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Abstract
Environmental models produce geospatial time series containing many spatio-temporal patterns. Scientists need
to understand these patterns to analyze the behavior of the simulated environmental systems. We combine clus-
tering and visualization to generate an intuitive visual summary of geospatial time series that captures the data’s
prominent spatio-temporal information. As a first step, we evaluated our approach with well-understood observa-
tional data. Our visualization depicted all prominent features of these data suggesting that our method is readily
applicable to environmental model output.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—
I.6.6 [Simulation and Modeling]: Simulation Output Analysis—

1. Introduction

The aim of environmental simulation modeling is to study
or predict the behavior of System Earth, e.g., ocean circu-
lation, landslides, flood inundation, or earthquake induced
ground motion. Simulations of such real-world systems pro-
duce geospatial time series.

To study the behavior of environmental systems, scientists
need to understand the spatio-temporal patterns hidden in the
geospatial time series. Visualization has proven to be an ef-
fective approach to gain insight into time series [AMST11].
In this paper, we focus on geospatial time series where each
time step describes a spatial configuration represented by
a 2D grid of scalar values. Two prominent techniques for
visualizing geospatial time series are small multiples and
map animation [Tuf90,Tuf01,AAG03]. However, these tech-
niques are only appropriate for rather small geospatial time
series. Small multiples show only a very limited number of
time steps because of screen space limitations. For map ani-
mations, the user may have difficulties to perceive important
geospatial patterns in a large stream of images due to change
blindness [TMB02, FGB11].

In this paper, we introduce an intuitive visual summary
of geospatial time series that depicts the data’s prominent
spatio-temporal patterns in a compact visualization. This vi-
sual summary is based on clustering that reduces the numer-
ous spatial configurations of a time series to a small number

of representative clusters. We use the cluster labels to seg-
ment the geospatial time series into blocks of similar spa-
tial configurations. These analytical results are visually en-
coded in two components: a spatial configuration view that
depicts extracted spatial patterns, and a sequence view that
displays their occurrence over time. A first evaluation with
well-understood observational data shows that our approach
captures the data’s prominent spatio-temporal information.

2. Related work

As related work we briefly discuss domain specific spatio-
temporal clustering in the geosciences and the combination
of clustering and visualization for time series analysis.

The aim of clustering is to divide data into groups of sim-
ilar objects. The identified clusters provide a condensed de-
scription of the original data (see [JMF99] or [HK06] for
further readings). Within the geosciences, meteorologists ap-
ply clustering to geospatial time series. The clustering serves
as an automated analysis step to extract prominent spatial
configurations of the atmospheric circulation [Hut96,Hut00,
Hor10, RVLS10]. These approaches do not combine their
spatio-temporal clustering results with interactive visualiza-
tion for an in-depth exploration of spatio-temporal patterns.

A combination of clustering and interactive visualization
to facilitate the exploration of time series data is utilized in
many visualization approaches [vWvS99,LKL05,HMJ∗12].

c© The Eurographics Association 2012.



P. Köthur et al. / Author version: for GeoVA(t) review purposes only. DO NOT DISTRIBUTE.

However, these techniques do not cover spatial data. Ap-
proaches specifically addressing (geo)spatial time series fo-
cus on the comparison of spatial regions with regard to their
temporal behavior [DJMK06, WS09]. In contrast to these
methods, we want to capture the global spatio-temporal pat-
terns in the data. Bruckner and Möller [BM10] also focus
on global patterns, but their visualization is tailored to visual
effects design; a different application problem.

3. Background

Our application scenario is ocean modeling. We collabo-
rated with several geoscientists and adopted a user- and task-
centered approach [DKS∗10] to derive a thorough under-
standing of the domain problem.

3.1. Ocean modeling

Ocean modeling serves two purposes. First, it is a way of
evaluating existing theories about different processes in the
ocean by comparing the model output to measured data. Sec-
ond, it is a way of performing experiments that scientists
cannot conduct in the real world [Ste05].

Ocean models produce different kinds of time series data
(1D, 2D gridded, volumetric). We focus on time series of
regularly structured 2D grids.

3.2. Task analysis

We distinguish two main objectives requiring visualization
in ocean modeling: first, the debugging and refinement of
the model, and second, to gain scientific insight about the
system under study. Model debugging involves, among oth-
ers, the identification of outlying spatio-temporal patterns. If
scientists cannot explain a specific pattern with geophysical
laws or other expert knowledge, the spatio-temporal pattern
probably results from erroneous model code and demands
debugging and refinement.

Gaining scientific insight from ocean models requires the
detection of prominent spatio-temporal patterns. Scientists
often describe these patterns as temporary, possibly recur-
ring, regional outliers. A prior specification of what con-
stitutes a prominent spatio-temporal pattern is generally not
possible because their definition is highly dependent on the
spatio-temporal context. Scientists need to study many char-
acteristics, such as geographic location, spatial extent, pat-
terns in neighboring geographic regions, nature of emer-
gence and disappearance of patterns, duration, reoccurrence,
etc., to decide whether a specific spatio-temporal pattern is
prominent.

Based on our task analysis, we identified the following
design requirements.

DR1 Extract prominent spatio-temporal patterns.

DR2 Present the prominent spatio-temporal patterns to the
user.

DR3 Preserve the spatio-temporal context.
DR4 Point to potential outlying patterns.
DR5 Point to recurring patterns.
DR6 Allow for interactive exploration of spatio-temporal

patterns.

The approach introduced in this paper supports design re-
quirements 1 through 4. Design requirements 5 and 6 will be
future work.

4. Our approach

The spatio-temporal context of environmental simulation
model output plays an important role (see Section 3.2).
Therefore, only very limited aggregation of the spatial and
temporal dimensions is feasible. For example, computing
moment statistics such as mean or variance for each time
step (= spatial configuration) would cause a complete loss of
the spatial information. Likewise, computing these statistics
for each grid point over all time steps would result in a loss
of the temporal information.

In our approach, we combine clustering and visualiza-
tion to focus on prominent patterns while preserving spatio-
temporal context information. In the first step, we cluster the
time steps of an ocean model output. This reduces the time
series to a small number of clusters with each cluster rep-
resenting a certain type of spatial pattern occurring in the
data. Hence, time steps containing similar spatial patterns
are grouped together in the same cluster. In the second step,
we partition the time series into blocks containing the same
type of spatial pattern by utilizing the cluster labels. Finally,
we present these analytical results in a combination of two
different visual components to the user.

4.1. Clustering and segmentation

We apply bottom-up hierarchical clustering to all time steps
of the time series. Initially, every time steps forms its own
cluster. A similarity measure successively merges the time
steps into bigger clusters, starting with the two most simi-
lar clusters. The result is a binary tree called dendrogram.
The dendrogram depicts the cluster hierarchy with all clus-
ters being merged into one at its root. The resulting cluster
hierarchy provides a full description of the data. It also facil-
itates top-down exploration which is important in our appli-
cation scenario. Scientists do not need to specify the number
of clusters in advance. They may start with a small number
of clusters, i.e., a coarse description of the data, and grad-
ually move down the hierarchy to increase the number of
clusters and, hence, the level of detail. Inspired by its fre-
quent use in image retrieval and image sequence segmenta-
tion [VRB00, KCB03, DG03, LYJ05], we apply the sum of
squared errors to measure the similarity between time steps.
The agglomeration method used was average linkage.
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In a second step, we segment the original time series by
labeling each time step with its associated cluster number.
The result is a list denoting cluster affiliation of the time
steps. This list successfully reduces the data to its repre-
sentative spatio-temporal patterns, satisfying design require-
ment 1 (DR1).

4.2. Visualization

We propose a visualization that combines two views to
capture the data’s prominent spatio-temporal patterns (Fig-
ure 1).

The spatial configuration view depicts representative
types of spatial configurations in the time series. We derive
a representative spatial pattern for each cluster by comput-
ing an average grid of its members. We show the represen-
tative grids in separate maps and arrange them in a small
multiple layout. A colored frame around each representa-
tive grid denotes its cluster affiliation. We use one of Color-
Brewer’s [HB03] qualitative color schemes for color coding.

The sequence view presents the temporal occurrence of
spatial patterns in the time series. We visually encode the
time series as a horizontal bar that maps the time steps
to their associated clusters. Cluster affiliation is mapped to
color, as shown in Figure 1 (the solid black line serves eval-
uation purposes, see Section 5.2). Due to spatial and tempo-
ral autocorrelation in environmental modeling data, subse-
quent time steps often have the same cluster affiliation. This
has the effect of presenting the time series as a sequence of
coherent blocks, which leads to a concise representation of
the temporal information. This approach even scales to large
time series. Note, scalability and the visuals have their limits
when the mapping of time steps to clusters does not yield
visually coherent blocks. However, these extreme data are
very unlikely in environmental modeling.

We visually link the spatial configuration view and the
sequence view using a consistent color scheme. Vertical ar-
rangement of the views results in a compact display and em-
phasizes the visual linking through color. The combination
of the two views presents an overview of the spatio-temporal
patterns in the model output, meeting DR2 and DR3.

The spatial configuration view and the sequence view may
be combined with further visualizations to meet other de-
sign requirements. For example, we suggest a histogram of
cluster occurrences to further facilitate the identification of
outliers and to satisfy DR4 (Figure 1, bottom). Small cluster
sizes imply rare occurrences of the associated spatial pat-
terns. Therefore, users may be pointed to outlying patterns
by studying this histogram. Please note that it can only hint
at potential outliers. Users will still have to consult the spa-
tial configuration view and the sequence view to further an-
alyze the spatio-temporal context.

5. Evaluation

Our application example stems from ocean modeling. We
evaluated our method using well-understood observational
data. In the following, we introduce the test data and present
our findings.

5.1. Test data set

We use sea-level anomalies data obtained from a combina-
tion of several satellite altimeters. This altimeter product was
produced by Ssalto/Duacs and distributed by Aviso, with
support from Cnes (http://www.aviso.oceanobs.
com/duacs/). The geospatial time series consists of
weekly global sea-level data ranging from October 1992 to
July 2009. In a preprocessing step, we subtracted a global
trend and spatially rescaled the data obtaining 876 grids with
a spatial resolution of 194×96.

The test data set has well-defined characteristics that
should become apparent in our visualization:

• a pronounced seasonal cycle,
• interannual variations in the Tropics (El Niño/La Niña),
• a very strong El Niño/La Niña event in 1997/98.

5.2. Results

We evaluated our visualization in collaboration with a geo-
scientist. We generated visual summaries of the test data for
different numbers of clusters; gradually increasing the num-
ber of clusters from two to twelve. The geoscientist consid-
ered eight clusters an adequate description of the test data’s
prominent characteristics (Figure 1).

The periodic appearance of the clusters A, B, and C in the
sequence view describes a pronounced seasonal cycle. Clus-
ter B clearly shows a Northern Hemisphere winter/spring
pattern. Negative sea-level anomalies in the Northern Hemi-
sphere can be attributed to a low volume of the ocean in-
duced by low temperature. Likewise, clusters A and C re-
semble a Northern Hemisphere summer/autumn state. For
further validation, we overlaid the sequence view with an
El Niño/La Niña index [NOA11] (solid black line). The in-
terpretation of this index is straightforward. If the index ex-
ceeds the upper dotted line, we should observe an El Niño
pattern (with some small delay). A La Niña pattern should
follow shortly after the index undershoots the lower dot-
ted line. Our visualization clearly correlates with the index.
Clusters E, F, and G describe the outstanding 1997/98 El
Niño/La Niña, and Clusters D and H represent El Niño or La
Niña patterns of lower intensity. In addition, the histogram of
cluster occurrences also points to the El Niño/La Niña pat-
terns as outstanding features, since the associated clusters
are rather small.

Applying our approach to well-understood observational
data yielded promising results. The correlation between our
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Figure 1: The result of our approach: An intuitive visual summary of geospatial time series that captures the data’s prominent
spatio-temporal patterns. Shown here are weekly sea-level anomalies from October 1992 to July 2009. The spatial configuration
view shows a representative spatial pattern for each cluster (A to H). The sequence view depicts the occurrence of theses
patterns over time. A consistent color scheme visually links all views. Summer and winter states are shown in clusters A, B,
and C. Clusters D, and H depict El Niño and La Niña patterns. A very strong El Niño/La Niña event in 1997/98 is captured
by clusters E, F, and G. Our visualization correlates with an El Niño/La Niña index that is depicted as a solid black line in the
sequence view. In addition, a histogram of cluster occurrences points to potentially outlying patterns (here: El Niño/La Niña).

visualization and an El Niño/La Niña index shows that our
approach captures the prominent spatio-temporal patterns
in geospatial time series (see Section 5.1) and successfully
meets DR1 through DR4. This encourages the application of
our method to actual environmental model output.

6. Discussion and future work

We demonstrated that our novel visualization provides a
concise visual summary of prominent spatio-temporal fea-
tures in geospatial time series. This is a first step towards a
comprehensive visual analytics approach that meets all de-
sign requirements. Future work will facilitate interactive ex-
ploration of the spatio-temporal patterns shown in the visual
summary (DR6). Interaction should enable the geoscientist
to determine clustering parameters, explore the cluster hier-
archy, zoom, filter, and query for detailed information.

A second focus is on further evaluation. Although recur-
ring patterns (DR5) become apparent in our exemplary visu-

alization, there are established techniques for depicting peri-
odicity in data (e.g., [CK98,Chu98]). We will evaluate them
regarding our application. In addition, our segmentation of
geospatial time series by means of clustering can be regarded
as a symbolic representation of the time series. This allows
the application of well-known data mining algorithms to au-
tomatically extract well-defined patterns, including period-
icities.

At last, we plan to extend our approach to multi-run simu-
lations of environmental systems. The aim will be to provide
an overview of spatio-temporal patterns in multi-run data
and to facilitate the exploration of input-output relations in
environmental simulation models.
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