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Abstract

We present a Visual Analytics approach that addresses the detection of interesting patterns
in numerical time series, specifically from environmental sciences. Crucial for the detection of
interesting temporal patterns are the time scale and the starting points one is looking at. Our
approach makes no assumption about time scale and starting position of temporal patterns
and consists of three main steps: an algorithm to compute statistical values for all possible
time scales and starting positions of intervals, visual identification of potentially interesting
patterns in a matrix visualization, and interactive exploration of detected patterns. We
demonstrate the utility of this approach in two scientific scenarios and explain how it allowed
scientists to gain new insight into the dynamics of environmental systems.

Index terms—Time series analysis, multiscale visualization, visual analytics

1 Introduction

Advancement of recent technology allows geoscientists to measure and to simulate a wide range
of variables of environmental systems. The resulting environmental time series encompass long
time periods at high (and sometimes varying) sampling rates. To study the temporal behavior
of observed environmental systems, scientists need to detect interesting patterns in these time
series.

Since the dynamics of environmental systems are typically not completely understood, the
detection of interesting patterns in environmental time series comprises two major challenges.
First, researchers often have difficulties to specify in advance what constitutes an ‘interesting’
pattern. The significance of a pattern depends on the specific application, the analysis question,
the occurrence of the pattern in time, and its concordance with domain knowledge. Second,
the time scales on which interesting temporal patterns occur are often difficult to determine.
Environmental systems show interesting patterns at very different time scales. Here, a time scale
denotes the length of intervals of a logical division of the time series.

In this paper, we present a Visual Analytics approach that addresses the detection of inter-
esting patterns in environmental time series. To address the two major challenges mentioned
above, we identified in close collaboration with geoscientists four important design requirements.
Our approach allows users to visually detect potentially interesting patterns in a comprehen-
sive visual overview, and to visually inspect and evaluate patterns simultaneously at many time
scales. This enables users to quickly assess the interestingness of detected patterns. The pro-
posed system is characterized by its conceptual simplicity and effectiveness in finding hidden



temporal patterns, though only basic statistical parameters are calculated. Its effectiveness is
based on the combination of (a) an algorithm to compute statistical values for all possible time
scales and starting positions of intervals, and (b) the human visual system to detect potentially
interesting patterns in matrix visualizations.

In particular, the contributions of the paper are the following:

e We propose a straightforward, yet significant, approach that captures characteristics of the
temporal behavior of environmental systems across all possible time scales and starting
positions of intervals based on a user-chosen statistical measure.

e We utilize the tremendous pattern recognition apparatus of humans to detect hidden
patterns of environmental time series in a matrix visualization called Pinus view which
presents the variation of a user-chosen statistical measure across all possible time scales
and starting positions of intervals.

e We demonstrate, how patterns, detected at different time scales, can be efficiently explored
with visual queries and tightly coupled visual components.

e We explain, how our prototype enabled scientists to gain new insight into the dynamics of
environmental systems.

2 Related Work

2.1 Automated Mining of Temporal Patterns

In mining algorithms, the detection of potentially interesting patterns is an algorithmic process
which is based on pre-defined assumptions about the patterns. Many mining algorithms detect
specific patterns in time series data, e.g., periodic patterns [9, 10, 31], surprising patterns [17],
sequential patterns [1], or subsequence motifs [23]. Environmental systems, however, may show
behavior that does not meet pre-defined features, e.g., type of periodicity. An example are regime
changes which are difficult to detect by mining algorithms alone (see Section 5.1 for further
details). Mining algorithms typically require users to specify important mining parameters in
advance, e.g., lengths of periods or lengths of motifs. Users often have difficulties to specify these
parameters. This is especially true for environmental time series where non-trivial processes
exhibit temporal patterns with different and typically unknown durations. Our approach makes
no assumptions about temporal patterns. It combines fundamental statistical quantities and
the tremendous pattern recognition abilities of the human user to support effective detection of
potentially interesting temporal patterns at different time scales.

2.2 Time Series Visualization

Graphical representations of time series support users in the discovery of a wide range of po-
tentially interesting patterns by taking advantage of the human ability to visually detect such
patterns and to assess them using expert knowledge [5]. Many time series visualizations have
been proposed over the last decades. Here, we discuss only methods that are relevant for this
paper, and refer to [2] for a comprehensive overview.

Spiral displays [26, 28] facilitate the detection of different kinds of periodicity in time series
data. They map a time series to a spiral-shaped time axis (see also [8]) and allow users to search
for periodic patterns by adjusting the spirals cycle length. The utility of spiral approaches is
limited to periodic data, e.g., seasonal cycles.

Time series visualization tools often tightly couple interactive visualization with efficient
mining algorithms. Hao and collaborators [12| summarize and visualize time series by their
recurring patterns. Recurrences, however, are only one feature of interest in the analysis of



environmental time series. TimeSearcher [4,13] allows users to specify various regions of interest
within a time series, and to find time series in time series databases that exhibit similar temporal
patterns. Specifying regions of interest requires users to have a general idea of what constitutes
interesting patterns. VizTree [20] takes a different approach; it computes a symbolic approx-
imation of a time series, and then visualizes the sequence of symbols in a suffix/subsequence
tree. The subsequence extraction and discretization in VizTree provides an elegant approach
to compute compact visual representations of large time series by presenting the frequency of
recurring subsequences to the user. The shape of the subsequence tree, and thus the temporal
features that can be explored, depend on the symbolic approximation parameters, i.e, length of
the sliding window and number of segments per window. Our approach does not rely on such
mining parameters. In contrast to VizTree, the pixel space of a Pinus view grows quadratically
with the length of the time series. However, as the examples show, this visualization can be
powerful.

2.3 Multiscale Approaches

Many multiscale visualization approaches support users in the exploration of large time series
data by presenting time series at several levels of abstraction. Multiscale visualization meth-
ods facilitate the information seeking process “Overview first, zoom and filter, details on de-
mand" [25]. Information mural [15] computes a miniature version of large time series data; the
density of overplotting is visualized using grayscale shading. TraXplorer [14], KronoMiner [34],
Line Graph Explorer [18] and LiveRAC [21] start with an overview of the time series data. As
users zoom, more detail is provided by changing the visual representation of the time series
data. Hao and collaborators [11] presents a space-efficient multiresolution matrix representation
of time series; the abstraction level for each cell is determined based on a numerical degree of
interest scale. BinX [3] uses binning along the time axis to present user-defined levels of aggre-
gation of the time series. Curve density estimates [19] visually represent large line graphs as a
smooth curve for a specific level of detail.

These multiscale approaches adapt the visual representation of time series to the available
screen space. The detection of interesting patterns relies on browsing through different levels of
abstraction. In contrast, we decompose a time series into a hierarchical data structure which
describes the temporal behavior of the time series at all possible time scales (see also [32,33]). A
Pinus view is a visual representation of this hierarchy. It serves as a starting point for interactive
exploration of interesting patterns.

2.4 Matrix visualization

A Pinus view is a matrix visualization of the hierarchical decomposition of a time series. Matrix
visualizations can display massive data sets in a compact visual overview (see also [16]). They
have a substantial history in helping numerical analysts and algorithm designers to gain insight
into the behavior of algorithms [27,29]. They are also a standard technique in many software
packages such as MATLAB and R. We refer to [6,30] for a comprehensive overview.

3 Design Requirements

To better understand the requirements for a tool that supports scientists in detecting interest-
ing patterns in environmental time series, we conducted informal interviews with expert users
from different domains: climate scientists trying to understand the complexity of the Earth’s
climate system and ocean modelers trying to relate temporal patterns in time series of coupled
subsystems. Based on their feedback, we identified the following requirements:
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Figure 1: Our approach to the analysis of environmental time series; the combination of (a)
an algorithm to compute statistical values for all possible time scales and starting positions of
intervals, and (b) the human visual system to detect potentially interesting patterns in matrix
visualizations. Interactive exploration allows users to quickly decide on the interestingness of a
detected pattern. The achieved results show the significance of our approach to the analysis of
environmental systems.

R1 Semiautomatic Analysis. The tool to be developed should enable researchers to conduct
analyses that characterize the temporal behavior of environmental systems across all time
scales and starting positions of intervals. Thus, a descriptive statistical measure should be
computed across all possible time scales and starting positions of intervals. The measure
should be selectable by the user.

R2 Overview Visualization. Domain experts need to see the computational results of the
analysis in an overview visualization. The overview visualization should allow users to
study the variation of the temporal behavior across all time scales and starting positions
of intervals, and to detect potentially interesting patterns.

R3 Visual Queries and Interaction. To query the time series data directly in the overview
visualization is crucial to facilitate insight into complex temporal behavior. Users should
be able to select the specific time scales and subsequences of interest in the overview
visualization, and to display the selected data in other linked visualizations.

R4 Multiple and Coordinated Views. To support visual exploration of potentially inter-
esting patterns, the tool should provide different perspectives to the time series data. It is
important that the tool provides a common time axis in all views to support side-by-side
comparisons.

4 Our Approach

We propose an approach for detection of interesting patterns in environmental time series: an al-
gorithm to characterize the temporal behavior, visual detection of potentially interesting patterns
in a matrix visualization, and interactive exploration of detected patterns. Figure 1 presents our
approach in detail.

4.1 Definitions

We begin with some basic notations and definitions. Given a time series {Y;}, we define an
interval s(p,w) as w contiguous time steps p,...,p + w — 1 starting at time step p. Note, the
interval s(p, w) can contain a varying number of data items y; € {Y;} withp < j <p+w—1
for time series with unequal sampling rates.



To analyze characteristics of the temporal behavior of the time series {Y;} at scale w, analysts
divide {Y;} into intervals s;(pj, w) over all starting positions p1, pa, - -- with p; < p;j,1 <i < j <
N — w where N denotes the time step of the last data item of the time series {Y;}. Statistical
measures then quantitatively characterize the temporal behavior within the intervals s;.

4.2 Basic Concept

We compute statistical measures for all possible time scales w and starting positions p. A specific
feature of our approach is its flexibility due to the wide range of statistical measures provided,
e.g., mean, variance, entropy. This allows for capturing a large set of temporal patterns to
address different analysis tasks and different types of data (design requirement R1).

An overview visualization, called Pinus, presents the results of the semiautomatic analysis
as a function of time scale w and starting position p. This compact and easy-to-interpret matrix
visualization allows users to identify potentially interesting patterns at multiple time scales and
to locate these patterns in the original time series (design requirement R2).

With our tool, users can retrieve and visualize patterns they have identified in the Pinus view.
They can easily formulate queries through interactive selections (design requirement R3), and
study the results of these visual queries in tightly coupled visual components (design requirement
RA4).

4.3 Semiautomatic Analysis
4.3.1 Algorithm

The algorithm computes the result of a statistical measure over all time scales and intervals as
a half N x N matrix. As statistical measures, our prototype implements mean g = % Zf\; 1 Y,
variance % Zf\i 1(yi —¥)?, and discrete entropy Zfi 1 pilog p; with a quantization of the domain
of the observed values into K bins (see Section 5.1.4 for further details).

A Dbrute-force algorithm would compute the mean, variance or entropy for each interval
s(p,w) one at the time, e.g., taking the sum of p + w — 1 data items to compute the mean of
the interval s(p, w).

We speed-up the computation of the result matrix C' as follows. To compute the result matrix
C for the statistical quantity mean, the algorithm utilizes the hierarchical structure of the result
set to compute the sum of w consecutive time steps on the fly. The algorithm initializes the N
cells ¢(p, 1) of the first column with the data item at time step p. Note, the cell ¢(p, 1) is zero
if a time step p does not contain a valid data item. The algorithm computes the sum of w > 1
consecutive time steps starting at time step p and ending at time step p+w — 1 in a bottom-up
manner using ¢(p,w) = ¢(p,w —1)+c¢(p+w—1,1). The mean of ¢(p, w) is the normalized value
c(p,w)/wfor 1 <p< N —w+1.

The computation of the variance requires the matrix C' and an additional matrix C2. The
algorithms initializes the first column of C2 with the square of the data items. Here, the cell
c2(p,w) stores the sum of the squares of the w consecutive time steps starting at time step p
and ending at time step p+w — 1. The computation of the sum of squares for each cell is similar
to the schema of matrix C.

To compute entropy of subsequences, the algorithm determines for each data item at time
step p the bin in which it falls; the bin label is stored in the vector ybin[p]. Next, the algorithm
stores the bin counts of K bins for each subsequence starting at time step p in a matrix B.
The algorithm initializes the cells b of B with b(p, ybin[p]) = 1 and zero elsewhere. To compute
the entropy of the subsequences starting at time step p and ending at time step p + w — 1, the
algorithm iterates over all possible window lengths w > 1 and updates the histogram for each
starting position p on the fly using b(p, ybin[p +w — 1]) = b(p, ybin[p +w — 1]) + 1. The entropy



of the subsequence is the discrete entropy of the updated histogram b(p,!) for 1 <1 < K and is
stored in the cell ¢(p,w). Note, the entropy of the cells ¢(p, 1) are zero.

4.3.2 Time Complexity

To determine the computational complexity of the algorithm, we analyze the computational
cost for the outer and the inner loop. Let us start with the inner loop; to iterate over all
possible starting positions p. The computational cost to determine the statistical quantities for
all intervals s(p,w) of a given w is linear in the length of the time series. Since we iterate over
N different window lengths w in the outer loop, the total computational effort to compute the
result matrix C' is O(N?).

Although N typically ranges from 102 to 10° in environmental sciences, and thus, N2 is large,
the computation is feasible. Furthermore, the result set can be restricted in practice, as follows:
First, since micro-scales often do not provide interesting features in large environmental time
series, users can choose a reasonably large initial window size w. Second, while the algorithm
considers all N time scales of a time series as a default, users can control the sampling of
the window lengths, e.g., considering only every second time scale (interval length). Practical
experiments showed that the characteristic temporal behavior of environmental time series can
still be captured; what is a reasonable sampling of the time scales depends on the application
scenario and the original sampling rate. A third complementary option is to sample the starting
positions. The current prototype considers all time steps of the original time series, but this
condition could be relaxed, if necessary. One should also have in mind that this concerns only
a pre-computation step that does not affect interactive work.

Table 1 summarizes the computational performance in the scientific application scenarios
(see Section 5).

Table 1: Summary of the computational performance in the application scenarios.

Data N Sampling Timing
Ocean 876 Regular 0.01s
Antarctica 4601 Varying 1.6s

4.4 Pinus View

In principle, a Pinus view is a matrix visualization. that presents each item of the resulting
hierarchy.

4.4.1 Visual Mapping

To display the values represented by the N x N matrix C, we need a mapping f : I — D from
the index space I of C to the screen space D = {1,...,W} x {1,..., H}, where W and H are
the dimensions of the screen window.

We use two different mappings (i,5) — f(i,7). The basic visual layout, defined by
f(j, k) = (k, j) and the symmetrical layout, defined by f(j,k) = (k+((N/2)—(|kmaz(4)1/2)),7),
where |kpqz(j)] denotes the number of intervals at time scale j. Both versions are shown in Fig-
ure 2. The visual appearance of these layouts differs significantly. In our collaborations, scientists
preferred the symmetrical layout because they considered it more intuitive and easier to read.
More specifically, scientists found it much easier to relate a pixel in the symmetrical Pinus view
to the corresponding interval of the original time series.

The pixel space for time series with N time steps is N2. If this exceeds the available screen
space, similar options as described in Section 4.3.2 can be applied to render a Pinus view of large
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Figure 2: Principle visual layouts of a Pinus view. This figure illustrates the relation of Pinus
pixels to the temporal behavior of the original time series. The Pinus view depicts the varia-
tion of the time series across all scales and starting points. Color indicates variance values of
subsequences.

time series. For the Antarctica time series in Figure 4, the sampling rate for starting positions
and interval length is 300. The initial window size, i.e., the initial time scale, is 1000. To further
support users in the exploration of large time series, we provide a ‘time zoom’ that allows them
to zoom into regions of interest. The ‘time zoom’ is similar to a magnifying glass and allows
users to inspect finer starting positions or scales. Please note, depicting a Pinus view for large
time series also becomes feasible with the increasing availability of giga-pixel displays.

4.4.2 Detection and Interpretation of Interesting Patterns

Figure 2 shows the visual layout of a Pinus view. A Pinus view presents a triangular-shaped
multiscale graphical representation of a given time series. Each pixel in a Pinus view represents
a statistical quantity attributed to some specific interval of the given time series. In the example
in Figure 2 it depicts the statistical quantity variance.

Users can interpret a Pinus view in two ways. For specificity let us assume that we use the
basic layout. The first strategy is to read a Pinus view from left to right to locate potentially
interesting patterns. Changes in the statistical quantity become visible by color that varies
along the horizontal direction. The second strategy is to read a Pinus view along the vertical
direction. The pixel at the very top represents the variance of the entire time series. Continuing
from there in downward direction allows users to study a time series from a global to a micro
scale. The pixels in each vertical line represent an interval with a certain starting position. In
the symmetrical layout, where intervals are mapped to their midpoints on the time axis, vertical
lines represent intervals with the same midpoint. Albeit the two layouts are different, they both
support users to locate detected patterns in the original time series.

A typical task is to identify subsections with high fluctuations, their time scale and their
starting positions. Figure 3 illustrates how the answers to these questions can be easily read
off. The length of the time series is 1000; the statistical measure depicted in the Pinus view
(Figure 3, left) is variance. The Pinus view reveals two regions, A and B, with particularly high
variances. Reading off the changes in color along the vertical direction, it becomes obvious that
region B represents a much stronger trend than region A. The Pinus view also shows that the
high variance values in region A occur on a much longer time horizon than in region B. Looking
at the original time series (Figure 3, right), we can easily relate region B to region b in the
original time series, where the observable shows a strong negative trend between time steps 600
and 800. The explanation of region A is not that obvious at a first glance. The large variances
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Figure 3: An exemplary time series and its Pinus view. Users can identify regions A and B
with variance values in the Pinus view and their corresponding temporal patterns a and b in
the time series. Color indicates variance values of subsequences.

indicated by A are induced by a steady rise in the observed values between the time steps 1 and
600 (region a in Figure 3, right).

Please note, we have chosen a rather small time series as a didactic example. The temporal
characteristics can easily be detected in the line plot — down to the time scales that are visually
resolved. This, however, will not be the case for long environmental time series that contain
many thousands of time steps. Of course, the Pinus view can be utilized more generally for
depicting all kinds of variables that can be associated to intervals of time series.

In addition to identifying minima and maxima in a Pinus view, one can also distinguish
isolines and enclosed regions. We gathered qualitative feedback to understand the interpretation
of these features. It became quite clear that it is highly dependent on the specific application
and task, and, therefore, requires domain knowledge. For example, in climatological time series,
rather large regions of relatively intense color, e.g., representing entropy, may hint at significant
climatological processes.

4.4.3 Selection of Interesting Time Scales

We received ambiguous user feedback regarding strategies for selecting appropriate time scales
from the Pinus view. Again, it seems to be dependent on the application and task. Thus, we
cannot provide clear-cut guidelines. One exemplary strategy that was applied in some cases is the
following. Scientists start at the bottom of the Pinus view and scan the x-axis for comparatively
rapid changes in the statistical measure — i.e., changes in color — that are followed by a rather
long subsequence of either relatively high or low values. Once they have visually detected such a
region in the Pinus, they scan upward along the y-axis to select the largest time scale that still
exhibits this feature. The rationale behind this strategy is that sometimes the same important
environmental processes become visible at different time scales. In such a case, scientists prefer
a larger time scale because it reduces the amount of data and ignores insignificant information.

4.5 Interactive Exploration

Figure 4 shows a typical analysis scenario. The Pinus view is the starting point for detecting
potentially interesting patterns (see A). Our approach supports users to visually inspect and
evaluate detected patterns (see B). An important feature of our analysis tool is that users can
easily formulate queries against the time series data to derive different visual views of detected
patterns (see C'). The tool provides an intuitive visual mechanism to formulate queries through
interactive selections. Users can derive versions of the time series at different time scales by
defining a horizontal line brush in Pinus. The selected time range depends on starting and end
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Figure 4: The visual interface of the prototype. The figure shows the Antarctica time series.
The panel A (left) is the Pinus view of the Antarctica. The Pinus view shows the variation
of the entropy for many time scales and time steps. The color palette goes from white (zero
entropy) to dark green (max. entropy). The slider at the bottom supports zooming in time.
Scientists can select a time scale directly in the Pinus view (B). Panel C (right) shows the result
of the query. The sliders in C' are the starting position and time scale of subsequences. Panel
C'1 displays the data points of Antarctica time series (dots), and the Antarctica time series at
10k year time scale (line). Panel C2 shows the distribution of the entropy at 10k year time scale.
Since the 10k year time scale has been chosen, the chart displays 15 entropy values. C'1 and
C2 are aligned along a common time axis; each entropy value covers a 10k years horizon. The
heatmap (C3) shows the density of data points at a particular time step. Black color represents
missing values.

point of the line brush, which can span a single interval, any subsequence, or the complete time
series. To support effective visual analysis, our tool provides immediate visual feedback to users
by presenting the results of the visual queries in additional visual components. In the current
prototype, we provide dot and line plots, as well as heat-maps. Adapting time scale, starting
position, and size of the inspected subsequence in these additional visual components in C' in
turn affects the Pinus view, which visually highlights the currently inspected time scale and
subsequence. This provides a flexible mechanism to inspect individual time scales at various
levels of detail.

4.6 Data Quality

Data quality is an important issue in the analysis of environmental systems. Data is often
subject to noise due to errors at various stages of measurement. Our approach is robust against
noisy temporal data. Since noise usually increases with frequency, it becomes visible through
large variations between adjacent cells along the horizontal direction, e.g., when using mean as
statistical quantity. Another data quality aspect are missing values. At finer scales, missing
values at a particular time step lead to missing values of the statistical quantity which are
then visually encoded as empty cells. Thus, the resulting Pinus view shows visual gaps at fine
scales. At coarser scales, sometimes only a few values contribute to the statistical quantity; this
increases the uncertainty of the computed quantities. Please note, computed quantities are not
wrong but more uncertain in comparison with other subsequences.



5 Use cases

In this section, we discuss two use cases from geoscientific domains: analysis of the Earth’s
climate system and ocean modeling. These use cases represent different stages of collaboration
with geoscientists. In the first use case, we explain how our analysis tool enabled them to gain
new insight into the dynamics of the Earth’s climate system. The results of the second use case
represent an early stage of collaboration.

5.1 Regime Changes of the Earth’s Climate System

An important scientific aim of climate research is to gain insight into the dynamics of the Earth’s
climate system. Our task here is to support the collaborators in identifying regime changes in
the Antarctic temperature of the past. In the following, we explain how we achieved this and
how we exceeded expectations of our collaborators.

5.1.1 Antarctic Temperature of the Past

Time series of the global temperature of the past are a valuable source of information on the
dynamics of the Earth’s climate system. The climate is continuously changing on very different
time scales. Climate scientists assume a significant fluctuation in temperature values between ice
ages and greenhouse periods. These fluctuations in temperature values could be a robust indi-
cator for regime changes of the climate system. A major scientific challenge in climate research
projects is to identify fluctuations in temperature values as regime changes. The time scales
on which regime changes occur constitute important scientific insights. Many external factors
such as the solar cycle drive the Earth’s climate system. Well-understood time scales of regime
changes will allow scientists to relate them to such external factors. A successfully established
correlation between the time scale of regime changes and external factors will facilitate a better
understanding of the complex dynamics of the Earth’s climate system.

5.1.2 Data: Glacial Climate Record

We use glacial climate record data derived from an ice core from Dronning Maud Land, Antarc-
tica [22]. The ice core represents South Atlantic temperature of the past 150k years. Scientists
determine the age of the different layers of the ice core by measuring the occurrence of the isotope
80 in the ice. A common measure of the temperature is the so-called 6 ¥O value, representing a
normalized ratio of 180 and %0 isotopes. This analysis method usually leads to uneven temporal
sampling rates. In our case the time series data had a dense sampling of temperatures for the
past 20k years, and a sparse sampling rate for the years 100k to 150k before present. With our
approach we could easily handle the uneven sampling rate, which is a challenge for many other
approaches. The sample size of the Antarctica time series is 4601 data points. We will refer to
this glacial climate record as the ‘Antarctica time series’ throughout this section.

5.1.3 Task: Detect Robust Indicators of Regime Changes
The task is to support scientists in detection of regime changes as well as their time scale and
timing. In the following, we report how scientists utilized our tool to detect regime changes.

5.1.4 Characterize Temporal Fluctuations

Scientists used variance and entropy as statistical measures. In the initial analysis steps, it
became apparent that entropy is superior for solving the task. Here the term entropy refers to
the discrete entropy of the continuous temperature domain.

We compute the entropy of the Antarctica time series according to the following algorithm.

10



1. Global quantization of the temperature domain. The temperature domain is divided
into a number of bins with width A.

2. Probability density estimation. For a given interval s(p,w), the probability density
f(z;) is computed, based on the global quantized temperature domain, as bin count, that
is, the number of temperature values y; falling into the same bin. Let v the bin count of
the k-th bin, then f(x;) = vx/N. Note that Af(x;) are the building blocks of a density
histogram. This density histogram is completely determined by the subsequence s(p, w)
and the choice of the global A (see [24] for further readings).

3. Compute entropy. The discrete entropy is calculated for each interval s(p,w) by com-
puting the discrete entropy of the corresponding histogram from step 2.

Glacial climate in the circum-Antarctic regions has a millennial variability in temperature
with amplitudes of 1 — 3°C. We decided to compute the entropy using a bin width A = 2°C.

5.1.5 Pinus: Detect Strong Temperature Fluctuations

The Pinus view (Figure 4) reveals a significant difference in the entropy values around the 10k
year time scale in comparison to other time scales and intervals. The high entropy values around
the 10k year time scale indicates high disorder in the distribution of the temperature values. The
discrepancy in the entropy values across all possible time scales is interesting, since it suggests
that these fluctuations are regime changes and that they occur at the 10k years scale.

5.1.6 Interactive Exploration

Scientists conducted several visual queries against the Antarctica time series to understand
under which conditions the disorder in the temperature values at the 10k years scale occurred.
Figure 4 (B) shows a query that revealed interesting temporal features. Panel C' (right) shows
the result of this query. Panel C1 displays the data points of Antarctica time series (dots), and
the Antarctica time series at 10k year time scale (line). Panel C'2 shows the distribution of the
entropy at 10k year time scale. Note, the chart displays 15 entropy values which correspond to
10k year intervals. Since both views are aligned along a common time axis, it becomes obvious
that high entropy values are correlated to temperature shifts from cool to a warm condition.
Panel C'2 shows a clear bi-polar pattern where the entropy values between the two high-value
poles fluctuate around 0.5. Scientists identified these low entropy intervals as an interglacial
state that shows stable climate condition.

5.1.7 Insights

Our tool allowed our collaborators to establish scientific evidence for their initial assumption.
First, the two high entropy values at the 10k years scale seem to be regime changes. Important
indicators are the compact shape of high entropy regions along the horizontal direction, e.g.,
abrupt temperature fluctuations, and the persistence of the high entropy values across higher
time scales. Second, our tool supported scientists to relate the high entropy values to the 10k-
20k years before present interval and 130k-140k years before present interval, respectively. From
the occurrence at these time intervals and from their temporal distance of about 100k years,
our collaborators derived the hypothesis that the detected regime changes might be related to
the 100k years cycle of the Milankovitch cycles. The 100k years cycle of the Milankovitch cycles
describes the transition from a circular to an ellipsoidal orbit of the Earth around the Sun.
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5.1.8 Significance of our Approach

Our collaborators use our analysis tool in their daily scientific work. The reported results are
just the first findings; the next step in this collaboration is to extent the tool to compare time
series of well-known factors that impact the Earth’s climate system. Our collaborators plan to
report interesting findings in their community.

5.2 Ocean Modeling

The aim of ocean modeling is to study or predict the behavior of the ocean because a direct
observation or manipulation is difficult or even impossible. Ocean modeling allows scientists to
(a) evaluate existing theories about different processes in the ocean by comparing the model
output to measured data, and to (b) perform experiments which cannot be conducted in the
real world.

Our collaboration with ocean modelers is at an early stage. As a first step, we decided
to utilize our tool to explore well-understood observational data. In the following, we report
the results of this test. Since with our tool anticipated patterns were successfully detected at
multiple time scales, the next step in this collaboration is to utilize it for detection of patterns
in the output of an ocean model.

5.2.1 Data: Sea-level Anomalies

The data represent sea-level anomalies of the Philippine Sea, obtained by a combination of
satellite altimeters'. Sea-level anomalies are the deviation of the sea surface from a long-term
mean. The time series comprises weekly sea-level records from October 1992 to July 2009 with
876 time steps in total.

5.2.2 Detect Anticipated Patterns at Multiple Time Scales

The Philippine Sea time series contains several characteristic patterns at varying time scales that
have been extensively studied by geoscientists. The aim of this study was to evaluate, whether
scientists are able to detect with the Pinus all of the following patterns:

e A positive global trend. In the considered time period, a clear sea-level rise has been
observed.

e A pronounced seasonal cycle. The height of the ocean’s surface is influenced by the
temperature of the atmosphere. Warm air temperature induces a warming of the upper
layer of the ocean. Since the density of water is inversely related to its temperature, a
warm ocean has an increased volume. Therefore, sea surface heights generally increase
with air temperature. Because the ocean reacts with some delay, the seasonal cycle can
be split into a summer/autumn state and a winter/spring state.

e Inter-annual variations. The sea level of the Philippine Sea is strongly influenced
by the El Nifio Southern Oscillation (ENSO). ENSO is an oceanographic-meteorologic
phenomenon which influences the sea level in the form of two distinct events. An El Nifio
event induces low sea surface heights while a La Nina event causes increased sea surface
heights. These two events recur approximately every two to seven years with varying
duration and intensity (for further reading, see [7]).

o Extreme sea surface heights from 1997 to 2000. These extremes were caused by a
very strong El Nifio event in 1997/98 followed by a rather long La Nina condition.

"http:/ /www.aviso.oceanobs.com/duacs/ [access date 2010-04-15].
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Figure 5: Analysis of sea-level height anomalies from October 1992 through July 2009. Color
indicates mean values of subsequences. A positive global trend becomes apparent at time scales
in regions T72a and T'2b. On the contrary, choosing the time scales in regions 7'1a or T1b for
the analysis would not reveal this trend. Time scales in region S show a pronounced seasonal
cycle. Further, the Pinus depicts El Nino and La Nina phenomena (region E1) and extreme sea
surface heights (region E2).

5.2.3 Results

Scientists selected the arithmetical mean as the statistical measure for the analysis. Figure 5
shows the resulting Pinus view along with the original time series. The Pinus exhibits distinct
patterns on very different time scales. One can easily identify a positive global trend by studying
the upper part of the overview visualization. Here, the colors progress from white to light orange.
The trend is also an illustrative example of how the choice of time scale can influence the analysis
outcome. The time scales in regions 77a and 77 in Figure 5 do not reveal a global trend while
regions T2a and T2b clearly show it.

The small time scales in region S depict the seasonal cycle in the sea level data. Periods of
rather low sea-level anomalies (winter /spring state) and periods of rather high sea-level anomalies
alternate. The fluctuations between these two states appear to be of varying intensity. This
is caused by a strong influence of El Nifio/La Nina events which induce high or low sea-levels,
respectively. This impacts the arithmetical mean. Therefore, El Nino and La Nina patterns can
be detected at larger time scales (see region E1). The extreme sea-level heights from 1997 to
2000 can also be identified in the Pinus view (Figure 5, region E2). A short but very intense
period of relatively low sea level (1997/98 El Nino) is followed by a long period of rather high
sea level (La Nina condition). We can also observe the tremendous influence of these extreme
events on larger time scales.

In summary, our approach enabled ocean modelers to easily detect a wide range of anticipated
patterns in the sea-level anomalies time series: strictly periodic recurrences, sporadic recurrences,
trends, and outliers. These results encourage the application of our approach to actual ocean
model output.

6 Summary and Conclusion

We proposed a multiscale analysis approach that captures interesting patterns in environmental
time series. To design and implement a versatile, application-oriented and field-ready tool,
we conducted informal interviews with geoscientists. Based on their feedback, we derived four
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important design criteria. The tool should offer (i) computation of (user-selectable) statistical
quantities that characterize the temporal behavior across all time scales and starting positions
of patterns, (ii) visual detection of potentially interesting patterns, (iii) specification of visual
queries, and (iv) immediate visual feedback in multiple linked views to facilitate an efficient
interactive exploration of patterns at different time scales via linked views.

To meet these requirements, we utilize a matrix-like visualization to display the statistical
quantities of the hierarchical decomposition of a environmental time series. Therefore, we decided
to compute rather basic statistical measures for (up to) all intervals of the time series and display
them in an orderly way. For visualization of the resulting matrix we proposed a compact and
easy-to-interpret visualization, called Pinus. A Pinus view presents the variation of the user-
chosen statistical measure across time scales and starting positions of intervals.

We demonstrated the versatility of the Pinus view in pattern mining (detection of patterns,
determination of the time scale and position of potentially interesting patterns). We discussed
two possible layouts of a Pinus view: basic layout and symmetrical layout. An evaluation of
the differences between the two layouts regarding perception and interaction, as well as the
implications for effective visualization is left for future work. We also plan to identify additional
effective mappings, e.g., for different analysis tasks or symbolic time series, utilizing known
matrix visualization techniques. It is obvious that the Pinus view can be used for display of
every statistical and non-statistical signature associated to intervals of time series. A drawback
of our approach, in comparison to other visualization methods, is the quadratic pixel space
needed to render a Pinus view.

We explained how our approach enabled scientists to identify subsections of time series as
regime changes of the Earth’s climate system. Our tool allowed scientists to establish sound
scientific grounding that the regime changes are correlated with Milankovitch cycles. These
results demonstrate the significance of the proposed approach to the analysis of environmental
systems. However, a more extensive evaluation needs to be done to derive general guidelines on
how to detect patterns in a Pinus view. The next step is a longitudinal user study to gather
empirical evidence on the effectiveness and efficiency of the method.

Overall, the research presents a first step to a Visual Analytics approach that supports
users in detecting hidden patterns in large environmental time series. However, our approach
is not limited to environmental science. Since it makes no specific assumptions and only very
fundamental statistical quantities are depicted, the proposed approach is generic. The method
can be applied to all kinds of time series. Whether this reveals interesting features depends
on the application. The next step of this research project aims at algorithms and visualization
techniques that allow our collaborators to explore correlations between time series, as well as
analysis of truly massive time series.
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