Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach

Urheber*innen

Costa,  Alexandre Cunha
RIMAX Publications, RIMAX, Deutsches GeoForschungsZentrum;

Bronstert,  Axel
RIMAX Publications, RIMAX, Deutsches GeoForschungsZentrum;

Kneis,  David
RIMAX Publications, RIMAX, Deutsches GeoForschungsZentrum;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in GFZpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Costa, A. C., Bronstert, A., Kneis, D. (2012): Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach. - Hydrological Sciences Journal - Journal des Sciences Hydrologiques, 57, 1, 10-25.
https://doi.org/10.1080/02626667.2011.637043


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_438889
Zusammenfassung
Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m3/s of range and relative errors (%) in the range [–30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.