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Abstract 21 

Leaf fluorescence can be used to track plant development and stress, and is considered the most 22 

direct measurement of photosynthetic activity available from remote sensing techniques. Red 23 

and far-red Sun Induced chlorophyll Fluorescence (SIF) maps were generated from high spatial 24 

resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly 25 

pine plantations in North Carolina (USA). Canopy fluorescence yield (i.e., the fluorescence flux 26 

normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies 27 

the fluorescence emission efficiencies that is more directly linked to canopy function compared 28 

to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer 29 

new insights on the potential of those measurements in better describing ecosystem processes. 30 

The results showed that red fluorescence yield varies with stand age. Young stands exhibited a 31 

nearly 2-fold higher red fluorescence yield than mature forest plantations, while the far-red 32 

fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic 33 

stomatal limitation in aging loblolly pine stands.  34 

Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, 35 

resulting in intra-pixel mixture effects, which could be a confounding factor for fluorescence 36 

signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, 37 

namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability 38 

in canopy structure by exploiting the vegetation fractional cover. It was found that spatial 39 

aggregation tended to mask the effective relationships, while the CCFI was still able to maintain 40 

this link.  41 

This study is a first attempt in interpreting the fluorescence variability in aging forest stands 42 

and it may open new perspectives in understanding long-term forest dynamics in response to 43 

future climatic conditions from remote sensing of SIF.  44 
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Introduction 45 

Leaf structure and physiology change in many woody species when they become sexually 46 

mature (e.g., Greenwood, 1995). Compared with the knowledge of senescence processes in 47 

annuals and biennial plants, relatively little is known about age-related changes in woody 48 

perennials (Bond, 2000). Old trees differ from younger trees, both physiologically and 49 

morphologically. In general, older trees have lower rates of photosynthesis, reduced growth 50 

rates (both height and diameter) and a distinctive hydraulic architecture (Ryan & Yoder, 1997; 51 

Meinzer et al., 2011). Nutrition, carbon allocation (including respiration), meristematic activity 52 

and the tree's hydraulic properties all potentially change with tree age and in most cases result 53 

in a slower growth in older trees (Domec & Gartner, 2003). Moreover, it is generally known 54 

that photosynthetic rates of seedlings are higher than in mature trees (Larcher, 1969). Leaf 55 

photosynthesis and stand primary production have often been found to decline with increasing 56 

plant age and size, as a result of hydraulic or biochemical limitations (Yoder et al., 1994; 57 

Hubbard et al., 1999; Ryan et al., 2006; Drake et al., 2011). Determining why growth is reduced 58 

in aging forest stands is a compelling need: the growth patterns are pronounced and predictable 59 

but the underlying mechanisms remain unclear (Gower et al., 1996; Ryan et al., 1996). Even 60 

though some work has been done at the leaf level (Shirke, 2001; Reinhardt et al., 2009; de Beek 61 

et al, 2010; Linkosalo et al., 2014), the response of Sun-Induced chlorophyll Fluorescence (SIF) 62 

to these age-related processes has not been investigated previously. SIF is closely related to 63 

actual photosynthetic rates and basically to the functional process linked to the amount of 64 

energy (in form of transported electrons) that is provided from photosynthetic light reactions 65 

(Porcar-Castell et al., 2014).  66 

Remote sensing of SIF is a research field of growing interest with the potential to provide an 67 

improved tool for monitoring plant status and photosynthetic function from above. In this 68 
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framework, the new satellite mission of the European Space Agency, the FLuorescence 69 

EXplorer (FLEX; Drusch et al., 2017), is expected to map canopy fluorescence from space at 70 

global level, with 300 m spatial resolution, which will be used to derive the photosynthetic 71 

activity of natural and managed ecosystems. Fluorescence is considered the most direct proxy 72 

of actual photosynthetic activity available from remote sensing techniques and as such it has 73 

been used extensively to track plant status at leaf and canopy level (Moya et al., 2004; Meroni 74 

et al., 2006,  2008; Rascher et al., 2009; Damm et al., 2010; Daumard et al., 2010; Rossini et 75 

al., 2010; Middleton et al., 2012; Zarco-Tejada et al., 2012; Cheng et al., 2013; Joiner et al., 76 

2014; Zhang et al., 2014; Ac et al., 2015; Koffi et al., 2015; Rossini et al., 2015; Zarco-Tejada 77 

et al., 2016; Goulas et al., 2017).  78 

The intensity of the fluorescence signal at canopy level depends on the photosynthetic rates, 79 

biophysical, biochemical and structural characteristics of the canopy, incoming radiation and 80 

background contributions (Hoge et al., 1983; Olioso et al., 1992; Cerovic et al., 1996; Moya et 81 

al., 2006; Daumard et al., 2010; Fournier et al., 2012; Van Wittenberghe et al., 2013; Damm et 82 

al., 2015a, 2015b; Verrelst et al., 2015; Rossini et al., 2016). These parameters are highly 83 

variable in space and time and they should all be considered to correctly interpret the 84 

fluorescence signal. In fact, plants with different photosynthetic rates, chlorophyll content 85 

and/or canopy structure and exposed to various irradiance regimes can potentially emit the same 86 

amount of fluorescence. The effects of variable incoming illumination can be corrected by 87 

computing the apparent fluorescence yield (i.e., the ratio of the emitted fluorescence flux to the 88 

total incoming Photosynthetically Active Radiation (PAR), which is in fact the parameter most 89 

commonly exploited for spatial and temporal comparison of fluorescence satellite derived 90 

products collected in different light illumination conditions (i.e., different solar zenith angles, 91 

e.g., Guanter et al., 2014). However, to move towards the use of SIF for net photosynthesis and 92 
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plant functioning characterization in a heterogeneous landscape, it is also necessary to account 93 

for vegetation structural/biochemical variations. This can be accomplished by exploiting the 94 

true canopy fluorescence yield (𝜀𝑓; i.e., the ratio of the emitted fluorescence flux to the 95 

Absorbed Photosyntetically Active Radiation, APAR), which is a physically-based index of 96 

efficiency that accurately describes the effects of the absorbed radiation on the SIF signal. The 97 

usefulness of fluorescence or the apparent fluorescence yield to track the effects of 98 

environmental stressors on plant functioning has been demonstrated in numerous investigations 99 

(e.g., Meroni et al., 2008; Guanter et al., 2014), while the performances of the true fluorescence 100 

yield computed at airborne or satellite level has been investigated in only two studies (Sun et 101 

al., 2015; Wieneke et al., 2016;). This is mainly due to the difficulty in accurately estimating 102 

APAR, which is challenging.  103 

Current and future satellite missions will provide global datasets of fluorescence at a range of 104 

coarse spatial resolutions (e.g., 300 m to 0.5o), resulting in intra-pixel mixture effects, which 105 

will be an unavoidable confounding factor for fluorescence signal interpretation. In this context, 106 

there is a need of having simplified fluorescence indices for small-scale applications over large 107 

regions, which can take into account the spatial variability of canopy structure. Therefore, a 108 

new approach is needed to compensate for structural effects on SIF measurements, including 109 

the use of radiative transfer model inversion (van der Tol et al., 2016; Hernández-Clemente et 110 

al., 2017; Zhao et al., 2016), spectrally invariant correction factors (e.g., the Directional Area 111 

Scattering Factor, Knyazikhin et al., 2012), or empirical normalization techniques (Colombo et 112 

al., 2016). 113 

In this paper, red and far-red SIF maps were generated from high spatial resolution images (1 114 

m) collected with the HyPlant airborne sensor over a range of even aged stands in loblolly pine 115 

forest plantations in North Carolina (USA). The true canopy fluorescence yields for both red 116 
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and far-red SIF were then computed and investigated with the main aim to understand if 117 

fluorescence varies across stands of different ages, according structural and physiological 118 

parameters. In this context, we hypothesized that hydraulic limitation in older pines could 119 

reflect in a lower fluorescence emission compared to the younger trees, due to the reduced rates 120 

of photosynthesis. We were also interested in evaluating the effect of pixel size and the mixture 121 

effects on the relationships between fluorescence and stand age. This study can be considered 122 

a first attempt in interpreting the fluorescence variability in aging forest stands and it may open 123 

new perspectives in understanding long-term forest dynamics from remote sensing of SIF. 124 

 125 

Data and methods 126 

Study area 127 

This study was performed at the Parker Tract forest in the lower coastal plain near Plymouth, 128 

North Carolina, USA, in the context of the joint 2013 ESA/NASA FLEX airborne campaign 129 

(Middleton et al., 2017). The forest is a 4,400 ha managed plantation that contains various 130 

loblolly Pine (Pinus taeda L.) stands of different ages. Parker Tract is a pine forest where stand 131 

density is reduced under a prescribed thinning regime as age increases to maximize timber 132 

production. According to the Parker Tract forest management plan, pine stand age within the 133 

study area ranged from 3 to 46 years old, when the forests have reached high commercial 134 

potential and are being harvested. Therefore, we are dealing with juvenile and mature stages. 135 

The topography is flat and the climate is maritime temperate zone with a mean annual 136 

precipitation of 1320 mm and mean annual temperature of 15.5 °C. The Parker Tract forest 137 

belongs to the Long-Term Ecological Research Sites and further details on the site are reported 138 

in different studies (e.g., Noormets et al., 2010; Domec et al., 2012). Figure 1 shows the location 139 
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of the study area and the investigated loblolly pine stands (with their plantation age) overlapped 140 

to the HyPlant mosaic of airborne images collected over the investigated forest. 141 

 142 

Fig. 1 a) Location of the Parker Tract Forest in NC, USA; b) Location of the loblolly pine even- 143 

aged stands (18 total) are shown in colored categories, overlapped on a false color composite 144 

HyPlant mosaic. 145 

 146 

The tree age classes reported in Figure 1 correspond to years since planting at the time of data 147 

acquisition. In particular, tree ages correspond to the time when the sites were graded and 148 

planted with 2-year-old seedlings, and thus can be considered a chronosequence. 149 

a)

b)

*
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Since no direct dendrochonological and only few physiological measurements were available 150 

for comparison between forest data and fluorescence estimates, to better interpret our findings 151 

we also exploited data and previous results obtained in a companion loblolly forest at the Duke 152 

Forest. The Duke Forest loblolly study area is located in the Blackwood Division of Duke Forest 153 

(US-Dk3; lat/lon 35.97816586/-79.09419556, North Carolina, USA). It represents a late stage 154 

post-agricultural succession characteristic of the south-eastern United States. Duke Forest, in 155 

addition to mixed deciduous forest, also has even-aged plantation of loblolly pine stands 156 

ranging from 14 to 114 years, established in 1983 following a clear cut and a burn (Oren et al., 157 

2006; Novick et al., 2009; Domec et al., 2015).  158 

 159 

Field campaign and leaf level measurements 160 

During the field survey in September and October 2013, forest stand characteristics including 161 

average tree height, crown width, crown depth, and tree diameter at breast height (1.3 m) were 162 

measured within one-tenth of an acre (0.4 ha) plots and averaging measurements from 2-3 plots 163 

per stand, at both Parker Tract (18 stands) and Duke Forest (14 stands). Leaf area index (LAI) 164 

was measured at all stands using a LAI-2000 Plant Canopy Analyzer (LAI-2000 PCA; Li-Cor, 165 

Lincoln, NE, USA). LAI measurements at each location were taken using a standard protocol 166 

in diffuse light conditions within one hour of dawn or dusk.   167 

Average carbon (%C) and nitrogen concentration (%N) for pine foliar samples were measured 168 

in 26 stands (18 at Duke Forest and 8 at Parker Tract), while leaf chlorophyll content was 169 

estimated at 16 stands in Parker Tract. Leaf samples were collected from the 2 most recent 170 

annual leaf flushes on 1-3 branches of the sunlit portion of the upper canopy from 3 pine trees 171 

in a stand, using a cherry picker or a rifle. The branch samples were placed in a bag with wet 172 
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paper towel, on ice, in a dark cooler and taken to a nearby field lab for analysis. Leaf fresh and 173 

dry weights were measured on 10 needle fascicles from a sample, using three samples per tree. 174 

For pigment determination, needle samples were ground and placed in polystyrene cuvettes 175 

containing 4 mL dimethyl sulfoxide (DMSO) and frozen for extraction before the 176 

measurements. A spectrophotometer was used to determine chlorophyll a, chlorophyll b, total 177 

chlorophyll (Cab, mg/cm2), and carotenoids based on established equations (Chapelle and Kim, 178 

1992).  179 

Leaf reflectance and transmittance spectra were also measured on needles collected from 25 180 

trees (1-2 trees per stand at Parker Tract), at the end of the growing season, when the needles 181 

were fully developed. Hemispherical reflectance and transmittance were measured using an 182 

ASD spectrometer (FieldSpec 3, Analytical Spectral Devices, Inc., Bolder Co.) equipped with 183 

an external integrating sphere (LI-1800, Li-Cor, Lincoln, NE, USA) and then used to determine 184 

fraction of APAR (fAPAR) at leaf level. 185 

Stomatal conductance (gs) and net photosynthesis (Pnet) measurements at the Parker Tract forest 186 

were performed in 2013 on May 17th, and September 30th for the mature pine trees (23 years 187 

old trees) and on June 2nd and October 1st for the young trees (7 years old trees). Meteorological 188 

conditions were stable during those weeks and were characterized by clear and warm days. 189 

Stomatal conductance and photosynthesis were measured with a LI-6400 gas exchange system 190 

(LI-COR, Lincoln, NE, USA). Measurements of gs were performed on six randomly selected 191 

individuals within each age class every two hours beginning at 06:00 h solar time and ending 192 

at approximately 15:00 h solar time. Measurements of gs were conducted on current-year 193 

detached fascicles taken from the same shoot simultaneously, and were performed on fully sun 194 

exposed south-facing shoots. For the mature trees, shoots from the upper canopy were shot 195 

down with a rifle. Needles were not detached for more than five minutes before the 196 
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measurements were initiated. Previous studies on the same tree species have shown that there 197 

were no differences between excised and attached needle gas exchange when measurements 198 

were restricted to less than 15 min after excision (Maier et al., 2008; Drake et al., 2010). For 199 

each needle, the chamber was set to match prevailing environmental conditions assessed 200 

immediately prior to the measurement: atmospheric CO2 concentration (384-405 ppm), relative 201 

humidity (46-61 %), photosynthetically active radiation (600-1800 μmol m-2 s-1), and leaf 202 

temperature (27-35 °C). Stomatal conductance and photosynthesis data reported here 203 

correspond to the maximum values, i.e., usually taken between 09:30 h and 11:30 h solar time. 204 

For normalizing gs on an all-sided leaf area basis, needle areas were obtained geometrically 205 

from dimensions measured using a digital caliper (series 500 Mitutoyo, Aurora, IL, USA) 206 

(Rundel & Yoder 1998). Along with the gas exchange measurements, leaf water potential (Ψleaf) 207 

were measured at predawn and at midday (11:00 h-12:00 h solar time) using a pressure chamber 208 

(PMS Ins., Albany, OR, USA). For the midday measurements, Ψleaf, gs and Pnet were conducted 209 

on detached fascicles taken from the same shoot. 210 

 211 

Airborne acquisition and pre-processing 212 

On October 26th 2013, from 09:56 h to 11:08 h solar time, eight aerial images were acquired by 213 

the HyPlant airborne imaging spectrometer on board the NASA Langley Research Center’s 214 

(LARC) UC12 Beechcraft King Air in combination with imagery acquired by the Goddard 215 

LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne system. Extensive descriptions of 216 

these systems are presented in Rascher et al., (2015), Cook et al., (2013) and Middleton et al., 217 

(2017).  218 
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The HyPlant instantaneous field of view (IFOV) is equal to 0.0832°, while the FOV is of 32.3°. 219 

With such a configuration, the aircraft was flown at an average altitude of 610 m, resulting in a 220 

HyPlant swath of 384 m, with a spatial pixel size of 1 m. HyPlant system consists of two 221 

modules: the broad band dual-channel module (DUAL) to compute surface reflectance in the 222 

visible through near and short wave infrared spectral region (380-2500 nm) and the fluorescence 223 

module (FLUO) which operates at higher spectral resolution in the 670-780 nm spectral range  224 

designed for fluorescence retrievals. HyPlant at-sensor radiance images from the FLUO and the 225 

DUAL modules were generated through a dedicated processing chain. The Atmospheric & 226 

Topographic Correction model (ATCOR, ReSe Applications Schläpfer) was run to perform the 227 

atmospheric correction and then all the images were georectified using the CaliGeo toolbox 228 

(SPECIM, Finland). In addition to reflectance and fluorescence, spectral vegetation indices 229 

were generated using the Hyplant data. An example of radiance measurements from a loblolly 230 

pine acquired with the FLUO module is shown in Figure 2. 231 

 232 

Fig. 2 Example of the spectral radiance extracted from the HyPlant image (FLUO module) for 233 

a loblolly pine around oxygen B (a) and A (b) absorption bands. 234 

 235 

A canopy tree height map was obtained from the LiDAR data. Classification of G-LiHT LiDAR 236 

ground returns was performed with a progressive morphological filter with Delaunay 237 

(a) (b)
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triangulation to generate a Triangulated Irregular Network (TIN) of ground hits, and the TIN 238 

was then used to linearly interpolate the Digital Terrain Model on a 1 m raster grid. 239 

Additionally, the TIN was used to interpolate the base elevation of every non-ground return, 240 

and vegetation heights were computed by difference. The Canopy Height Model (CHM) was 241 

created by selecting the greatest return height in every 1 m grid cell. Tree height, defined as the 242 

maximum height of each tree, was derived from the CHM by finding the local maximum in a 243 

moving window of 3x3 pixels (3x3 m). Local maxima lower than the 1st quartile of the CHM 244 

in the stand were not considered representative of a tree, thus they were neglected. The average 245 

tree height for each stand was computed as the average of all tree heights (i.e., the local maxima) 246 

within each stand.  247 

 248 

Retrieval of Sun-Induced Fluorescence  249 

Among different approaches available for the retrieval of SIF (e.g., Cogliati et al., 2015), the 250 

Singular Vector Decomposition (SVD) (Guanter et al., 2012; 2013) was selected for this study 251 

based on successful results with Hyplant data in other studies (e.g., Rossini et al., 2015). This 252 

data-driven approach relies on two key assumptions: i) a given radiance spectrum can be 253 

modelled as the linear combination of a reflected surface radiance plus a SIF emission 254 

propagated to at-sensor level, and ii) the reflected surface radiance can be formulated as a linear 255 

combination of orthogonal spectral vectors. The SVD is comparable to a principal component 256 

analysis and reduces the dimensionality of a large set of correlated variables (e.g., training 257 

radiance spectra that are free of SIF emissions) by transforming it into a small set of 258 

uncorrelated variables (singular vectors).  259 
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The definition of a forward model (F) to describe a measured radiance signal including SIF 260 

emissions at sensor level comprises several spectral functions (singular vectors) representing 261 

the signal intensity due to surface albedo, illumination angle, atmospheric absorption and 262 

scattering effects, spectral slope as a function of surface reflectance, and sensor effects (spectral 263 

shifts, band broadening). Further, SIF radiance (Wm-2sr-1nm-1) is considered as an additive 264 

component to complement the forward model as:  265 

𝐹(𝜔, 𝑆𝐼𝐹) =  ∑ 𝜔𝑖𝑣𝑖 + 𝑆𝐼𝐹
𝑛𝑣
𝑖=1 ,      (1) 266 

where ωi corresponds to the weight of a particular singular vector vi. Typically, 4-5 singular 267 

vectors are used to model the at-sensor radiance signal, considering an empirical threshold of 268 

0.05% as minimum information content of a singular vector.  269 

Few adjustments were applied to improve the inversion results, such as removing the strongest 270 

absorption features since the forward model does not include any physical formulation of 271 

atmospheric absorption or scattering effects, nor the normalization of input radiances and 272 

radiances used to obtain the singular vectors based on their spectral slope.  273 

The inversion of F was done by means of standard least squares fitting using a retrieval error 274 

covariance Se that is given as:  275 

𝑆𝑒 = 𝛿𝑚
2 (𝐽𝑇𝐽)−1,        (2) 276 

where δm is the measurement error approximated as standard deviation of a subset of used 277 

reference radiance signals and J is the matrix containing the singular vectors and 𝐽𝑇 is its 278 

transpose.  279 
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The SVD algorithm was applied to the HyPlant FLUO data to produce maps for the canopy red 280 

SIF radiances at 690 nm and far-red SIF 740 nm radiances at the full native HyPlant spatial 281 

resolution (1 m).  282 

 283 

Retrieval of Absorbed Photosynthetic Active Radiation  284 

The APAR maps were computed as the product of fAPAR and the incoming PAR values. 285 

fAPAR can be derived from remote sensing, exploiting either physically based or empirical 286 

strategies using spectral vegetation indices (e.g., Walter-Shea et al., 1997; Myneni et al. 2002; 287 

Gobron et al., 2006; Donohue et al., 2008; Widlowski, 2010; D’Odorico et al., 2014; Pickett-288 

Heaps et al., 2014). Following a scheme analogous to Damm et al., (2010), but using the 289 

spectral reflectance instead of the incident and reflected radiance, fAPAR was computed in this 290 

study as (1-reflectance) in the PAR region (400-700 nm). In addition, for comparison purposes, 291 

we also estimated fAPAR as a linear model of Normalized Difference Vegetation Index (NDVI) 292 

(Hatfield et al., 1984; Goward & Huemmrich, 1992; Myneni & Williams, 1994; Liu et al., 293 

2017). 294 

The incident PAR was measured at the US-NC2 loblolly plantation flux tower at half-hourly 295 

steps, and interpolated to actual overflight times with a piecewise polynomial smoothing spline. 296 

During the overpasses (i.e., between 09:56 h and 11:08 h solar time), PAR varied between 1130 297 

µmol m-2 s-1 and 1430 µmol m-2 s-1 (247 to 313 W m-2).  298 

 299 

  300 
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Computation of true fluorescence yields of loblolly pine 301 

The SIF flux can be modelled as the product of PAR, fAPAR and f. The last term is the amount 302 

of absorbed radiation emitted as fluorescence, and is referred to here as canopy-level “true 303 

fluorescence yield” (e.g., Lee et al., 2013): 304 

                  (3) 305 

The fluorescence flux is dependent on wavelength () and time (t) at which the flux is emitted.  306 

For full emission spectra, the entire wavelength range from 650 nm to 800 nm should be 307 

considered. Canopy-level true fluorescence yield is related to leaf-level fluorescence yield, 308 

neglecting a second-order term accounting for the reabsorption of the red fluorescence within 309 

the canopy and the canopy anisotropy, at both red and far-red wavelengths (Guanter et al., 2014; 310 

Damm et al., 2015b).  311 

In this study, the computation of the SIF yields at full (1 m) spatial resolution was conducted 312 

selecting only the loblolly SIF radiance in each stand. A supervised classification scheme based 313 

on the HyPlant DUAL reflectance images was therefore implemented to identify loblolly pine 314 

(mainly sunlit pixels). Two hundred training pixels were randomly selected and visually 315 

assigned to one of the four spectrally distinguishable classes (i.e., loblolly pine, shadow, bare 316 

soil, and other vegetation components). The classified map was used as a mask to extract SIF 317 

and APAR of the loblolly component within 18 different stands identified as Regions of Interest 318 

(ROI) of 84 x 84 pixels each. The dimension of the ROI was set according to the forest stand 319 

dimensions to get an average stand values of red and far-red SIF and APAR for the loblolly 320 

component (hereafter 𝑆𝐼𝐹𝑙𝑜𝑏
690, 𝑆𝐼𝐹𝑙𝑜𝑏

740 and 𝐴𝑃𝐴𝑅𝑙𝑜𝑏), and the corresponding true fluorescence 321 

yields (hereafter 𝜖𝑙𝑜𝑏
690 and 𝜖𝑙𝑜𝑏

740). The subscript lob indicates the loblolly pine class. The ROIs 322 

𝑆𝐼𝐹 𝜆,𝑡 = 𝜀𝑓 𝜆,𝑡 ∙ 𝑃𝐴𝑅 400-700,𝑡 ∙ 𝑓𝐴𝑃𝐴𝑅 𝑡  
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were selected as close to nadir as possible in order to minimize possible effects dependent on 323 

airborne cross-track viewing angles. 324 

The true fluorescence yield maps of the loblolly component were then obtained using Equations 325 

4 and 5, based on values from the maps of loblolly SIF and APAR.  326 

𝜀𝑙𝑜𝑏
690 =

𝑆𝐼𝐹𝑙𝑜𝑏
690

𝐴𝑃𝐴𝑅𝑙𝑜𝑏
                                                                                             (4) 327 

𝜀𝑙𝑜𝑏
740 =

𝑆𝐼𝐹𝑙𝑜𝑏
740

𝐴𝑃𝐴𝑅𝑙𝑜𝑏
                                                                                             (5) 328 

where APARlob is the product of PAR and fAPAR maps of the loblolly pine obtained with the 329 

different overpasses. We also tested the apparent fluorescent yield, usually employed in remote 330 

sensing of fluorescence studies when information about APAR is not available. 331 

 332 

Spatial aggregation and definition of the Canopy Cover Fluorescence Index  333 

In the analysis at full resolution, the scheme used in this study was similar to that suggested by 334 

Zarco-Tejada et al., (2004) and Malenovsky et al., (2013), so that the SIF yields were mainly 335 

extracted from sunlit pixels.  The 1 m pixel size allowed the detection of pixels of homogenous 336 

vegetation within the stands. HyPlant data were collected in October when the dominant green 337 

land cover type was the loblolly pine. Other components, such as understory and deciduous 338 

trees, were mainly displaying early autumn senescent foliage, while shadows and bare soils 339 

were the most common classes in older and younger stands, respectively. In these forests, when 340 

data are aggregated to even 10 m spatial resolution, these components become mixed and it 341 

becomes difficult to find and isolate loblolly components.  342 
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To evaluate if the relationships between SIF and age-related processes are affected by pixel size 343 

(surface heterogeneity), a simple spatial-aggregation analysis was carried out by resampling the 344 

data at different spatial resolutions (i.e., pixel sizes of 10 x 10, 30 x 30, 60 x 60 and 84 x 84 345 

pixels). The maximum aggregation was fixed at 84 x 84 pixels in order to be consistent with 346 

the overall stand size, since larger aggregations would result in including trees with different 347 

ages. The output of this process generated maps at different pixel (p) sizes, using aggregated 348 

red and far-red fluorescence radiances (𝑆𝐼𝐹𝑝
690, 𝑆𝐼𝐹𝑝

740), 𝐴𝑃𝐴𝑅𝑝, red-fluorescence and far-red 349 

fluorescence yields (𝜀𝑝
690 =

𝑆𝐼𝐹𝑝
690

𝐴𝑃𝐴𝑅𝑝
; 𝜀𝑝

740 =
𝑆𝐼𝐹𝑝

740

𝐴𝑃𝐴𝑅𝑝
). 350 

We can reasonably assume that the fluorescence value of a generic pixel p can be expressed 351 

with a linear mixing model driven by vegetation fractional cover (Zarco-Tejada et al., 2013; 352 

Hernández-Clemente et al., 2017; ESA, 2017). In this study, the vegetation fractional cover of 353 

the loblolly (fclob) was computed as the ratio between the number of pixels of the loblolly class 354 

divided by total number of pixels in the ROI.  For the case having only two components within 355 

a pixel, the fluorescence flux of the aggregated pixel can be derived from the target component 356 

(i.e., in this case the loblolly pine SIF, 𝑆𝐼𝐹𝑙𝑜𝑏
690, 𝑆𝐼𝐹𝑙𝑜𝑏

740), the fluorescence of the other 357 

components (oc) within the pixel (𝑆𝐼𝐹𝑜𝑐
690, 𝑆𝐼𝐹𝑜𝑐

740) and the fractional cover of the loblolly pine. 358 

Therefore, the aggregated red SIF radiance can be estimated as follows: 359 

𝑆𝐼𝐹𝑝
690 = 𝑆𝐼𝐹𝑙𝑜𝑏

690 ∙ 𝑓𝑐𝑙𝑜𝑏 + 𝑆𝐼𝐹𝑜𝑐
690 ∙ (1 − 𝑓𝑐𝑙𝑜𝑏)     (6) 360 

The 𝑆𝐼𝐹𝑜𝑐
690 term in the study area is mainly a combination of senescent vegetation, bare soil 361 

and shadows, and we can reasonably consider that such fluorescence flux is almost null or 362 

negligible. The fluorescence flux of the loblolly component can be therefore directly derived 363 

by the knowledge of the aggregated SIF value and its fractional cover. Using this scheme, we 364 

can introduce the Canopy Cover Fluorescence Index (CCFI) that makes use of the loblolly cover 365 
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fraction within the pixel rather than the typically used fAPAR as the basis for normalizing the 366 

SIF fluxes: 367 

𝐶𝐶𝐹𝐼690 =
𝑆𝐼𝐹𝑝

690

𝑓𝑐𝑙𝑜𝑏
                    (7) 368 

This index is considered here to be independent from the spatial variability of land cover 369 

proportions within each pixel. In other words, for a single vegetation class discontinuously 370 

covering the soil surface the CCFI approximates 𝜀𝑙𝑜𝑏
690, allowing comparisons of fluorescence 371 

across spatial scales without bias due to the different amounts of vegetation coverage in each 372 

pixel.  373 

 374 

Statistical analysis 375 

The previously described fluorescence metrics were investigated across stands of different ages 376 

with data aggregated to different spatial resolutions, by using regression models. Statistical 377 

analysis and coding was performed in Matlab R2016a (MathWorks, USA) and IDL 8.2 (Exelis 378 

VIS, USA), while image visualization and rendering was done in ENVI 5.2 (Exelis VIS, USA) 379 

and QGIS 2.14 (Quantum GIS Development Team, 2016). 380 

 381 

Results  382 

Spatial pattern of forest fluorescence  383 

An example of SIF maps for three loblolly pine stands characterized by different ages is shown 384 

in Figure 3, with the RGB reflectance map from the HyPlant DUAL and the Canopy Height 385 

Model derived from the G-LiHT LiDAR data. The different proportions of shadow and sunlit 386 
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canopy, as well as the spatial arrangement of the sunlit and shadowed components, are clearly 387 

distinguishable in the three stands. In particular, in the younger stands the row-structured 388 

pattern followed for plantation is clear, while in the oldest stand canopy closure obscures the 389 

planting arrangement. Fluorescence maps show similar spatial patterns, with lower values in 390 

bare or shadowed areas and higher values in the sunlit portion of the canopy. The inter-crown 391 

gap pattern in the younger stands is clearly visible both in red and far-red SIF maps. 392 

 393 

 394 

Fig. 3 Example of three loblolly pine stands characterized by different ages and heights (left to 395 

right: 6, 24 and 46 years old). From top to bottom: RGB color composite from the HyPlant 396 

DUAL, SIF at 690 nm and 740 nm from the HyPlant FLUO, and canopy height map from the 397 

G-LiHT LiDAR. The red squares are the 84 x 84 pixels Regions Of Interest (ROI) selected for 398 

each forest stand.  399 
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 400 

Fluorescence at 690 nm and 740 nm for loblolly pine class ranged between 0.2 and 0.8 mW m-401 

2 sr-1 nm-1 and between 0.3 and 1.2 mW m-2 sr-1 nm-1, respectively. Non-fluorescent targets 402 

(e.g., the roads between the stands) showed SIF values close to zero, indicating the reliability 403 

of the SIF maps. Overall, the SIF emission magnitude of loblolly pine is relatively low 404 

compared to dense deciduous forests, as reported in previous studies (Rossini et al., 2016) and 405 

the values compare well with SIF ground observations obtained over similar loblolly pine 406 

stands (ESA, 2015).  407 

 408 

Reflectance measurements and fAPAR maps 409 

Reflectance and transmittance measurements of loblolly pine needles allowed the computation 410 

of the average leaf fAPAR (Figure 4). The proportion of reflected PAR was approximately 8% 411 

and the transmitted PAR was ~3%, while the remaining fraction of the total incoming PAR was 412 

absorbed (fAPAR = 0.89 or 89%; standard deviation = 0.021). Since at individual leaf level, 413 

only about 3% of PAR is transmitted (but subsequently potentially absorbed by other leaves) 414 

we are confident that the approach used in this study to generate fAPAR maps may only slightly 415 

overestimate canopy fAPAR, and therefore potentially underestimate fluorescence yield. 416 
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 417 

Fig. 4 Loblolly pine leaf optical properties (mean reflectance and transmittance).  418 

 419 

The strong correlation between the two estimates of fAPAR (R2= 0.67 RMSE = 0.05, p < 420 

0.001), using the methods previously presented, increases the confidence in our results. 421 

 422 

Structural, biophysical, biochemical parameters and leaf gas exchanges 423 

The relationship between tree age and canopy height derived from the G-LiHT LiDAR data at 424 

Parker Tract was compared with that measured at the Duke Forest by Drake et al., (2010) for 425 

pines. A very similar relationship between tree height vs. age was found (Figure 5), suggesting 426 

that stands at both forests may belong to the same Site Index and could present similar aging 427 

patterns. At the Duke Forest, canopy height ranged from 14 to 43 m, while at the Parker Tract 428 

forest tree height varied from 1 to 26 m. Figure 5 shows the relationship between tree age and 429 

height for the full dataset including stands from both Parker Tract and Duke Forest modelled 430 

using the Gompertz equation (Zeide, 1993).  431 

PAR
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 432 

Fig. 5 Relationship between tree height and age at Parker Tract (closed symbols) and Duke 433 

Forest (open symbols, Drake et al., 2010) (R2=0.97). 434 

 435 

Table 1 and Figure 6 show the relationships between stand age and height (in brackets) with 436 

the biophysical and biochemical parameters measured in field and laboratory. These results 437 

clearly show that there were no significant relationships between these variables.  438 

Relationships R2 p-value 

Age (height) vs. Cab 0.01 (0.01) 0.68 (0.68) 

Age (height) vs. LAI 0.13 (0.13) 0.06 (0.04) 

Age (height) vs. C 0.05 (0.06) 0.26 (0.22) 

Age (height) vs. N 0.03 (0.03) 0.42 (0.39) 
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Table 1 Coefficient of determination (R2) and p-value of the linear relationships between stand 439 

age (and height) versus vegetation variables:  total chlorophyll content (Cab), Leaf Area Index 440 

(LAI), carbon (C) and nitrogen concentration (N). 441 

 442 

 443 

Fig. 6. Scatter plot between loblolly tree age and total Cab (a), LAI (b), C (c) and N (d). 444 

 445 

The leaf level stomatal conductance (gs; mean and standard error of 6 trees) of young trees was 446 

found 82.1 (6.4) / 58.2 (5.8) (mmol m-2 s-1) in June / September, respectively, while for mature 447 

trees it was 61.2 (5.7) / 49.5 (4.2) (mmol m-2 s-1) in June / September, respectively. P values for 448 

both dates between mature and young trees were <0.01. Similarly, leaf level net photosynthesis 449 

(Pnet) of young and mature trees measured in June were 7.0 (0.5) and 5.8 (0.6) mol m-2 s-1, 450 
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respectively, and in September were 5.7 (0.7) and 3.8 (0.6) mol m-2 s-1, respectively (p values 451 

for both dates for Pnet between mature and young trees were <0.01). Across stand age, the 452 

reduction in Pnet was highly correlated with the decline in gs (Pnet = 0.089 x gs; R
2 = 0.84; with 453 

gs in mmol m-2 s-1 and Pnet in mol m-2 s-1). Water stress had a larger effect on Pnet in old trees 454 

than in young trees, even though old trees had similar (p=0.42) predawn water potentials in 455 

June and even higher (p<0.001) ones (less negative) in September than young trees (data not 456 

shown). The decline in Pnet between June and September was indeed 18.6% in young trees and 457 

34.5% in mature trees.  458 

 459 

Relationship between loblolly fluorescence, APAR, true fluorescence yield and tree age  460 

The relationship between loblolly fluorescence and tree age obtained at Parker Tract is shown 461 

in Figure 7. Loblolly SIF was derived by HyPlant data at full spatial resolution, while stand age 462 

was derived from the Parker Tract management plan (n=18 stands).  463 
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 464 

Fig. 7 Mean SIF radiance values (at 690 nm and 740 nm) for the loblolly component, extracted 465 

as the average value of the loblolly class in each ROI, and plotted vs. tree age. The far-red SIF 466 

radiance is relatively constant so that the SIF vs. tree age relationship is not statistically 467 

significant.  468 

 469 

Both, 𝑆𝐼𝐹𝑙𝑜𝑏
690 and 𝑆𝐼𝐹𝑙𝑜𝑏

740
 
show some variability among stands but only 𝑆𝐼𝐹𝑙𝑜𝑏

690 exhibits a 470 

statistically significant relationship with tree age. In the case of red fluorescence, a nonlinear 471 

decline shows that young forest stands emit slightly more red fluorescence compared to older 472 
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trees (Fig. 7a). Overall, we tested different models and we found that the exponential model 473 

described the data best, producing the highest coefficient of determination. 474 

Loblolly APAR shows instead a subtle change with age (Figure 8), with younger stands that 475 

absorb less PAR radiation than older canopies. 476 

 477 

Fig. 8 Loblolly APAR values vs. tree age for the 18 ROIs. 478 

 479 

Although there is a link between APAR and SIF, the latter typically shows an additional 480 

response to plant physiology and quickly varies with changing photosynthetic activity even 481 

before any variation in the pigment pool occurs (e.g., Rossini et al., 2015). Hence, the 482 

relationship between SIF and APAR is not univocal, and they provide complementary 483 

information on different aspects of the photosynthetic process. 484 

The relationships between the true red SIF yield and tree age is shown in Figure 9. The nonlinear 485 

decrease in 𝜀𝑙𝑜𝑏
690

 
with age is more pronounced and clearer than for SIF, while there is still no 486 

relationship for the far-red SIF yield. True SIF yield performed better than apparent SIF yield 487 
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which was less related to stand age, with results similar to that found for SIF radiance (R2=0.41, 488 

data not shown).  489 

 490 

Fig. 9 Red and far-red SIF yields for loblolly pine vs. tree age for observations acquired at 1 m. 491 

 492 

Overall, young stands exhibiting red SIF yield up to 90% higher than older trees (e.g., 3.8 vs. 493 

2.2 sr-1 nm-1).  494 

  495 
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Impact of spatial aggregation on SIF - tree age relationships and performances of the Canopy 496 

Cover Fluorescence Index  497 

The relationships between spatially aggregated (84 m x 84 m) red SIF radiances and true red 498 

SIF yield versus stand age are shown in Figure 10. In this case, aggregated pixels are implicitly 499 

composed of mixtures of different components.  500 

 501 

Fig. 10 Mean of red SIF radiance (upper panel) and the true red SIF yield (lower panel) 502 

computed at coarse spatial resolution (84 m x 84 m) vs. tree age. Note that the axis ranges are 503 
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deliberatively set equal to those of Figures 7a and 9a, respectively, in order to facilitate visual 504 

comparison. 505 

 506 

Although, it is still possible to observe a slight linear decline of both 𝑆𝐼𝐹𝑝
690and 𝜀𝑝

690 with age, 507 

at this coarser spatial resolution this relationship cannot be easily revealed. Similarly, 508 

diminishing success for results (in terms of functional relationship and coefficient of 509 

determination) were also found when aggregating at 10 m x 10 m, 30 m x 30 m, 60 m x 60 m 510 

spatial resolutions (R2=0.30; R2=0.27; R2=0.25, respectively). We underscore that aggregated 511 

pixels never resulted in mixed stands with different ages. Such analysis is beyond the scope of 512 

this study. In addition, no statistically significant relationships were found between either 513 

APARp and stand age or SIFp
740 at different aggregation levels (data not shown). 514 

Figure 11a shows the relationship between the fractional cover of the loblolly pine stands and 515 

the spatially aggregated red SIF (84 m x 84 m) and indicates that fluorescence is fairly affected 516 

by this parameter. The SIF signal at this spatial resolution is in fact a mixture of the fluorescence 517 

fluxes emitted by tree crowns, both sunlit and shadowed, and understory with different 518 

proportion of bare soils and canopy gaps, which causes a variability in the emitted fluorescence 519 

flux over stands with different vegetation cover. Moreover, we also tested the relationship 520 

between loblolly fractional cover and tree age we did not find any statistically significant result, 521 

although a relevant variability of fractional cover across the different stands (Figure 11b). 522 

  523 
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 524 

Fig. 11 Relationships between aggregated (84 m x 84 m) red fluorescence and loblolly 525 

fractional cover (a), and between fractional cover and tree age (b).  526 

 527 

To properly interpret SIF in mixed pixel situations, typical of satellite remote sensing, the 528 

spatial variability of vegetation fractional cover has to be taken into account. The relationship 529 

between Canopy Cover Fluorescence Index and tree age obtained with aggregated pixel data 530 

(84 m x 84 m) is shown in Figure 12.  531 
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 532 

Fig. 12 CCFI computed for aggregated red SIF vs. tree age.  533 

 534 

Clearly, CCFI is not the same physical quantity as the fluorescence yield, since it is not 535 

normalized by APAR. However, it can provide a surrogate of 𝜀𝑙𝑜𝑏
690 with potential to account for 536 

sub-pixel heterogeneity in coarse spatial resolution data. The relationship shown in Figure 12, 537 

closely resembles those for the loblolly red SIF (Fig. 7a) and its yield (Fig. 9a), providing 538 

justification and support for the use of this index in interpreting SIF retrieved from coarse 539 

resolution mixed pixels.  540 

 541 

Discussion 542 

Sun-induced canopy fluorescence and age-related processes  543 

A growing body of evidence demonstrates the relationship between fluorescence yields and 544 

photosynthetic rates and it is well known that fluorescence can be used to monitor plant stress 545 

at leaf and canopy levels (e.g., Meroni et al., 2009; Ac et al., 2015). However, the characteristics 546 
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of sun-induced canopy fluorescence emissions of forest stands of different age have never been 547 

investigated. At tree-scale, with HyPlant data at full spatial resolution, our results clearly 548 

indicate that in loblolly pine: i) red fluorescence and red fluorescence yield change with stand 549 

age; measured levels of red SIF were larger in younger trees compared to older ones (up to 60% 550 

more 𝑆𝐼𝐹𝑙𝑜𝑏
690) and the decline of 𝜀𝑙𝑜𝑏

690 with stand age (Fig. 9a) is more pronounced than that for 551 

red SIF (Fig. 7a), or for the apparent red-fluorescence yield; ii) only 𝑆𝐼𝐹𝑙𝑜𝑏
690 and 𝜀𝑙𝑜𝑏

690 declined 552 

with tree age, while 𝑆𝐼𝐹𝑙𝑜𝑏
740  and 𝑙𝑜𝑏

740 did not (Figs. 7b, 9b);  553 

Overall, the decline of the true red SIF yield with stand age is more informative than for the 554 

apparent red SIF yield (the R2 value for 𝜀𝑙𝑜𝑏
690  is about 87% higher than that for the apparent) 555 

and more evident than that found for red SIF radiance itself. The use of the true SIF yield is 556 

therefore suitable for suppressing, or mitigating, structural variability and canopy pigment 557 

absorption and overall, for comparing spatial measurements collected at different times and 558 

under different illumination conditions.  559 

No statistically significant relationship was found between LAI, chlorophyll content, carbon 560 

and nitrogen concentration with tree height and age (Table 1 and Fig. 6), so that we can 561 

reasonably hypothesize that the decline of the red SIF yield with age is not primarily driven by 562 

biophysical or biochemical parameters. Consequently, within canopy re-absorption of red SIF 563 

radiances should not have a main role in red SIF yield decline related to tree age. The decline 564 

of red fluorescence may therefore most likely relate to the underlying physiological processes, 565 

that downregulate the photosynthetic activity of the plants during their life cycle. Leaf stomatal 566 

conductance measurements and net photosynthesis performed at Parker Tract in September 567 

clearly show significant reduction with stand age (7 years old trees=58.2 mmol m-2 s-1 for gs and 568 

5.7 mol m-2 s-1for Pnet; 23 years old trees= 49.5 mmol m-2 s-1 for gs and 3.8 mol m-2 s-1 for Pnet) 569 

and potentially explain the drop of red fluorescence with aging.  In addition, combining results 570 
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from predawn water potentials and Pnet we could determine that mature trees had a reduction in 571 

5.5 mol m-2 s-1 MPa-1, as opposed to only 2.9 mol m-2 s-1 MPa-1 for the young trees. Those 572 

values indicated that between June and September mature trees were more sensitive to soil 573 

drying, and that the decline in soil water content had a larger effect on Pnet in old trees than in 574 

young trees.  Since these measurements only refer to two stands of young and mature trees, to 575 

better interpret our findings we also exploited the results observed in the loblolly pine forest at 576 

Duke Forest, which exhibits similar Site Index (Figure 5) and has been used for relevant 577 

investigations in this context (Drake et al., 2010; Noormets et al., 2010; Drake et al., 2011; 578 

Domec et al., 2012). Drake et al., (2010 and 2011) showed that light-saturated photosynthetic 579 

CO2 uptake, the concentration of CO2 within needle air-spaces and stomatal conductance to 580 

H2O declined with tree age due to an increasing water limitation of the plants, while stomatal 581 

limitation to net photosynthesis increased, supporting the hydraulic limitation hypothesis as 582 

revised by Ryan et al., (2004; 2006). We exploited the stomatal limitation model developed by 583 

Drake et al., (2010) and compared it with the observed decline in true red SIF yield, depicting 584 

two opposite trends (Figure 13). It is thus plausible to hypothesize that the decline of red SIF 585 

yield is a primary consequence of the reduced carbon and water availability induced by the 586 

water limitation processes in aging loblolly trees. In other words, the reduced water availability 587 

triggers stomata to close, which reduces leaf-internal CO2 concentrations in the leaf tissue and 588 

limits the ability of the carbon fixing enzyme RuBisCO to fix CO2. This in turn may cause a 589 

tailback into the electron transport and finally this is seen in a variation of SIF (Flexas et al., 590 

2002; Rascher et al., 2004; Damm et al 2010; Ac et al., 2015; Zarco-Tejada et al., 2016). We 591 

can also reasonably assume that the decline in red fluorescence is associated with an enhanced 592 

non-photochemical quenching in older compared to younger trees, as observed in recent studies 593 

(Gamon & Bond, 2013). Moreover, the observed drop in red SIF yield occurs around age 10-594 

15, which for loblolly corresponds to the physiological age of demarcation between juvenile 595 
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and mature wood (Tasissa & Burkhart 1998). Domec et al., 2012 showed that cambial activity 596 

is closely related to stomatal conductance, thus further enforcing the link between the observed 597 

SIF decline and the increasing water limitation during the physiological maturation process of 598 

loblolly pine.  599 

 600 

Fig. 13 Modelled function of the stomatal limitation in the loblolly chronosequence at Duke 601 

Forest using the functional forms derived by Drake et al., (2010) and modelled true red SIF 602 

yield of the loblolly pine trees at Parker Tract obtained by the function presented in Figure 9a. 603 

 604 

However, the drop we observed in fluorescence yield is steeper than the increase of stomatal 605 

limitation reported at Duke Forest. Our data show in fact a sharp drop in red fluorescence yield 606 

before age 10-15 and then a limited change, while at Duke Forest the stomatal limitation clearly 607 

increases up to 40 years. Additional studies are therefore needed to fully characterise the link 608 

between these trends and to further unravel the role of physiology in driving fluorescence 609 

variability. Even though our analysis has been conducted using pure loblolly pixel only, hence 610 

minimizing the effect of canopy closure and mutual shading, the description of the radiative 611 
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transfer in partly or fully shaded pixels, such as the complex stands in Parker Tract, is 612 

challenging and therefore we are aware that other functional and structural factors may partially 613 

contribute and explain our findings. Changes in leaf structure, needle length, shoot shape 614 

(clumping) and wax deposits on leaf surfaces with aging may in fact alter absorption/scattering 615 

of red fluorescence, enhancing the observed decrease with age. Therefore, we cannot 616 

completely discard a residual influence of canopy structure, a generic scattering effect with 617 

aging or changes in specific leaf area before and after canopy closure, which is reached at stand 618 

age of approximately 10 years. In addition, the complex canopy structure of the older pine trees 619 

not only subtly increases the APAR but may also produce stronger reabsorption of the red 620 

fluorescence within the canopy and therefore reduce the measured top-of-canopy fluorescence. 621 

In this study we have addressed the change in SIF properties from juvenile to mature stands, 622 

however future research, considering the natural lifespan of the loblolly trees of 100+ years of 623 

age (Burns & Honkala, 1990), is needed to confirm our findings. Moreover, accurate 624 

determination of true SIF yield should require an estimation of PAR absorbed by green leaves 625 

(e.g., Gitelson & Gamon, 2015; Zhang et al., 2016) and this could be another key point that 626 

should be considered for future investigations.  627 

Although a statistically significant decreasing trend is clearly recognisable in the true red-SIF 628 

yield values as plants become older, no significant relationship with tree age was found with 629 

the far-red SIF radiance or yield (Figs. 7b, 9b). The fact that red fluorescence, rather than far-630 

red, seems more sensitive to describe these physiological processes can be considered in line 631 

with the recent study of Verrelst et al., (2016), which found the red fluorescence as the most 632 

sensitive to the canopy net-photosynthesis. Unfortunately, only a few recent studies (Louis et 633 

al., 2005; Cheng et al., 2013; Rossini et al., 2015; Middleton et al., 2015; Wieneke et al., 2016; 634 
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Joiner et al., 2016; Goulas et al., 2017) exploiting both red SIF and far-red SIF have been 635 

conducted, and future investigations are necessary to consolidate the results found in this study. 636 

If fluorescence yield changes as trees age, new information will be needed to account for 637 

variations in vegetation age classes across landscapes. However, we do not currently know the 638 

behaviour of fluorescence (or its efficiency) when other species- and age-related processes are 639 

involved (e.g., within the hypothesis of nutrient limitation) nor do we know how fluorescence 640 

behaves across different ecosystems. Consequently, the relationship between fluorescence and 641 

tree age reported here cannot be generalized or used to track age classes.  Further studies, 642 

especially dedicated experiments and modelling activities, may help in understanding how the 643 

fluorescence dynamics can contribute to a better description of the environment, age-related 644 

dynamics and climate interactions. The use of models incorporating fluorescence (e.g., van der 645 

Tol et al., 2009; Hernández-Clemente et al., 2017) coupled with ecosystem process model for 646 

estimating storage and flux of carbon, nitrogen and water (e.g., BIOME-BGC, Running & 647 

Gower, 1991) in future research may help in better describing and understanding the role of 648 

fluorescence in age-related processes. 649 

 650 

The need to use normalized SIF metrics at coarse resolution scale 651 

Although new progress has been made in the methodological and technical aspects of 652 

fluorescence signal retrieval from space, as shown in recently published global maps (e.g., 653 

Joiner et al., 2016), there are definite limitations for SIF interpretation based on large satellite 654 

pixels (e.g., GOME-2, 40x80 km; GOSAT, 10x10 km), which are inevitably comprised of 655 

mixed components. Although several orbital missions acquire far-red SIF at better spatial 656 

resolutions (e.g., OCO-2, 2x2 km; and the upcoming ESA TROPOMI/Sentinel-5P, 7x7 km), 657 
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the possibility to acquire red SIF is not yet available from space at these resolutions. Some of 658 

these disadvantages will be mitigated with the advent of the FLEX mission, which will provide 659 

complete fluorescence emission spectra globally, including red SIF, at an ecologically relevant 660 

spatial scale of 0.3x0.3 km, thus reducing the mixture problems currently encountered. The 661 

intra-pixel mixture effect is a confounding factor for SIF signal interpretation and it should be 662 

mitigated wherever possible and only after understanding the impact of spatial scale on the SIF 663 

signal, it will be possible to properly exploit the use of fluorescence for plant status or for 664 

biomass applications in heterogeneous landscapes.  665 

For coarse spatial resolution remote sensing observations, the computation and interpretation 666 

of the true fluorescence yield (as presented in Eqs. 4 and 5) is challenging, due to the challenge 667 

in characterization of SIF and APAR for pure target vegetation components. Our results indicate 668 

that the mixing of components at coarse spatial resolutions can be considered a ‘contamination’ 669 

that hinders the analyses and obscures the relationships between fluorescence and tree age, so 670 

that they are no longer clearly detectable in the aggregated (coarse) pixels. Results from analysis 671 

with spatially aggregated data at stand-scale revealed that the relationships between red SIF 672 

radiances and yields (Fig. 10a, b) were substantially weakened by spatial averaging. In fact, the 673 

statistical success in describing the relationship for red SIF yield was reduced by almost 60% 674 

(R2: 0.65 → 0.27, Figs. 9a, 10b) and for red SIF radiances by ~50% (R2: 0.45 → 0.24, Figs. 7a, 675 

10a), and the aggregated trends appeared more linear, solely due to spatial aggregation from 1 676 

m to 84 m. To mitigate the impact of surface heterogeneity, we propose the CCFI, which was 677 

able to produce acceptable results across a range of spatial resolutions (Fig. 12). In the use of 678 

the CCFI, the fclob normalization may be closely related to the fraction of Intercepted PAR 679 

(Pickett-Heaps et al., 2014), while less related to the amount of canopy pigments and stand 680 

darkness. Thus, CCFI, by exploiting fractional cover, seems able to minimize the effects of 681 
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canopy structure, enhancing differences in the fluorescence yield of young and old loblolly pine 682 

trees.  683 

The vegetation fractional cover is a key vegetation parameter that has already been successfully 684 

produced using different remote sensing techniques, by exploiting optical or LiDAR imagery, 685 

from several current and past airborne or satellite data operating at different spatial and temporal 686 

resolutions (e.g., Chen & Cihlar, 1996; Carlson & Ripley; 1997; Gutman & Ignatov, 1998; 687 

North, 2002; Latifovic & Olthof, 2004; Jimenez et al., 2005; Baret et al., 2007; Olthof & Fraser, 688 

2007; Verhoef & Bach, 2007; Busetto et al., 2008). In the context of the FLEX mission, 689 

vegetation fractional cover could be dynamically derived at higher spatial resolution from 690 

Landsat or Sentinel-2 like missions and then incorporated into the FLEX processing chain to 691 

compute the CCFI. The vegetation fractional cover can be more easily estimated than APAR 692 

from classification techniques and land use/cover maps. The real benefit in using fractional 693 

cover rather than APAR as a normalization tool is that it is more independent of illumination 694 

conditions and more stable in time. Thus, it is not mandatory to measure or compute it 695 

simultaneously with fluorescence, although it is necessary for APAR, an instantaneous quantity 696 

highly dependent on time of acquisition, as fluorescence is. For the satellite perspective, the 697 

cosine of the zenith angle normalization can be added to CCFI to take into account the effects 698 

of temporal variability of incoming PAR.  699 

The computation of CCFI is quite straightforward since it only requires, in addition to SIF 700 

radiances, the knowledge of the fractional vegetation cover in each pixel. However, this 701 

normalization cannot be considered as a replacement of the true SIF yield, but rather a 702 

complementary index that can be used under specific assumptions. CCFI is not applicable in a 703 

general framework at canopy level with airborne or satellite measurements, but only in some 704 

conditions, where two components with high fluorescence contrast contribute to the recorded 705 
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signal. For savannah-like ecosystems, forests without understory and crops in certain 706 

phenological phases, this normalization technique may help to better detect plant status and 707 

processes. This index is not particularly suited for fragmented agricultural landscapes with 708 

different crops within the same pixel or for complex mixed forests, and therefore additional 709 

studies are needed to define strategies for global scale applications. Moreover, further studies 710 

exploiting new emerging 3-D radiative transfer models incorporating fluorescence, like 711 

FluorWPS (Zhao et al., 2016), FluorFLIGHT (Hernández-Clemente et al., 2017) and DART 712 

(Gastellu-Etchegorry et al., 2017) will help to test the performance of CCFI and the effects 713 

caused by the canopy structure on the fluorescence signal recorded from mixed pixels. In 714 

summary, the CCFI index can be applied, under certain conditions, to coarse spatial resolution 715 

data to minimize confounding factors due to the spatial variability of canopy structure, and it is 716 

expected to be suitable for applications assessing vegetation function in future Earth 717 

Observations in the fluorescence era. 718 
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