
Moreover, even in the case when the

07 surfaces have completely identical
shapes, the linear correlation

06 coefficient can however be close to

’ zero, or just zero. It is nicely
illustrated by the example taken

05 from (Vu¥etié 1986, pp. 27-28),
where the linear correlation

04 between two surfaces of the
completely identical shape has been

03 considered. The first surface was

2 the geoid model for Yugoslavia with
the absolute orientation in space

0.2 which was originally given in
(Colié 1978), and the second one

01 was that same geoid model, but with
modified positions in space,

0 obtained by tilting it continuously

20 -10 10 20 30%V10%%, around the chosen horizontal axis.

The sample used for computations

Figure 1. The change of consisted of 716 points evenly
the linear correlation distributed over the whole
coefficient with the territory (in a grid with sides
inclination of one AB=10" and AL=15'). At first
among two surfaces sight, the obtained result seems
which have identical very curious: in spite of the fact
shapes that the two surfaces had identical

shapes, even slight inclinations
resulted in considerable changes of the 1linear correlation
coefficient! For instance, an inclination of only 0.034 %o
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around the chosen axis changed the linear correlation
coefficient even to zero! The linear correlation coefficient as
the function of the tilt is represented in Figure 1. Any surface
(with exception of the horizontal plane), regardless whether it

has some physical meaning, or not - for instance a randomly
generated surface - could serve as example as well. The result
would be completely analogous - the only difference would be

that the 1linear correlation coefficient would change with
inclination somewhat more rapidly or slowly.

It means, in every case when the linear correlation coefficient
is computed in order to compare two phenomena which can
geometrically be represented as two surfaces, one should be very
cautious in the geometrical explanation of the obtained results,
it is when deriving quantitative conclusions regarding the
relationship between the shapes of those surfaces.

2 New APPROACH TO THE PrROBLEM

It is clear from the previous section that we are here dealing
only with such phenomena which can be regarded as surfaces, and
the calculation of the linear correlation coefficient between
them is performed in order to make geometrical conclusions. From
everything that has been said, it becomes obvious that the
computed linear correlation coefficient is the consequence of
two components of the relationship between the two surfaces: the
relation between their shapes, and the relation between their
positions in space. Our aim is to separate those two components,
more precisely their influences upon the 1linear correlation
coefficient.

First of all, we have to formulate more precisely what kind of
relationship between the shapes of two surfaces are we
investigating. In the previous section we have used intuitively
terms like "the shape of one surface is reflected in the shape
of the other one", "similar look of two surfaces", and alike. In
fact, it can be demonstrated that .the linear correlation
coefficient between two surfaces is +1 or -1 if and only if
there exists a transformation which uniformly stretches one of
the surfaces in some direction (eventually with an additional
translation) so that it becomes identical with the other one.
When the linear correlation coefficient is different both from
+1 and -1, sSuch a transformation does not exist, and that
coefficient becomes a measure how close is the relation between
two surfaces to the situation when one is a stretched image of
the other, see (Petrovié et al. 1988). Therefore, all references
to the geometrical relation between two surfaces made in the
present paper, should be understood in that, just explained
sense.

It is now clear that the mutual position alone, of two surfaces
in space, may be responsible for the low absolute value of the
linear correlation coefficient. Namely, the forms of the
surfaces may differ just slightly, or even not at all, but when
the surfaces are inclined one with respect to another, it is not
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a wonder that no uniform stretching composed with a translation
can transform one surface to something which is close to the
other one.

Therefore, to make geometrical statements about the relationship
between the forms of two surfaces based on the 1linear
correlation coefficient, one should eliminate the influence of
the position in space. We will imagine that one of the surfaces
is kept fixed, and that the other one assumes all possible
positions in space. In the case when there exists such a
position for which the absolute value of the linear correlation
coefficient is the largest possible, we will call it the optimal
position and the corresponding value of the linear correlation
coefficient will be called the maximal 1linear correlation
coefficient. That value is, of course, the required measure for
the investigated geometrical relation between the surfaces,
which is independent of the mutual position. There exist some
synthetic examples for which the optimal position does not
exist, but in practical cases, where thne surfaces are not
defined analytically, but contain some stochastic behavior, that
is almost impossible to happen - at least we could not up to now
encounter such a practical situation. It should be added that,
when solving a practical problem, one has to clear up whether
the resulting difference between the original and the optimal
position has some physical (or other) reasons and
interpretation.

Bvery change of the position in space can be separated into a
translation and a rotation. It can be easily demonstrated, and
it is probably already clear from the above definition of the
linear correlation coefficient by means of the stretching and
the translation, that no translation changes 1its value.
Therefore, in order to find the optimal position, we have to
consider only rotations. Taking into account the physical nature
of the mentioned surfaces which we want to investigate, and the
possibility to find some reasonable interpretation of the
obtained results, we can restrict ourselves only to rotations
through very small angles. Moreover, such a rotation will have a
component around the vertical axis which will be negligible from
the point of view of the used data files (e.g. in the geoid

file, the dimensions of the grid mesh were 10'x15', while the
resolution of the third coordinate - the geoid undulation - was
incomparably better, amounting in the worst case 1-2

decimeters). Therefore, we have to consider only rotations
around horizontal axes.

Let us denote the considered phenomena (surfaces) with x and y,
and let the sample representing them consists of n points. It
means that for each of those n points, the corresponding values
of x and y are known. The linear correlation coefficient can be
then written in the form
n Zxy - Ix Iy
r(x,y) = . (1)

n o - (Zx)2 //n Zyz - ():y)2
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Having in mind that translations do not change the 1linear
correlation coefficient, we denote

= 4 - X =y - ¥
X =x o Y Y e (2)
Therefore we have ZX = ZY = 0, and (1) becomes
XY
rix,4) =r(X,y) = ——— | (3)

/ =x? =y*

Hence, we first replace the known values x and y by the values X
and Y according to (2). Let the position of each considered
point, in which we know those values, be described by two
coordinates, let us denote them & and ¢. They can for instance
be the geodetic latitude and longitude, as in our case. Again,

we denote
PR
B =26 o L=¢- = (4)

with the consequence £B = ZL = 0.

Because we are considering only very slight rotations, we can
replace the rotation of the surface Y by the 1linear
transformation

Y'= Y+bB+cL, (5)

where b and c are coefficients that describe the effected slight
tilt. In that way we are solving a less complicated problem. But
what is more important, it is easily seen that the rotations,
whose amount is small enough to be physically explainable, can
be approximated by transformations of the type (5) so well, that
the difference between that approximation and the exact solution
is many orders of magnitude beneath the resolution of the given
data.

Replacing Y in the numerator of (3) by Y’ from (5) gives
IXY'= ZXY + (IBX)b + (ZLX)c.

Analogously,
Y’ *= z(y+bB+cL) ’= ¥+ (2B?)b’+(2L%) c®+2 (IBY) b+2 (ILY) c+2 (ZBL) be.

We denote

F = IXY, G = IBX, H = ZLX ; (6)
2 2 _ 2 _ - - .
k,= ZY', k,= IB", k = IL°, H‘- IBY, k = ILY, k = ZBL; (7)
v =/ x? W =/ k +k_b +k_c’+2k b+2k_c+2k bc ; (8)
! 1 2 3 4 6 6 L

and finally, in place of (1), we have

rix,y) = ExSbtHe (9)
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We are looking for such values of the parameters b and c, i.e.
for such a transformation of the type (5), for which the
absolute value of the linear correlation coefficient assumes the
largest possible value. The quantities F, G, H and V being
constants, and W a function of b and ¢, the relation (9)
expresses the linear correlation coefficient as a function of b
and c. Hence, the necessary condition for the extrema reads:
L o GVW - (F+GbHHEIVW, .
b db viw?
(10)
5 HVW - (F+Gb+Hc)VW
r = r - = =0.
c dc viw?
By differentiating W from (9), we obtain after a 1little
rearranging:
k2b+k4+k6c k3c+k5+k°b

W= W ‘ : W

=
]

and in that way (10) becomes
GW' - (F+Gb+Hc) (k b+k, +k, c)

v’

3
HW (F+Gb+Hc)(k3c+ks+k°b)

v’

which gives the equations
2
+Gb+ +k + =
(F+Gb Hc)(k)b k‘ koC) Gw2 (11)
(F+Gb+Hc)(k3c+k5+k6b) = HW" .

This is a nonlinear equations system with two unknowns: b and c.
However, it can be solved exactly. Dividing the first equation
by the second one yields

G

k_b+k, +k c
T e
k3c+k5+k6b H

From this equation we can express b:

b - k36—k6H .\ ksG—k‘H
= kA kG © k. H-k G °
2 6 2 6
Finally, we denote
b= k3G'k6H b - k5G—k4H (12)
* % H-K G ' * X H-k & '
1 sz kOG 2 k2H kéG
and then, we have
b =bc+b,. (13)
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Substituting (8) and (13) into (11), leads to
- 2
( Gk6b1+szb‘+Hk6-Gk3)c
+(Fk2bl+Fk6~Gk4bl—Gk6b2+Hk2b2+Hk‘—2Gk5)c (14)
+Fk_b_+Fk -Gk -Gk b_ =0
272 4 1 42
From (12) we can easily derive
-Gk6b1+Hk2b1+Hk6-Gk3= 0
and
—Gk6b2+Hk2b2+Hk4-Gk5= o,
which reduces (14) to
(szbi+Fk6-Gk.b1—Gk5)c+Fk2b2+Fk‘-Gk1—Gk‘b2 =0
it means
-szbz-Fk‘+Gk1+Gk‘b2

© = Fk b _+Fk -Gk b —GK ; (15)
2 1 6 4 1 B

When we have this expression for c, the relation (13) gives the
other needed parameter: b. The obtained solution for b and c¢
satisfies the necessary condition for extrema (10). Now, one
should check whether it is really the maximum, which in every
individual practical case can be done rather easily.

Obviously, the angle between the horizontal axis around which
the tilt was made, and the axis B, is given by

a = arctan(-b/c) . (16)
The amount of that tilt » is:

v = b(sina) - c(cosa) , (17)
and is expressed in units which are the ratio of the units which
served for Y, and the units for both coordinates B and L.

We must admit that the derivation was rather complicated.
Therefore, we make now a short recapitulation of the procedure
for practical computations.

For n points T1,T2,...,Tn, whose positions are described by the
coordinate pairs (61,61),(62,52),.._,(6n,£n), we know the values
of two parameters x and ¥, i.e. X%, and yx,yz,...,yn.

We calculate:

- from (2) and (4): X1,Y1 and B1'L1 (i=1,...,n)
- from (6) and (7): F,G,H and k1'kz’ka'k4’k5'k
- from (12) : b1'b2

6
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- from (15) : ¢
- from (13) : b
~ from (16) and (17): a and »

- finally, (5) gives the transformation of the surface Y into
the surface Y', and (8) with (9) offer the required maximal
linear correlation coefficient.

Naturally, the result makes sense only when the starting
assumption 1is fulfilled, it 1is, when the ¢tilt between the
original and the newly obtained surface is small. In that case,
the required maximal linear correlation coefficient r(X,Y') may
be computed as well.

Of course, all considerations in the present section can be done
for the two-dimensional case, i.e. when we in place of surfaces,
investigate relations between curves. That case was included in
(Petrovié et al. 1987), and was dealt with in detail in the
study (Petrovié et al. 1988).

3. AprucaTioN oF OUR METHOD IN THE ABSOLUTE ORIENTATION
oF THE AsTROGEODETIC GEoiD MoDeL FOR YuGOSLAVIA

3.1 Some words about the model FIR86

An absolutely oriented geoid model for the Yugoslav territory
had for the first time been obtained by the 1least squares
fitting of the Muminagié's astrogeodetic original - which had
been computed referring to the eccentric Bessel's reference
ellipsoid (Muminagié 1971) - onto GEM10 (at that time the most
recent and the best among the smooth 1long-wave satellite-
terrestrial models), which was in detail described in (Colié
1978). In the investigation of the linear correlation between
that geoid surface model and the Mohorovi&ié discontinuity, the
Bouguer anomalies, respectively the relief heights (what we have
done using the values in 716 grid points distributed evenly over
the whole territory of Yugoslavia), the resultant absolute
values of the linear correlation coefficient were unexpectedly
low.

Already from the beginning, due to the small area of the
Yugoslav territory, and to the very smooth flow of the used
long-wave geoid model GEM10, there existed some doubt whether
the mentioned geoid model obtained by fitting is really well
absolutely oriented in space. On the other hand - on the
Yugoslav territory - the linear correlation coefficients between
each pair, formed out of Bouguer anomalies, relief heights and
Mohorovi&ié discontinuity depths, had high absolute values. The
idea emerged - to improve the spatial position of that geoid
model in such a way, so that it comes in the position for which
the three 1linear correlation coefficients (in fact, their
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absolute values!) between the geoid and the remaining parameters
assume the largest possible values.

Using the procedure described in this paper, we have already on
an earlier occasion computed the tilt, which should be applied
to the existing geoid model, in order to make the absolute value
of the 1linear «correlation coefficient between it and the
Mohorovi&ié discontinuity maximal. Analogous computations have
been effected also for the relations between it and the Bouguer
anomalies, respectively the relief heights. All the three
obtained results being mutually rather similar, and leading to
an immense increase of the absolute values of the respective
linear correlation coefficients, we took some "mean value" of
the three mentioned tiltings and obtained a new geoid model
"FIR86" for Yugoslavia - which had the same detailed forms as
the original one, but an improved absolute orientation, see
(Colié et al. 1986).

3.2 The improvements made for the geoid model POTS88

Now the need emerged to repeat the practical procedure again.
Namely, we have made considerable essential improvements, which
- to tell the truth - did not change a lot the existing results.

As a starting model, whose spatial position had to be improved,
served again the Muminagié's geoid model, but this time
digitized in a finer grid (10'x15’) and fitted again onto GEM10.

While - when making the model FIR86 - we had used a Mohorovi&ié
discontinuity map for Yugoslavia, which had been produced by the
geophysicists, now we came back to the application of the DSS
profile data, as original measured values.

The fact that we wish to orient absolutely the astrogeodetic
geoid model on the basis of its relations towards three
parameters (the Mohorovi&ié discontinuity, the Bouguer anomalies
and the relief heights), means that we are looking for such a
position in space, in which the absolute values of the three
respective linear correlation coefficients assume the largest
possible values. Of course, they do not assume the maximal
values for the same position of the geoid; therefore the sum of
their squares, respectively the sum of their absolute values,
has to be maximized. In place of taking some mean value of the
three solutions for the absolute orientation (as it was done
when making the model FIR86), we used this time numerical
methods to perform the maximization of the mentioned sums. It
came out that both criteria (the sum of squares and the sum of
absolute values) give almost perfectly the same result. That
resultant new solution POTS88 for the absolutely oriented
astrogeodetic geoid model on the whole Yugoslav territory, is
given in Figure 2. It differs just a little from our former
model FIR86. However, the model POTS88 should be regarded as a
new, improved solution.
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Figure 2. The astrogeodetic geoid model POTS88 for the Yugoslav
territory, absolutely oriented by the "method of
maximal linear correlation coefficients"

4. THE ScoPeE oF THE ApPPLIED METHOD

4.1 Comparison with solutions obtained by the 1least squares
fitting

Our new and unusual manner of making the absolute orientation of
a geoid model (of the astrogeodetic or some other origin) by
bringing it into accordance with the three mentioned physical
parameters, has already seemed unacceptable at first sight to
some people, or at least less acceptable than the old good least
squares fitting. Therefore, such a fitting has been done once
more, this time not onto the old GEM10, but onto the most recent
satellite-terrestrial models O0SU81 (Rapp 1981), GPM2 (Wenzel
1985), 0SU86 (Rapp and Cruz 1986) and IFE87 (Ba¥ié 1988), see
(Colié et al. 1987/1989). The Figure 3 presents the result of
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fitting the Muminagié's original onto the GPM2 (something
similar gives the fitting onto OSU81, respeoctively O0OSU86 or
IFE87).
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Figure 3. Astrogeodetic geoid model for the territory of
Yugoslavia with absolute orientation obtained by
fitting the geoid model according to Muminagié onto
the corresponding part of the new geopotential model
GPM2

In the Figures 2 and 3 one can see a rather good agreement of
the solution obtained by fitting with our solution POTS88. This
is a certain confirmation of the correctness of our approach,
although our solution is probably much better than any solution
obtained by fitting onto existing spherical harmonic geoid
models. Namely, we had also made a 1little investigation what
happens when using the method of least squares for the fitting
of parts of various geoid models. We had established that the
results obtained in that way should be accepted with precaution,
because they may contain some undesirable uncertainties, see
(Colié et al. 1987/1989).

DOI: https://doi.org/10.2312/zipe.1989.102.02



283

4.2 Stability of the method

The next question is whether we would really obtain the same
result, if we - as the intermediary step by the absolute
orientation of the astrogeodetic geoid model, i.e. as a starting
point for the application of our method - in place of the model
obtained by fitting onto GEM10, have used the fitting onto some
other spherical harmonic model. To accomplish also a practical
test of the answer to that question, we chose to start from the
model for Yugoslavia obtained by fitting onto GPM2. In
accordance with the expectations, the resulting reoriented geoid
model was (up to slight numerical differences) identical with
the geoid model POTS88 (Figure 2)! The only real difference was
in level, in the given case it amounted 1.34m. It was, of
course, equal to the level difference between the two models
which served as starting points for the application of our
method. There is nothing curious about that, because, in fact,
the suggested method uses only the mean 1level from those
intermediary solutions. Therefore, by defining that level in
some other way, for instance by aid of GPS measurements, one
could completely leave out the fitting as an intermediary step.
It means that the "method of maximal 1linear correlation
coefficients”" could be applied not only for the correction
(reorientation) of - the solutions preliminary oriented by
fitting, but for the direct absolute orientation of relative
geoid models in space as well.

5. ConcLUSIONS

It is now obvious that even when investigating the simplest
possible relation between two phenomena - the linear relation -
there exist traps which require cautiousness. When we wish to
derive geometrical conclusions regarding the relation between
the forms of two surfaces on the basis of the linear correlation
coefficient, then its usual interpretation, which neglects the

fact that in such a case to every point - besides the two
considered parameters - also a position is assigned, may lead to
erroneous conclusions - in the existing 1literature one can

easily find such examples. 1Instead, one should apply the
procedure described in this study, the procedure which separates
the influence of the relation between the shapes of two
surfaces, from the influence of their mutual position in space.
It is clear without proving that there are no doubt a lot of
examples for the successful application of this procedure, not
only in the field of geodesy or earth sciences in general, but
also in the broad field of technology and elsewhere. Therefore,
we believe that such, until now unusual approach to the solution
of the considered problem, is very important and profitable, not
only from the theoretical, but also from the practical point of
view.

Regarding the possibility of achieving the absolute orientation
of a geoid model, our "method of maximal linear correlation
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coefficients" proved to be independent of the used intermediary
solution (obtained by the 1least squares fitting onto some
spherical harmonic model), from which it takes over only the
corresponding level. Therefore, the method can be applied
directly for the orientation in space of a relative geoid model,
supposing that the absolute 1level is defined in some other
suitable way, for instance by means of GPS measurements.
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METHOD OF COMFACT REFRESENTATION OF THE GEOFOTENTIAL MODELS

M.S. Fetrovskaya, M.V. Belikov, F.V. Fischukhina
The Institute for Theoretical Astronomy of the Academy

of Sciences of the USSR, Leningrad, USSR

Abstract. A method of generalized Chebyshev ecoromization has
b;;;_;;;gorated allowing to contract partial sums of the sphe-
rical harmonic series representing the eixtermal potentials of
gravitating bodies. The method has been approbated with respect
to the zonal parts of the latest Earth’'s potential models, as

well as the expansions of the potentials of some axial symmetric

bodies.

METO KOMNAKTHOCO NFEACTAENEHWA MOAEAER MEONOTEHUMANA
M.C. NeTposckasa, M.B. Eenukos, F.B. MuuyxuHa
Feswme. PaspasoTadH MeToa 0608WeHHOH 4YeduWeBCKOW 3IKOHOMMSAUMM,
n;;;;;;;muﬁ CHHMMATE HACTHEIE CYMMbl PARAOKEHHA BHEWHMX  MOTEeHLKH—
Af0B rPaBMTHPYHWHX TN B pRAbB  COepHYeckHX  OyHkuwWFE. [Mposeaenco
HMCNEHHOE HCCAEAOBAHME 3HREKTHBHGCTH 3TOr0 METOAA B  TFIPHMEHEHKK

K SOHAaNbHbBIM YAaCTHAM COBPEMEHHbIX MOoAeneld reonorTeHuykrana, a Tarkxe

K NoTeHuyranaM npocTeix Ten BPpAaWEeHKSA.

The generally accepted form of reprezentating the Earth’'s
gravitatonal field is the spherical harmonic series. This is
the simpliest presentatiorm, most suitable for both analytical
and numerical applications. The spherical harmonic models of
the geopotential are of interest for a variety of geodetic
purposes, as well as for solving problems of satellite dynamics,
geophysics, oceanography, etc.

The current Earth’‘s models become more and more cumbersome.
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The latest ones contain harmonics up to 360 degree and order
( the models : 0SU 846 E,-0SU 8 F, GFM 2 - E 2 ). In " long "
models the number of terms attains hundreds thousands and in
the nearest future there will be millions of them. The const-
ruction and application of such models entails great practi-
cal difficulties and, besides, the larger are degrees and or-
ders of harmonics, the more significant become the errors of
their determination. From this follows that " economical " geo-
potential models, whose coefficients provide more information
about the geopotential than the conventional ones, are very de-
sirable. More optimal Earth‘s potential models would furnish
higher accuracy approximation for a fixed number of terms or,
on the other hand, they would provide higher precision for a
given " length " of a model. Such optimal approximations
should exist in principal, at 1least theoretically, for the
following reason. As a matter of fact, the conventional models
represent the best mean square approximants, in the space L .
At the same time there exist polynomials of the best unifofm
approximations over the sphere fﬂ ) in Chebyshev metric
Ce /.77 =V/.7 ), for the same basis of spherical functions.
The latter polynomials, by definition, involve 1less uniform
errors as compared to the uniform errors of the best L - app-
roximations. ?

On this ground the method of Chebyshev economization ( CE -
- method } of spherical harmonic approximation for the geopo-
tential was developed ( Petrovskaya, 1986, a, by 1987 ). The
results were presented at the Symposium on Mathematical Geode-

sy ( Petrovskaya and Pischukhina, 1986 ). The method 1is based
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on an alternative expansion for the geopotential whose terms
decrease ( approximately ) Vn times rapidly than the ones of
the conventional spherical harmonic series. Then the partial
sums of the new series are expressed in terms of the spherical
functions. As a consequence, additional numerical factors OCN)
emerge in the harmonic coefficients ( factors of economizat?—
on ) which depend on the highest degree N of the terms in a
model, as well as the degree n of a specific harmonic. The
factors do not depend on the second index of the spherical
function, that is of its order. 1In particular, for a model
of 360 degree the number of factors is 3&0.

The present investigation extends CE - method to a genera-
lized Chebyshev economization procedure ( GCE - method ). The
generalization has been performed in several aspects. The CE -
- version implyed only the Earth’'s case, corresponding to a
certain rule of decreasing the harmonic coefficients: ( empi-
rical Kaula’'s rule ). Now, GCE - procedure 1is applicable to
the potential of any volume body, with arbitrary behaviour of
the coefficients of the series, as well as to various trans-—
formants of the potential. Besides, this method provides the
possibility of strengthening the effect of economizatien, by
means of double or multiple procedures, which 1is simply done
by raising the factors of economization to the corresponding
power. Subsequent ( additional ) economization can be attained
when going from the global approximation ( corresponding to the
whole sphere ) to a local one ( relevant to a part of it ).

As numerical experiments show, the most effective economiza-

tion is attained at the sphere of convergence 2 y Ppassing
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through the singularities nearest to the origin of the referen—
ce set. For the Earth this is the enveloping sphere or, in pra-
ctice, the mean Earth’'s sphere. But it is namely on this sphere
that the convergence of the series is weakest and therefore the
economization is most desirable. The GCE - method can be modi-
fied to provide more optimal approximation for satellites, i.e.
at a specific klevation above the sphere of convergence. This
is supposed to be done in the future.

The GCE - method has been approbated numerically, at the
first stage, with respect to some homogeneous bodies with axial
symmetry : the oblate and prolate ellipsoids, the cone, the cy-
linder and the hemisphere. The closed expression for the poten-
tial, in terms of elementary functions, is known only for the
ellipsoids. In these cases it is possible to evaluate strict-
ly the uniform errors over 2] for the partial sums of the cor-
responding expansion of the potential. As to the other bodies
under consideration, no such expression for the potential is
known. But in each case the analytical expression for the gene-
ral term can be used ( as many terms being taken into account
as necessary ) to evaluate the potential with a given accuracy.
Basing on this, the corresponding uniform errors of the partial
sums of the series can be found ( they have lesser number of
terms than those used for the potential evaluation ). For all
the simple bodies, the real efficiency of GCE - method has been
established : either economization of terms is attained for a
fixed accuracy, or the accuracy is increased for a given number
of terms.

As far as the Earth’s gravitational potential 1is concerned,
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neither closed expression for the potential, nor analytical re-—
presentation of the general term of the series is known. Instead
only approximate numerical values of the harmonic coefficients
are available, derived from the observational data. Taking it
into account, a special test of efficiency of the economization
procedure is introduced ( for similar cases ) which implies the
comparison of the rate of inner convergence for both the initial
and new series. Practically, the inner convergence test is based
on comparing the maximum absolute values ( over a chosen domain
of approximation ) of differences between the partial sums rele-
vant to each series. The sums are taken at a certain interval
\

( e.g. 5,10 or 20 terms ) ané the above differences between them
are treated as the " errors " of approximation at such kind of
test. These " inner convergence errors " were compared with the
strict uniform errors mentioned above, for all simple bodies
under consideration. As a result, the similarity of both kinds
of testing the economization procedure was established. This
conclusion allowed to utilize the described inner convergence
test for the numerical approbation of GCE - method with respect
to the zonal parts of the geopotential models.

In the process of testing the GCE - method, in the case of
simple bodies, it turns out that the effect of economization
does not exist in the vicinity of the singularities of their
potentials ( at the equator or at the axis of symmetry ). Eli-
mination of these regions results in a rather strong effect of
economization over the remaining domain, which 1is conveyed
either in reducing the number of terms or in deminishing the

error of approximation. More stronger effect is attained, in
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some cases, by double or multiple economization. It has been
also established that the lesser is the domain of approximation,
the more stronger becomes the effect of economization.

On Fig. 1 the results of testing the GCE - method are presen-—
ted for the case of an oblate ellipsoid at the sphere of conver-
gence passing through its focuses.

Similar numerical experiments were carried out for the =zonal
parts of the latest " long " models of the geopotential :
0osyU 81 ( Rapp, 1981 ), 0OSU 86 F ( Rapp and Cruz, 986 ),
GPM ( Wenzel, 1985 ), GEM 10 C ( Lerch et al., 1981 ). These
models contain harmonics up to 180, 360, 200 and 180 degrees
and orders, respectively. Absolute errors of approximation ( by
inner convergence criterion ) were calculated for the latitudes
G/20@<T/2 , with the interval of 19. For all the mod=ls the
effect of economization has been revealed and common characte—
ristics have been discovered. It is essential to note that,
contrary to the above simple bodies, the effect of economization
takes place over the whole Earth’s mean sphere. This i? due to
the fact that for the simple bodies the largest absolute errors
of approximation occur just at the singularities. As to the
Earth, at the latitudes where no economization effect appears,
the corresponding absolute errors of approximation are not es-—
sential, as compared to the other parts of the sphere, and,
therefore, they do not influence the maximal errors of approxi-—
mation. Thus the geopotential singularities do not " spoil "
the approximation of both the Earth’s potential and its first
derivatives ( no numerical experiments were performed vyet for

the second order derivatives ), and the GCE - procedure can be
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used not only for conducting the economization but also for
detecting the locations of the geopontial sinqularities, by
revealing the places of poor economization effect. It appears
that one of such regions corresponds to the latitude of Tibet.

On Fig. 2 and 3 the results relevant to the model 0SU &4 F
( as the " longest " one ) are presented. It is of interest to
note, as can be clearly seen from the pictures, that the worse
are the analytical characteristics of a transformant of the po-
tential ( up to derivatives of certain order ), the stronger is
the economization effect.

The underlying table demonstrates the results of application
of the GCE - method to the potential expansion of an oblate el-
lipsoid, as well as the geopotential model GFM 2. In both cases
the number of terms is N=200. The effect of multiple and 1local
economizations are explicitely demonstrated. For the Earth, the
local economization was accomplished in a region free of conti-
nents ( between Africa and Antarctica ).

The authors intend to proceed with numerical experiments for
the geopotential models, taking also into consideration the

tesseral parts ( if the total models are available ).
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Results of the NAVGRAV-project, a gravimetric experiment on
the North Sea *)

G.L. Strang van Heee, Technological Univereity, Delft,
The Netherlands

Abstract

The NAVGRAV-project, a combined NAVigation and GRAVimetric
experiment, was carried out euccesefully in the period
April 23 - May 13, 1986. The objectivee of the project were:

- to establish the perspectivee of the Global Positioning
System (GPS) for positioning at sea:

- to investigate the quality of terrestrial navigation
systems in the North Sea region;

- to establish the achievable resolution and (internal and
external) accuracy of the gravity field characterietice,
derived from sea gravimetry, in comparison with reeults
obtained from satellite altimetry.

A dense grid of gravity survey linee are measured. On board the
ship two gravimetere were installed, the Bodensee GSS-30 eyetem
of the Geophyeical Institute of the Univereity of Hamburg and
the KSS-5 gravimeter of the Technological Univereity Delft,

The Netherlande. The two gravimetere could be cempared to
determine the internal precision of the gravity metere. On the
cross points of the network the external accuracy ie determined.
The results are also compared with previoue gravity meaeuremente
in the eame area.

+) Will be publiehed completely by The Netherlande’' Geodetic
Commiseion
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FUTURE SATELLITE SYSTEMS FOR EARTH SCIENCES

Ivan I. Mueller
Dept. of Geodetic Science and Surveying, Ohio State University
Columbus, Ohio 43210-1247 USA

ABSTRACT

As the Chairman of the Space Science Board of the U.S. National Academy of Sciences,
T.M. Donahue, described in detail in an article published in Physics Today (May 1988), the space
research programs of the USSR, Western Europe and Japan are flourishing. Their scientists are
busy analyzing the results of recent successes in solar system exploration and in astrophysics.
They are also busy constructing new projects, some of which are joint international ventures.
International cooperation is the mode of operation in Western Europe and the USSR.

In contrast, the American space research program, due to the inability to launch spacecraft
built during the past five years, is restricted to several productive orbiting remnants of the once
prominent space program. It is also keeping a rich collection of scientific spacecraft in storage and
continues to build more, most of them sophisticated and complex. Elaborate plans are also being
developed projecting the future of space research for the next 30 years or more. If these spacecraft
get launched successfully, the US will be restored to parity, and more,with the rest of the world.

One can thus anticipate a time of incomparable richness in the space sciences, which,
ironically, will be due partly to the collapse of the U.S. launch system that took place.

In these exhilarating times it is a sobering thought for earth scientists that much of this
“golden age” technology will belong to astronomers and astrophysicists. In fact, the only major
Earth-oriented program appears to be the joint NASA/ESA/Japan Earth Observation System (EOS).
The paper analyzes what this program may do for geodesy and geodynamics and suggests some
ways and means of how earth scientists could play a more aggressive future role in “selling” Earth-
oriented space research programs.
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A POSSIBLE APPLICATION OF THE SPACE VLBI OBSERVATIONS
FOR ESTABLISHMENT OF A NEW CONNECTION OF REFERENCE FRAMES

Jézsef Adém
Institute of Geodesy, Cartography and Remote Sensing;
Satellite Geodetic Observatory
H-1373 Budapest, Pf. 546.
Hungary

SUMMARY: Three dedicated space VLBI projects are currently in
preparation to launch one or more VLBI radio telescopes in orbits
between 1992-1996. One in the Soviet Union called RAOIOASTRON
which is already an approved mission. The second one is a Western
European mission called QUASAT with potential international par-
ticipation. A consortium in Japan is studying an orbiting VLBI
mission called VSOP. Therefore, it is to be expected that space
VLBI will be a reality in the next decade. However, the main
goals of all three current space VLBI projects are astrophysical
purposes.

In this paper it will be pointed out that a space VLBI system
offers a good opportunity to connect two types of Conventional
Inertial System (CIS): a direct tie between reference frames of
the so-called Radio Source-CIS and Dynamic (Satellite Orbit)-CIS
inherent in the space VLBI system can be established. On the

basis of the ground-based VLBI network coordinates adopted in the
Conventional Terrestrial System (CTS), and related to the mass
center of the Earth by the space VLBI system itself, the rela-
tionship between frames of the CTS and the two above-mentioned
CIS can also be established. Therefore, a space VLBI system may
make a considerable contribution to geodynamics as well.

A fundamental element of the space VLBI observation geometry is
illustrated. Some characteristics of the space VLBI network with
respect to the different types of satellite geodetic networks
will be emphasized from the viewpoint of theoretical geodesy.

Some problems involved in space VLBI network design are discussed.
Results from a preliminary estimability (rank defect) analysis

of simultaneous space VLBI observations are also reviewed.

¥ submitted for publication in Proceedings of the International Summer
School of Theoretical Geodesy on "Theory of Satellite Geodesy and
Gravity Field Determination", Assisi, Italy, May 23 - June 3, 1988
(print by Springer-Verlag).
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Aktuelle Probleme des Prézisionsnivellements
Actual Problems of the Precise Levelling

o
Feo Deumlich

Zysammenfassung

Fortschritte bei der wirtschaftlichen Hohenbestimmung ergaben
sich durch die operative satellitengestitzte Ortung sowie das
trigonometrische Nivellement. Ihre Genauigkeit steht aber
gegenwartig derjenigen des geometrischen Pr&azisionsnivellements
nach. Daher ist dessen Weiterentwicklung eine aktuelle Aufgabe.
An Hand der Arbeitsgange werden die Méglichkeiten und Gegeben=
heiten der Automatisierung des Pr&izisionsnivellements sowie

der weitgehenden Elimination der Einflisse der Hauptfehler=-
quellen diskutierte

Summary

A progress in the economical determination of heights is
obtained by measuring with the operative positioning with
satellites (like GPS) and the trigonometric levelling. Today
there isn't obtained the accuracy of the geometric precise
levelling. Consequently it is an actual problem to continue
the development of the geometric precise levellinge.

By means of the phases of the levelling the possibilities and
the situation of the automation of the precise levels and the
far extending elimination of the main sources of errors are
discussed.

E 4

Profe Dre sce techne Dre he ce Fo Deumlich
Technische Universitit Dresden
Sektion Geodisie und Kartographie
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Bei der Bestimmung der Lage von Punkten wurden in den letzten
Jahrzehnten erhebliche Fortschritte erzielte. Unter dem EinfluB
der Entwicklung der Mikroelektronik wurden Funktionen der
Strecken= und WinkelmeBinstrumente automatisiert, Die Entwick=
lung in der Satellitengeodisie fihrte mit der operativen
satellitengestitzten Ortung zum Eindringen neuer Wirkprinzipien
und einer betrachtlichen Steigerung der Arbeitsproduktivitéate
Die Epoche der klassischen Geodidsie mit der Triangulation wurde
damit beendet.

Wiahrend aber die Genauigkeit der Lagebestimmung bei der opera=-
tiven satellitengestitzten Ortung derjenigen mit terrestrischen
Verfahren gleicht oder sogar besser ist, wurde bei der satelli=
tengeodatischen Hohenbestimmung bisher noch nicht die Genauige
keit des geometrischen Prézisionsnivellements erreicht. Die
Genauigkeit ellipsoidischer Hohen in einem GPS=Zug wird mit

2 cm/10 km angegeben.

Die trigonometrische Hohenbestimmung erlangte in Verbindung mit
der Erhdhung ihrer Wirtschaftlichkeit und Automatisierung mit
durchgéngigem DatenfluB durch das motorisierte trigonometrische
Nivellement mit Hilfe elektronischer Tachymeter gréBere Bedeu=
tunge. Die Probleme der Refraktion lassen aber bisher eine dem
geometrischen Prazisionsnivellement Zhnliche Genauigkeit nur
mit sehr groBem, in der Praxis kaum vertretbarem Aufwand errei=
chen. Es bleibt abzuwarten, ob weitere gegenwartige Versuche,
die Genauigkeit des geometrischen Prizisionsnivellements zu
erreichen, in nichster Zeit zum Erfolg fihren.

So bleibt die Weiterentwicklung des geometrischen Prazisions=
nivellements mit einer Genauigkeit besser als % 0,5 mm/km eine
aktuelle Aufgabe.

Wahrend Instrumente zur Strecken= und Winkelmessung weitgehend
automatisiert wurden, weisen Nivelliere in dieser Hinsicht nur
geringe Ansitze auf. Die Realisierung der Mdglichkeiten ihrer
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Automatisierung seien an Hand der bekannten Darstellung der
einzelnen Arbeitsgange beim Nivellement (Bild 1) untersucht /%,57.

Bild {1 Ungeféhrer
Zeitanteil in %

1 Transport des Instrumentes und der
Latten von Punkt zu Punkt 50

2 Aufstellen des Stativs, Grobhorizon=

tieren der Ziellinie 13
3 Anzielen der Nivellierlatte 12
4 Feinhorizontieren der Ziellinie 13
5 Ablesen an der Nivellierlatte 12
6 Protokollieren (gleichzeitig mit 5

durch besondere Person)

Der 1. Arbeitsgang mit dem groBten Zeitaufwand ist kaum automa=
tisierbare. Eine bedeutende Steigerung der Wirtschaftlichkeit ergab
sich durch den in der DDR unter Leitung von Peschel /16/ ent=
wickelten beschleunigten Instrumenten= und Lattentransport mit
Hilfe von Kraftfahrzeugen ("motorisiertes Prizisionsnivellement")
unter Verwendung des dafir besonders geeigneten Prizisionskompen=
satornivelliers NI 002 A des VEB Carl Zeiss JENA und einigen
konstruktiven MaBnahmen zum schnellen Aufstellen von Instrument
und Latten sowie zum Einstellen der Zielweitee
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Inzwischen wurden damit in der DNR 15 000 km Wiederholungs-
nivellement gemessen und mittlere km-Fehler von + 0,9 mm
erhalten /9 /. Der Anteil lebendiger Arbeit wurde um 1/3 ver-
mindert, der MeRprozeB um 100 9% beschleunigt,

Beim Grobhorizontieren (2, Arbeitsgang) fiihren Kugelkofif=-
stative und dhnliche zu Zeiteinsparungen, Sie werden auch
beim "motorisierten“’Prézisionsnivellement" verwendet /167,
Andere Lésungen sind nicht bekannt und kaum denkbar,

Das Anzielen der Latte (3, Arbeitsgang) wird z, B, mit Ro=-
tationslasernivellieren automatisiert, Diese Mdglichkeit
wurde von Schlemmer (14] und Wialler [15] in Verbindung mit
einer fotoelektrischen Nivellierlatte genutzt, Auf diese Wei-
se konnten die Arbeitsgadnge 3,5 und 6 (auRerdem auch 4) auto-
matisiert werden, Willmer erreichte + 1,5 mm/km, Beide sehen
Moglichkeiten zur Verwendung der Prinzipien beim Prézisions-
nivellement, doch bedarf diese noch einiger Anstrengungen,

Das Fpinhorizontieren der Ziellinie (4, Arbeitsgang) wurde
mit den Kompensatornivellieren automatisiert, Zwar gibt es
und gab es von einigen Fachleuten Bedenken gegen die Verwen-
dung von Kompensatornivellieren beim Prézisionsnivellement

im Hinblick auf den Einflul systematischer Fehler, doch werden
andererseits gute Ergebnisse z, B, mit dem NI 002 A des VEB
Carl Zeiss JENA erhalten, Die vor einigen Jahren diskutier-
ten magnetischen Einfliisse auf Kompensatoren spielen bei die-
sem Nivellier. keine Rolle,~ Noack /127 stellte fest, daB Ein-
flisse elektrischer und magnetischer Felder auf Kompensator-
nivelliere wesentlich geringer als die der Refraktion sind,

Gegenwdrtig sind zahlreiche Versuche zur Automatisierung des
Ablesens an der Niveliierlatte und des Registrierens dieser
Ablesung (Arbeitsgédnge 5, 6) zu bemerken, Gegeniliber der auto-
matischen:Ablesung bzw, Abtastung in elektronischen Theodo-
liten und Tachymetern besteht der Unterschied, daB Sender und
Empfanger um die Zielweite, d, h, bis 50 m, voneinander ent-
fernt sind, somit sich auch der BildmaBstab &ndert,
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Eine L&sung gaben Caspary, Heister und Kurz /27 mit einer
fernbedienten Latte an, die den MeRBwert automatisch abliest
und weiterverarbeitet, Uber eine industrielle Verwertung ist
nichts bekannt, - Die L&sung von Schlemmer /147 mit einem
Rotationslasernivellier und einer digitalen Latte, die Foto-
empféanger (in einer senkrechten Reihe angeordnet und abschnitts-
weise zu einer Matrix geschaltet) und Auswerteeinheit enthédlt,
mit technischer Genauigkeit wurde bereits erwdhnt,

Der Vorschlag fir ein Prédzisionsnivellier wurde noch nicht
erprobt,

Erwdhnt wurde auch die Entwicklung einer fotoeleletrischen
Latte (mit Differentialfotodiode, die mit einer Prézisions-
spindel rertikal verschoben wird) von Willer /157, Auch seine
Vorschlédge fir Préazisionsnivelliere wurden noch nicht erprobt,
Interessant ist die von ihm angegebene Korrektion wegen Re-
fraktion aus Laufzeitmessungen von Ultraschallimpulsen,

Auf dem Markt befindet sich seit 1887 das registrierende
Prazisionskompemsatornivellier RENI OO2A des VEB Carl Zeiss
JENA mit teilautomatisierter MeBwerterfassung und gerdte=
internen DatenfluB, -berechnung und -speicherung /8/., An der
Latte ist nur noch (bzw, : noch) der Grobwert, Mit diesem
Instrument wird die Wirtschaftlichkeit, vor allem beim "moto~

risierten Prédzisionsnivellement" weiter erhdéht,

Zur Bedeutung des Refraktionseinflusses gibt es unterschied-
liche Meinungen, LieBe sich die automatische Beriicksichtigung
erméglichen, ware da sicher von Vorteil, Grundlagen hierfir
wurden in jlingster Zeit in den Dissertationen von Bgcek /17
liber computergestiitzte Refraktionsuntersuchungen und von
Moroz /117 geliefert, Moroz ermittelte den Refraktionsein-
fluB allein aus dem Bildflimmern (an Hand des Zusammenhanges
zwischen der Amplitude des Bildflimmern und dem Temperatur-
gradienten), so daB meteorologische MeBwerte nicht.zu erfas~
sen sind und der Zeitraum der Messung erweitert werden kann,

Thde und Steinberg /97 stellten als erheblich gréReren Ein-
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fluB als die Refraktion den des Einsinkens der Lattenunter-
sdtze (bis 0,5 mm/km!) fest, Durch Lattenuntersdtze mit ge-
eigneten FuBformen und Verwenden eines speziellen MeBsystems
kénnen nach Ihde, Steinberg und Wunderlich /107 derartige
Fehlereinfliisse weitgehend eliminiert werden,

Als hauptsédchliche Fehlerquellen der Nivelierlatte erwiesen
sich MaBstabsfehler wegen ihres systematischen Chrakters

(bis 30,10-6)7Teilungsfeh1er sind nach Elmiger /67 praktisch
vernachlédssigbar, da sie im Bereich der zufédlligen MeBfehler
liegen, Die Bestimmung der Verbesserungen aller Teilstriche

- wie sie heute mit modernen Kompensatoren mit einem Laser-
interferometer als Léngennormal praktiziert wird /7, 137 -
und ihre Beriicksichtigung bheim Auswerten von Prézisionsnivel-
lements ist ohnehin kaum vertretbar, Interferometrisch geteil-
te Latten /137 erwiesen sich zum andernen von hervorragender
Qualitdt, sowohl hinsichtlich der Teilungsfehlwr als auch der
Randschéarfe der Striche,

ZweckméBig erscheint auch die Verwendung eines anderen Werk-
stoffes als Teilungstrédger mit einem gegeniiber Invar (1 bis
2 x 1076
Kohlenstoff, Auch dann bleibt die automatische Bestimmung und

/K) niedrigerem L&ngenausdehungskoeffizienten, z, B,

Berlicksichtigung der Lattentemperatur ein noch zu l&sendes
Problem,

Insgesamt ist festzustellen, daR® weitere Fortschritte bei der
Automatisie ung des geometsichen Prdzisionsnivellements zu
verzeichnen und zu erwarten sind,
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GEOMETRIC METHOP TO DETERMINE GEOCENTRIC COORDINATES OF THE
GROUND STATIONS ON THE REFERENCE FRAME OF
A VLBI COMPLEX

V.S, Gubanov, E,V, Brumberg and N,I, Solina

Institute of Applied Astronomy
USSR Academy of Sciences
197042 Leningrad, USSR

ABSTRACT, The paper deals with the problem of determining geo-
centric coordinates of the ground stations in vicinity of a
VIBI complex by using VIBI observations of the navigation
satellites NAVSTAR GPS. It is shown that the problem has a
reliable solution providing the clock of the station in
question are sufficiently accurate synchronized with the time
scale of the VIBI complex. The accuracy estimates and the

correlation matrices for the station coordinates are given,

At present, the most widespread technique of determine the
ground station coordinates is the dynamical method of satellite
geodesy realized on the USA global navigation systems TRANSIT
and GPS, In this method the ground station coordinates are
determined by user from Doppler observations of navigation
satellites in the referenoe system specified by the forecasting

elements of satellite orbits and the board soales of frequenoy
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(TRANSIT) and time (GPS) standards, In turn, these standards
should be permanently improved using observations of these
satellites made by the special global set of the reference
stations with the known (adopted) coordinates in the Inter=-
national terrestrial system of 1984, The coordinates of these
reference stations have been determined and are still in progress
of improving on the basis of Doppler observations of the same
navigation satellites with addition of laser observations of
LAGEOS and VLBI observations.
From this it follows that the reference frame inherent to the
dynamical method of satellite geodesy and fixed with respect to
the Earth body by the locations of the reference stations is
transmitted to the determined station not directly but by means
of the intermediate system of the forecasting positions of the
navigation satellites. The transmission is performed by Doppler
measurements being at present not the most accurate ones, Among
the radiotechnical tools of navigation satellite observations
the maximal precision is gained by the VIBI technique enabling
to measure at the radiointerferometric station the relative
delay of the noise broadband signal from the board of NAVSTAR
GPS satellite with the precision of 0.1 ns (Umarbaeva, N.D.,
Fridman, P.A.: 1984). There:fore , the question is wether it
is possible to transmit the Earth fixed reference frame to the
determined station in a direct manner avoi ding the intermediate
system of' satellite epheremis and using the VLBI technique as
the most accurate observation method. The aim of the present
paper is to show that the problem may be reliably solved by
means of the synchronization of the determined station clock

with the time scale of the VIBI complex,
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let X;, Y;, Z;be the coordinates of the reference stations
AL(XL,}E » 20 ) (=1, 2, ¢eey, n) of a VIBI complex, This complex
may represent a regional or global set stations performing VIBI
observaticns of navigation satellites NAVSTAR of the USA gldbal
navigation system GPS, Let us assume that these observations as
well as any others (laser ranging of LAGEOS, Doppler observations
of TRANSIT or NAVSTAR, etc,) enabled by means of the dynamical
method of satellite geodesy to determine the geocentric coordi-
nates of all stations of the complex with sufficient accuracy.
Assume also that the time sceles of these stations are synchro=
nized at the level of the maximal attainable accuracy of VIBI
observations, i,e, within the error of $0.1 ns. Such synchroni-
zation may be achieved by VIBI observations of the extragalactic
radiosources at the stations of the complex A (Counselman III,
CeCe, Shapiro, I.I., Rodgers A,E.E.: 1977) or by the autonomous
synchronization technique with the use of the satellite communi-
cation channels (Imal, M,, Okazawa, H.,, Sato, T, et al.: 1983,
Gubanov, V.S.,, Kaidanovsky, M,N,, Umarbaeva, N,D,, Zimovsky, V.F.:
1988, Saburi, Y.: 1976). The problem is to determine the geo-
centric coordinates X,, Y,, Z, of an arbitrary station A, in the
vicinity of the complex A, using VIBI observations of the
navigation satellites NAVSTAR., The coordinates of the satellites
are considered as unknown quantities,

Admitting, as stated above,gX;=0Y;=4Z;=0 (i=1,2,...,n) it is

easy to show (see Fig,1) that the VLBI measurable limear delay
L;=0R-aRi=4 fi=caT{ at the base AoA; for the moment tj (j=1,2,4s.,0)
of observation of k-satellite SK(XK, Yo ZK) has the form

(omitting, for brevity, index J):
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o&j = -y, 8 X, AJ&, ~Q3,42, *'64£215t/< *"li"yk"gat'lli‘k*(1)
tap+ A‘?t

AP, AQ being parameters of synchronization of clock of the station
A, with the time scale of the VIBI complex

L % “2a=‘zk'——ie; - a.30=___\k‘i_';_
° Ro
Ty -2, ~ U o
g = %0~ ZL_ £ /52£=“eo“‘%‘h A3i= A30- 82{8: (2)
2

VIBI observations of the specific satellite at the station A,, A
being synchronized it is possible with the total number of the
complex stations n =4 to exclude from Egs. (1) related to one and
the same moment tJ' all theres satellite coordinatessX,,4Y,, 4 Zk.
This results in n-3 equations with 5 unknown paraemeters of the

type
Ap=Cyp 420 *Cpy Ao +Spzd3e W{w"/’ * 024;

ve=d2,..(n-3) (3)

Coefficients of the right-hand members of Egs. (3) and their free
terms are expressed in terms of the coefficients (2) of Egs. (1)
and their free terms li directly in alternate eliminating cor-
rections 4 X ,AYk,41ZL. There expressions are not listed here for
-brevity.
Introducing instead of the cartesian coordinates of the station
A, the spherical ones and splitting out the vector of unknown
corrections into two parts
u=C4%,8%%, 8 A%), 1r=(zl/v,47)
) (4)
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Egs. (3) may be represented in the matrix form (Jk-CJ;kM{r)ﬂv’f{ﬂ
with the weight matrix P}L 4), ;]=1,2,...mkis the index of the
moment of observations, k=1,2,...,N i8 the number of the observed
satellite, fﬂ—is the vector of the random errors of observations,
Combining Egs. (4) for all possible j and k one gets the system

of equations in the block matrix form as follows

L£=CUs+Dvie & , with the weight matrix P, (5)

l" ([j‘),éa[gz‘k) ,’ and C=CC.7[L‘JIZ= [Djﬂ]/ ,{)= Lgkj

being the block vectors and matrices respectively.

The system of equations (5) may be solved by the classical least
squares method or by the generalized parametric method (Klenitzkij,
B,M.: 1982) provided that the ad hoc covariation inatrices of the
required parameters Qi and Qg are known.

The results of numeriocal simulation of the descrilibed observation
procedure and the estimates of errors of parameters determined by
the least squares technique are listed below. As the model of the
VIBI complex the following set of stations Aj( "H', ?\,;‘) were
adopted: A,=A,(60°, 30°)-Leningrad, A,=A(50°, 30°)-Kiev,

Ay=A, (44°, 42°)-North Cavcasus, A,=A,(56°,44°)-Gorky, Ag=As(38°,
58°)-Amhkhabad, A =A,(52°,103°)-Irkutsk, The observed satellites
were simulated by 18 NAVSTAR satellites with orbital height
20200 km, excentricity e=0, argument of the perigeey=0, orbital
inclination to the equatorial plane 1=55°, The longitudes of the
ascending nodeQ. and the mean anomalies for the epoch O‘\'GS‘I‘ for
all satellites are tabulated in Table 1,
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Table 1, Orbital elements of NAVSTAR satellites

1 0240 4 60 280 7 1z0 200 10 180 240 13 240 280 16 300 200
2 0 0 5 60 40 B 120 320 44 180 O 14 240 48 47 308 320

3 0120 6 60 160 9 120 80 12 160 120 15 240 160 18 3@0 88

The observation program has been constructed in the following
waye. For all NAVSTAR satellites one found the Greenwich time
intervals 4 Sk for which the satellite Nok could be seen from
ell stations Ap; A (i=1,2,...,n), Then all the intervalsa §,
for all satellites were added yielding the mean observation

interval for each satellite

'\/ 7
AT’:ZA'S%,S’ (6)

k=A

2S being the actual interval between two consecutive observations
(0S=15 min, was adopted in calculations). Therefore, the diurnal
cycle of observations results in 1440/aS=96 groups of equations
of the type (3)., With n=6 system (5) consists of 96(n-3)=288
equations with 5 unknowns, The quantity aT calculated by (6) may
slightly change herewith in dependence of the A, location with
respect to the stations of the complex A ,

The diurnal cycle of observations started with Oh GPS, For this
moment as well as for all succeeding moments of time separated
by the interval AS one has calculated the coordinates of the
stations A; in the non=-rotating system X,Y,2 the coordinates of
all satellites on the basis of theilr orbital elements and the
coordinates of the mobile station A,(X,, ¥Y,, Z,). The latitude

and the longitude of this station serve as the free parameters
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of simulation. These data enabled to compute the coefficients of
Egs. (1) and then the coefficients of Egs.(3) after eliinating
the coordinates of satellites. The system of Egs (5) has been
accumulated for all moments of observation of the specific
satellite with the interval sT along the position of its orbit
simultaneously visible from all stations Ap, A;. Thiswas done
for all 18 satellites NAVSTAR intersecting the common domain of
visibility during 24 hours. The solution of this system was
simulated in two versions, namely, for all unknown parameters
or without synchronization parameters, The latter version corres=-

ponds to the reduced form
L=Cu+& (7

The error of the single measurement of the linear delayag y.1ees
the error of the free terms of all Egs. (1), was admitted to be
the same and equalfg =C35’=t3 ame
The errors of the free terms of Egs. (5) were computed together
with their coefficients in eliminating the satellite coordinates.
The data obtained by numerical simulation enable to draw the
following conclusions:

1. Version 1, The problem to determine all the unknowns for
the system (5) does not admit a reliable solution due to the

occurence of strong correlations (see Table 2).

Table 2. Correlations for the unknowns of the system (3)
for =05, Az60".

Correlations 0.9 0.4 0.9 ©0.4 9.1 1.0 0.0 0.2 -0.2 -0.2
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The correlations indicated in Table 2 are very stable being
only slightly dependent on the coordinates of the station A .
That is why they are listed only for f =45°,Ao =60°, As will be
seen from the version 2 the strong correlation between 42; and
Aﬁ’Za is indyced by the actual correlations between 4P enda?,
ordﬁ%.

2, Version 2, The problem to determine all three geocentric
coordinates of the mobile stelion A, may be solved quite reliably
for the large domain in the vicinity of the qomplex provided
that the A clock are synchronized with the time scale of the
VIBI complex A within the accepted acsuracy é;=0.1 ns. The cor=
relation matrices and the estimates of the errors of the coor=-
dinates of the station Ao(ro,$2 ,Ao) are represented in Tables 3
and 4,

In conclusion,let us note once more that the: problem of high
precision and operational determination of the geocentrio coor=-
dinates of any point in the large vicinity of the VIBI complex
is of great scientific and practical importance. These coordinates
should be directly refered to the stable reference frame speci-
fied by the coordinates of.the stations of the VIBI complex and
its atomic time scale, The solution of the stated problem
depends on our ablility to find a sufficiently precise, simple
and operational way of independent c¢lock comparison. Speaking
otherwise, in VIBI measurement procedure the reference frame

of the VIBI compleX may be directly extended by geometric

method to cover the surrounding domein with the maximal precision
only if it is possible to extend into this domain the atomic

time scale of this complex with the same accuracy as well,
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Table 3. Correlations for the unknowns of the system (7).

AAo %o

° & A\
0} P\ PSR Y
° N ° o ¥ 28 o 7%% €
00 &2 <~ N 98 o&.° )
¥ . (3K QAL 8 8
Q .w/o A-V/.A A.d | [ - 1 1 1 i
?-M Qi uﬂ/" 0/_ ao_éd -y ¥ ' ~u_ ~u | %
R R R A P I I B L I
H ' \ ~ 1 © 0 °
//70._ vo%/“W»wUJZZoV:mnwb d = : HNE G R I
Q PN I} [ 1 1
SRS b IR R IR EHER RS
00&. ! ! ! ! - ' ] | t
wn ] [
1 ! ' 1 I >~ I ° 1 “ “
1‘..1.“24“0"320“520"255“ w ! Mw “241_654"414
1 "__ ] 1 U0 ! M v < "113“113"223
) t 1 H 1 - 1
NeC idua I Mee mMed I mae | o m c...w "972m233"675
5% . e . 555 505 A% 5 IR
L] .“‘ "_ “— _“._ " o " - 1 OO | v N
L) 1 1
1 1 1 1 1 v i ] 1
411“201“310“401“401_ W‘ “ ow “564_383"106
T Vi e Lo v ) o O d I o i v o
I 1 1
) 1 1 ! 3
SO0 [vmdinNed Iaud o < i o%u. | N i mMmo i Lwo
e . e e @ 4 o | e + afi e - o | i I o .. . . .- .
LI ) v [ ) vy - “ - _.QGBHOOUWQB@
‘ 1 1
| ) | ' = [
0O D 1“0“210_201"200w - " *s _113“132“‘112
50D aE i =Y £ - . -1 . e
1 bt 1 R I 5 ! ~ “000_@00“000
1 1
| 1 1 1 -~ i [
coe J@Q.“?_@@“_b.b.ﬂ"-oinu_ . I am.w "225m215_223
) Lot [ v ! I ! “.900_00.0"0.00.
. 1 1
1 1 ] 1 - 1 I ]
ceo vl e 1mes | WeS ) - ! o“ "225“235m223
! “_ “. h— “ © " “000“000"000
1 ] ) 1 — ] ° 1 t
B.a.-ﬂ JQU.HZODMSQQH.JQAA" % ._ W “113“112m14¢1
] _~ P il ] Mx i loee Ivee oo
) 1 1 1 i 1
oo .100“200“21.0_.31.0" s i o%— “225“225“446
1 [ ) ] t Q i o Do oo
] ] ] 1 = 1 ! ] |
1 ] H 1 1 I 1 !
1.@.0. 2.20“21.0"3.11."321n = “ o@ “553“772“095
t 1] “_ ___ _". _" - “ “004"001_101
1 ! 1 1 1 ] 1 1
° o [N [ ! Ly ! 2 | (B (R Y ! -
n n | 3] ! \n 1 n | m i 1 n | .2} 1 wn
~o Cd ' - i d ' ~ 1 (= 1 | ~o | w7 | <

DOI: https://doi.org/10.2312/zipe.1989.102.02



318
REFERNCES:

Gubanov, V,S., Kaidanowsky, M.N,, Umarbaeva, N.D,, Zimovsky, V.F.:
1988, Preprint of Special Astroph. Obs., of USSR Ac. Sci,,
No.57L, pe 1=-17 (in Russian).

Imael, M,, Okazawa, H,, Sato, T, et al.: 1983, IEEE Trans,
Instrum, Meas.,, IM-32, No.1, p. 199-203

Counselman III, C.C,, Shapiro, I.I., Rogers, A.E.E.: 1977,
Proc. IEEE, 65. N11, p. 1622-1623

Klenitzkij, B.M,: 1982, Sci.Inf., Astron., Coun, of USSR Acad,
Sci., N55, p.98-126 (in Russian).

Umarbeeva, N,D.,, Fridman, P.A.: 1984, Obs, of Art, Sat., Astron.
Coun, of USSR Acad, Sci., No.21, pte.2, p 661-668 (in Russian).

Saburi, Y.: 1976, J. Radio Research Laboratories, 23, No. 112,
Pe 255-265.

DOI: https://doi.org/10.2312/zipe.1989.102.02



318a

#
7

Pig. 1. Geometrical diagram of VLBI observations of Earth
satellites

OXYZ is the non-rotating equatorial coordinate system

Sk(Xy, Ye, Zy) are the satellite positions for the moment t}.

A (X, Y, Z;) are the ground stations of the VIBI complex.

AO(XO, Y,, Zo) is the mobile station supplied with the
VIBI apparatuses for navigation satellite
observations,.
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ERS-1 AND THE PRARE-SYSTEM

Christoph Reigber, Wolfgang Lechner, Herbert Wilmes

Deutsches Geodétisches Forschungsinstitut, (DGFI), Abt. I,
Miinchen, Federal Republic of Germany

ABSTRACT: In mid 1990, ERS-1, the first ESA Remote Sensing Satellite will be launched
with an expected lifetime of two to three years. One of the payloads is the Precise Range and
Range Rate Equipment PRARE, a spaceborne two-way two-frequency microwave tracking
system. The paper describes the scientific objectives as well as the technical features of the
PRARE system components and presents an actual survey of the project.

1. Introduction to ERS-1 Mission

In 1990 the European Space Agency ESA will launch the first European Remote Sensing Sa-
tellite ERS-1 from the Kourou site. The Spacecraft sensors will primarily support ocean and
sea-ice investigations and as a secondary goal also land applications. The core payload con-

sists of the following active and passive sensors:

o Active Microwave Instrument (AMI) operating as SAR or as wind and wave scatterom-
eter

. Radar Altimeter (RA)

. Along Track Scanning Radiometer (ATSR)

o Laser retroreflector array

. Precise Range and Range Rate Equipment (PRARE)

Due to the high resolution of the Radar Altimeter the determination of precise orbit parame-
ters becomes an unalterable necessity. These computations will be performed in one of the
off-line components of the ERS-1 ground segment (s.fig. 2) the German Processing and Ar-
chiving Facility (D-PAF).

2. Products of the D-PAF

The German PAF is located in Oberpfaffenhofen and is just now being built up by a cooperat-
ing team of scientists from the Deutsche Forschungs- und Versuchsanstalt fiir Luft- und

Raumfahrt (DFVLR) and DGFI.

It will be the primary product center for:
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. SAR-Processing

o High accuracy orbit restitution making use of PRARE, Laser Ranging and Radar Altim-
eter data

° High precision altimeter geophysical products requiring high accuracy orbits and gravity
fields

The results of the processing are well defined so called "ESA Standard Products" or "Regular
PAF Products". For the Radar Altimeter and Tracking system these are:

. Preliminary orbits

° Orbit predictions

. Precise orbits

® ERS-1 gravity field models

° Sea surface height models

. Oceanic geoid

. Large scale sea surface topography

In addition to this the PRARE Master Station will be integrated into the PAF activities.

3. PRARE - Principle, Objective, Capability

The new microwave tracking system PRARE is presently developed by the Institut fiir Navi-
gation (INS), Universitdt Stuttgart in cooperation with DGFI/Abt. I and the industrial contrac-
tor Kayser Threde, Miinchen and will be a payload element of the ERS-1 mission. This spa-
ceborne selfcontained autonomous tracking system with all-weather capability will allow pre-
cise two-way, two-frequency range and range rate measurements to transponder ground sta-
tions for the support of the Radar Altimeter as well as other sensors by precise and rapidly
available orbit ephemeris information. In addition to this, corrective information such as Total
Electron Content (TEC, ionospheric refraction) and meteorological data from the ground sta-
tion sites (atmospheric refraction) will be available for all microwave measurements (s.fig. 3).

The PRARE system consists of three components, the space segment with minimum interface
to the spacecraft (s.fig. 4), the control segment with the master ground station for control
operations (s.fig. 5), data transfer and preprocessing of the tracking data and the ground seg-
ment with the network of ground tracking stations (s.fig. 6). The measurement principle of
PRARE is explained in fig. 7.

Two signals are sent to earth form the space segment (one of which is in the S-band (2.2
GHz), the other in the X-band (8.5 GHz). Both signals are modulated with a PN code (pseudo
random noise) for the distance measurement containing data signals ("broadcast information")
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for the ground station operation (prediction of visibility etc.). The time delay in the reception
of the two simultaneously emitted signals is measured in the ground station and retransmitted
to the onboard memory for the later ionospheric correction of data. In the ground station the
received X-band signal is transposed to 7.2 GHz, coherently modulated with the regenerated
PN code (or with one of three orthogonal copies for code multiplexing) and retransmitted to
the space segment where the PN code is fed into a correlator to determine on board the two-
way signal delay which is a measure for the two-way slant range between ERS-1 and the
ground station. In addition, the received carrier frequency is evaluated in a doppler counter to
derive the relative velocity of the spacecraft in respect to the ground station. Four independent
correlators and four doppler counters in the space segment allow simultaneous measurements
with four ground stations in a code multiplex mode.

Due to these basic principles the objectives of the PRARE experiment on board ERS-1 are to

. prove that PRARE is an autonomous and almost automatically working tracking system
for near real time orbit determination

o attain precise orbit determination for ERS-1 using PRARE measurements together with
Laser data for
- Radar Altimetry data reduction
- gravity modelling
- positioning improvements
- other sensors on board ERS-1

o perform short-term orbit prediction for ERS-1 as support for
- Laser tracking systems
- the PRARE ground stations
- other sensors on board ERS-1

e determine precise baseline lengths between PRARE tracking stations
o determine absolute (geocentric) coordinates of tracking stations.
To estimate the PRARE measurement precision it is necessary to examine the hardware limi-
tations on the one hand and the model uncertainties on the other hand. What concerns the
hardware it can be said that there will be noise values of

+ 1.7 cm for X-band ranging

+ 30 cm for S-band ranging

+ 0.1 mnys for X-band doppler

(1 measurement per second for ranging; integration interval of 30 seconds for doppler;
90° elevation, one-way distances and velocities)

and, after calibration, some remaining bias values of

< 1 cm for the X-band ranging
< 3 cm for the S-band ranging

The model uncertainties can be specified with
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tropospheric error (vertical) SRy =2 — Tcm
ionospheric error (vertical) 8R; < lem
thermal noise and calibration errors 8Rc = 2 — 3cm
antenna phase uncertainty R, = lem

so that the total error after correction can be estimated as a RSS value

8R = ORF + OR? + ORZ + 8R}
3cem <OR <Tcm

This shows that the range error will be definitely smaller than 10cm for one measurement.
With these measurement errors it has been verified by simulations in the dynamic and
geometric mode that short arcs of a few thousand kilometer lengths can be recovered with ra-
dial position errors of less than 10 cm, and baselines for distances of less than 1000 km with
a few centimeter precision.

4. Further Plans and Future Missions

For the next two years there will be the priority to complete the system development. After
the hardware of the space segment has been delivered for integration, the master station with
timing unit and connection to the D-PAF and the individual tracking stations are the primary
issues to be finalized. Furtheron the PRARE calibration campaign must be prepared for the
ERS-1 mission and the coordination of the PRARE tracking network with worldwide coverage
and/or emphasis in specific areas will be another focal point of activities.

Besides this there are some proposals to use the PRARE system on several different missions
for earth observation, navigation, manned missions, space probes, comet probes etc.

So it will be a high probability that the PRARE system will be in use at minimum up to the
end of the century.
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Characteristics of ERS-1

Orbit:

. Mean altitude 778 km

- Excentricity 0.001

. Inclination 98.5°

0 Sun-synchronous repetitive orbit (repeat cycle 3
to 35 days)

Scheduling:

. Planned launch date mid 1990
. Expected lifetime 2 to 3 years

Sensors:

. Active Microwave Instrument (AMI) operating
as Synthetic Aperture Radar (SAR) or as wind
and wave scatterometer,

Radar Afltimeter (RA)

Along Track Scanning Radiometer (ATSR)
Laser retroreflector array

Precise Range and Range Rate Equipment
(PRARE)

“- s

Fig. 1: Characteristics of ERS-1
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EARTHNET ERS- 1|
CENTRAL

FACILITY

Measurement Principle

. Two-way X-band PN-coded ranging (S/C —
ground station — S/C; downlink: 8.5 GHz, up-
link: 7.2 GHz)

. Two-way X-band doppler measurement

bt One-way two-frequency X-versus S-band range
difference measurement (S/C — ground station)
8.5 GHz, 2.2 GHz

. Measurement of meteorological ground data

. Simultaneous tracking of up to 4 ground stations
ind dency of other y links

- Storage of measurement data in the space
segment

= Dump of tracking data to the master sta-
tion for centralized processing

= Distribution of broadcast data with the
measurement signal

Fig. 3: Principle of the PRARE System
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Fig. 2: Off-Line Components of the ERS-1 Ground

Segment
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