
 
 
 
 
 
 
 
 

Soil moisture dynamics and soil moisture controlled runoff 
processes at different spatial scales: From observation to 

modelling 

 

 
Dissertation submitted to the Faculty of Mathematics and Natural Sciences at the 

University of Potsdam, Germany 

for the degree of Doctor of Natural Sciences (Dr. rer. nat.) in Hydrology 

Thomas Gräff 



This work is licensed under a Creative Commons License: 
Attribution 3.0 Germany 
To view a copy of this license visit 
http://creativecommons.org/licenses/by/3.0/de/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URL http://opus.kobv.de/ubp/volltexte/2011/5447/ 
URN urn:nbn:de:kobv:517-opus-54470 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54470 



 

 i

Contents: 

Contents: .................................................................................................................................................... i 
Abstract: ................................................................................................................................................... iv 
Zusammenfassung .................................................................................................................................. vi 

Chapter 1 Introduction ................................................................................................... 1 
1.1 Motivation ................................................................................................................................... 1 

1.1.1 Why soil moisture is important? .......................................................................................... 1 
1.1.2 Problems in assessment –observe at the point scale,  
interested in catchment scale ............................................................................................................. 1 
1.1.3 How is soil moisture represented in hydrological  
models (conceptual, large scale vs. hillslope scale)? ....................................................................... 6 
1.1.4 Can measured soil moisture data be used to improve  
hydrological models and how can that be implemented? ............................................................. 8 

1.2 Key research questions and approach ..................................................................................... 9 
1.2.1 Key questions: ........................................................................................................................ 9 

1.3 Experimental approach and data analysis ............................................................................. 10 
1.4 Structure of this dissertation ................................................................................................... 11 

Chapter 2 Spatial TDR technology– methodology and  
feasibility for heterogeneous field soils .............................................................................. 12 

2.1 Introduction .............................................................................................................................. 12 
2.2 Theoretical background and Signal constrained inversion ................................................ 14 

2.2.1 TDR inversion approaches ................................................................................................ 14 
2.2.2 STDR Signal inversion ........................................................................................................ 14 

2.3 Parameters and Potential error Sources of Spatial TDR-Measurements ......................... 15 
2.3.1 Technological components and setup of a Spatial TDR ............................................... 15 
2.3.2 Calibration of probe parameters ........................................................................................ 15 
2.3.3 C-G relation .......................................................................................................................... 18 
2.3.4 ε-soil moisture relationship ................................................................................................ 18 
2.3.5 Probe deformations during installation ............................................................................ 19 
2.3.6 Gravel and stones ................................................................................................................ 19 

2.4 Laboratory experiments to quantify error sources .............................................................. 20 
2.4.1 C-G relation, ε-soil moisture relation and  
constraining of inverted moisture profiles .................................................................................... 20 
2.4.2 Experiment 1: effect of uncoated and  
coated probes on the reflectogram in field soils ........................................................................... 20 
2.4.3 Experiment 2: performance in homogeneous media during transient conditions .... 22 
2.4.4 Experiment 3: effect of probe deformations ................................................................... 24 
2.4.5 Experiment 4: effect of solid objects in the integration volume .................................. 27 
2.4.6 Experiment 5: measurement of soil moisture in disturbed soil .................................... 28 

2.5 Discussion and Conclusions ................................................................................................... 30 
Chapter 3 Soil moisure dynamics and runoff generation  
in headwater catchments: learning from field data ............................................................ 33 

3.1 Introduction and Motivation .................................................................................................. 33 



 

 ii

3.1.1 How to observe the spatial distribution of soil moisture .............................................. 33 
3.1.2 Investigation of the dominating runoff processes .......................................................... 35 

3.2 Research area and additional data sets/methods incl. CATFLOW .................................. 36 
3.2.1 Research area ........................................................................................................................ 36 
3.2.2 Data Analyses and Modelling ............................................................................................ 42 

3.2.2.1 TDR travel times, depth integrated soil moisture and outliers ............................ 42 
3.2.2.2 Statistical and geostatistical analysis ......................................................................... 42 
3.2.2.3 Rank stability ............................................................................................................... 43 

3.3 Vegetation control on soil moisture dynamics:  
learning form physically based simulations ........................................................................................ 45 

3.3.1.1 Model description ....................................................................................................... 45 
3.3.1.2 Model setup and simulation variants ....................................................................... 45 

3.4 A field scale irrigation experiment to explore fast vertical  
and lateral flow processes ..................................................................................................................... 47 

3.4.1 Irrigation rates and sprinkling ............................................................................................ 47 
3.4.1.1 Installation of soil moisture profile sensors............................................................ 48 
3.4.1.2 Dye tracing .................................................................................................................. 48 

3.4.2 Control of pre-event conditions and rainfall characteristics of flood events ............. 49 
3.4.2.1 Estimating runoff coefficients .................................................................................. 49 
3.4.2.2 Estimators of catchment wetness and the meteorological forcing ..................... 49 

3.5 Results ........................................................................................................................................ 50 
3.5.1 Average dynamics and spatial variability of soil moisture at the two clusters ............ 50 
3.5.2 Average covariance structure ............................................................................................. 53 
3.5.3 Rank stability of soil moisture time series ........................................................................ 54 
3.5.4 Vegetation and soil control on hillslope scale soil moisture regimes ........................... 55 

3.5.4.1 Model sensitivity to different soil profiles .............................................................. 55 
3.5.4.2 Model fine tuning with LAI, plant cover and root depth ..................................... 56 
3.5.4.3 Simulated average soil moisture dynamics .............................................................. 57 

3.5.5 Irrigation experiment for the identification of the dominant runoff processes ......... 58 
3.5.5.1 Spatial pattern of sprinkling rates ............................................................................. 58 
3.5.5.2 Soil moisture dynamics from Spatial TDR and FDR observations .................... 58 
3.5.5.3 Soil moisture profiles ................................................................................................. 60 
3.5.5.4 Dye tracer experiment ............................................................................................... 62 

3.5.6 Control of pre-event conditions and rainfall characteristics of flood events ............. 63 
3.5.7 Analysis of bimodal runoff response ................................................................................ 64 

3.6 Discussion and Conclusions ................................................................................................... 68 
3.6.1 Deterministic and stochastic soil moisture variability .................................................... 68 
3.6.2 Simulated average soil moisture dynamics ....................................................................... 69 
3.6.3 Identification of dominating processes with an irrigation process............................... 70 
3.6.4 Soil moisture control on event runoff .............................................................................. 71 

Chapter 4 Soil moisure dynamics and runoff generation in headwater catchments: 
Learning from models of different complexity ................................................................... 73 

4.1 Motivation: how can modelling help? Different models for different questions/scales 
(incl. Hillslope scale) .............................................................................................................................. 73 



 

 iii

4.2 Model descriptions: WaSiM ETH, GLMs ............................................................................ 75 
4.2.1 Generalized linear models .................................................................................................. 75 

4.2.1.1 Predictor selection and development of the GLM ................................................ 76 
4.2.2 The hydrological model WaSiM ETH .............................................................................. 77 

4.2.2.1 Calibration of WaSiM ETH ...................................................................................... 78 
4.2.3 Data driven models to predict runoff coefficients ......................................................... 80 
4.2.4 Quasi process based model WaSiM .................................................................................. 82 

4.3 Discussion, Outlook and Recommendations ...................................................................... 85 
4.3.1 Simulated saturation deficits and observed soil moisture data ..................................... 85 

4.4 Conclusions ............................................................................................................................... 87 
4.4.1 Soil moisture at representative site outperforms large scale average wetness ............ 87 
4.4.2 GLM performance versus performance  
of the distributed rainfall runoff model ......................................................................................... 88 

Chapter 5 Discussion, Outlook and Recommendations .............................................. 89 
5.1 Limited applicability of STDR in heterogeneous soils ....................................................... 89 
5.2 TDR clusters at a representative areas: key information in key landscape units ............ 89 
5.3 CATFLOW –soil and vegetation control on soil moisture at the hillslope scale ........... 90 
5.4 Understanding flow and runoff processes with irrigation experiment ............................. 91 
5.5 Soil moisture controls on runoff............................................................................................ 91 
5.6 Cr and WaSiM ETH simulations ............................................................................................ 92 
5.7 Overall conclusion ................................................................................................................... 93 
Acknowledgements: ............................................................................................................................ 112 
References: .............................................................................................................................................. 95 
Appendix ............................................................................................................................................... 118 

 



 

 iv

Abstract: 

Soil moisture is a key state variable that controls runoff formation, infiltration and partitioning of 
radiation into latent and sensible heat. However, the experimental characterisation of near surface 
soil moisture patterns and their controls on runoff formation remains a challenge. This subject 
was one aspect of the BMBF-funded OPAQUE project (operational discharge and flooding 
predictions in head catchments). As part of that project the focus of this dissertation is on: (1) 
testing the methodology and feasibility of the Spatial TDR technology in producing soil moisture 
profiles along TDR probes, including an inversion technique of the recorded signal in 
heterogeneous field soils, (2) the analysis of spatial variability and temporal dynamics of soil 
moisture at the field scale including field experiments and hydrological modelling, (3) the 
application of models of different complexity for understanding soil moisture dynamics and its 
importance for runoff generation as well as for improving the prediction of runoff volumes. 
 
To fulfil objective 1, several laboratory experiments were conducted to understand the influence 
of probe rod geometry and heterogeneities in the sampling volume under different wetness 
conditions. This includes a detailed analysis on how these error sources affect retrieval of soil 
moisture profiles in soils. 
Concerning objective 2 a sampling strategy of two TDR clusters installed in the head water of the 
Wilde Weißeritz catchment (Eastern Ore Mountains, Germany) was used to investigate how well 
“the catchment state” can be characterised by means of distributed soil moisture data observed at 
the field scale. A grassland site and a forested site both located on gentle slopes were 
instrumented with two Spatial TDR clusters that consist of up to 39 TDR probes.  
Process understanding was gained by modelling the interaction of evapotranspiration and soil 
moisture with the hydrological process model CATFLOW. A field scale irrigation experiment 
was carried out to investigate near subsurface processes at the hillslope scale. The interactions of 
soil moisture and runoff formation were analysed using discharge data from three nested 
catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the 
superordinate Ammelsdorf catchment (49 km²). 
Statistical analyses including observations of pre-event runoff, soil moisture and different rainfall 
characteristics were employed to predict stream flow volume. On the different scales a strong 
correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events 
could be found, which almost explains equivalent variability as the pre-event runoff. 
Furthermore, there was a strong correlation between surface soil moisture and subsurface 
wetness with a hysteretic behaviour between runoff soil moisture.  
To fulfil objective 3 these findings were used in a generalised linear model (GLM) analysis which 
combines state variables describing the catchments antecedent wetness and variables describing 
the meteorological forcing in order to predict event runoff coefficients. GLM results were 
compared to simulations with the catchment model WaSiM ETH. Hereby were the model results 
of the GLMs always better than the simulations with WaSiM ETH. The GLM analysis indicated 
that the proposed sampling strategy of clustering TDR probes in typical functional units is a 
promising technique to explore soil moisture controls on runoff generation and can be an 
important link between the scales. Long term monitoring of such sites could yield valuable 
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information for flood warning and forecasting by identifying critical soil moisture conditions for 
the former and providing a better representation of the initial moisture conditions for the latter. 
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Zusammenfassung 

Abflussentwicklung, Infiltration und die Umverteilung von Strahlung in latenten und sensiblen 
Wärmestrom werden massgeblich durch die Bodenfeuchte der vadosen Zone gesteuert. Trotz 
allem, gibt s wenig Arbeiten die sich mit der experimentellen Charakterisierung der 
Bodenfeuchteverteilung und ihre Auswirkung auf die Abflussbildung  beschäftigen. Dieses 
Thema war ein Bestandteil des BMBF geförderten Projektes OPAQUE (Operationelle Abfluss- 
und Hochwasservorhersage in Quellgebieten). Als Teil dieses Projektes war der Fokus dieser 
Dissertation darauf ausgerichtet: (1) die Methode des Spatial TDR und deren Anwendbarkeit 
einschließlich der Inversion des TDR Signals in heterogenen Böden zu prüfen, (2) die Analyse 
der räumlichen und zeitlichen Dynamik der Bodenfeuchte auf der Feldskala einschließlich 
Feldexperimenten und hydrologischer Modellierung, (3) der Aufbau verschiedener 
Modellanwendungen unterschiedlicher Komplexität um die Bodenfeuchtedynamiken und die 
Abflussentwicklung  zu verstehen und die Vorhersage des Abflussvolumens zu verbessern. 
 
Um die Zielsetzung 1 zu erreichen, wurden verschiedene Laborversuche durchgeführt. Hierbei 
wurde der Einfluss der Sondenstabgeometrie und versciedener Heterogenitäten im Messvolumen 
bei verschiedenen Feuchtegehalten untersucht. Dies beinhaltete eine detaillierte Analyse wie diese 
Fehlerquellen die Inversion des Bodenfeuchteprofils beeinflussen.  
Betreffend der Zielsetzung 2, wurden 2 TDR-Cluster in den Quellgebieten der Wilden Weißeritz 
installiert (Osterzgebirge) und untersucht, wie gut der Gebietszustand mit räumlich 
hochaufgelösten Bodenfeuchtedaten der Feldskala charakterisiert werden kann. Ein Gras- und 
einem Forststandort, beides Hangstandorte mit leichter Neigung wurden mit bis zu 39 TDR 
Sonden ausgestattet. 
Um die Interaktion zwischen Evapotranspiration und Bodenfeuchte zu untersuchen wurde das 
hydrologische Prozessmodell CATFLOW angewendet. Ein Beregnungsversuch wurde 
durchgeführt um die Zwischenabflussprozesse auf der Hangskala zu verstehen. Die Interaktion 
zwischen Bodenfeuchte und Abflussentwicklung wurde anhand von drei einander zugeordnetten 
Einzugsgebieten analysiert: dem Becherbach (2 km²), der Weißeritz bis zum Pegel Rehefeld 
(16 km²) und dem Pegel Ammelsdorf (49 km²). 
Statistische Analysen unter Berücksichtigung von Basisabfluss, Bodenvorfeuchte und 
verschiedenen Niederschlagscharakteristika wurden verwendet, um auf das Abflussvolumen zu 
schließen. Auf den verschiedenen Skalen konnte eine hohe Korrelation zwischen der mittleren 
Bodenfeuchte und dem Abflussbeiwert der Einzelereignisse festgestellt werden. Hierbei konnte 
die Bodenfeuchte genausoviel Variabilität erklären wie der Basisabfluss. 
Außerdem wurde eine hohe Korrelation zwischen Bodenfeuchte und Tiefenfeuchte festgestellt 
mit einer hysterestischen Reaktion zwischen Abfluss und Bodenfeuchte.  
Im Hinblick auf Zielsetzung 3 wurden “Generalised liner models” (GLM) genutzt. Dabei wurden 
Prädiktorvariablen die den Gebietszustand beschreiben und solche die die Meteorologische 
Randbedingungen beschreiben genutzt um den Abflussbeiwert zu schätzen. Die Ergebnisse der 
GLMs wurden mit Simulationsergebnissen des hydrologischen Gebietsmodells WaSiM ETH 
verglichen. Hierbei haben die GLMs eindeutig bessere Ergebnisse geliefert gegenüber den 
WaSiM Simulationen. Die GLM Analysen haben aufgezeigt, dass die verwendete Messstrategie 
mehrerer TDR-Cluster in typischen funktionalen Einheiten eine vielversprechende Methode ist, 
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um den Einfluss der Bodenfeuchte auf die Abflussentwicklung zu verstehen und ein Bindeglied 
zwischen den Skalen darstellen zu können. Langzeitbeobachtungen solcher Standorte sind in der 
Lage wichtige Zusatzinformationen bei der Hochwasserwarnung und -vorhersage zu liefern 
durch die Identifizierung kritischer Gebietszustände für erstere und eine bessere Repräsentation 
der Vorfeuchte für letztere. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

1.1.1 Why soil moisture is important? 

Only a minute amount of global water is stored as soil moisture: with an estimated volume of 
about 16,500 km³, soil moisture represents 0.0012 % and 0.05 % of total and fresh water, 
respectively (Dingman, 1994). And yet, this tiny hydrological component exerts crucial control 
over interactions between the atmosphere, land surface and groundwater since soil moisture 
determines the partitioning of net radiation energy into latent and sensible heat flux and supply of 
water for the terrestrial biomass. Vegetation relies on the availability of water for photosynthesis, 
and adjusts stomatal resistance to water transfer according to the availability of soil moisture 
(Schulze et al., 2005; Teuling et al., 2006; Carminati et al., 2010)). It also exerts a strong control 
on soil physical properties and biogeochemical cycling of nitrogen and carbon (Robinson et al., 
2008; Koehler et al., 2010). Soil moisture influences, furthermore, plot scale generation of 
Hortonian and saturated excess overland flow (Zehe et al., 2007; Chaves et al., 2008), the switch 
between hydrophilic and hydrophobic conditions (Dekker et al., 2005; Blume et al., 2009), 
infiltration processes (Bronstert and Bárdossy, 1999) and plant dynamics (Porporato et al., 2004; 
Holsten et al., 2009; Carminati et al., 2010), as well as hillslope and catchment scale runoff 
response to extreme precipitation (e.g. Merz and Bárdossy, 1998; Bronstert and Bárdossy, 1999; 
Jayawardena and Zhou, 2000; Montgomery and Dietrich, 2002; Meyles et al., 2003; Chirico et al., 
2003; Deeks et al., 2004; Zehe and Blöschl, 2004; Zehe et al., 2005; Blöschl and Zehe, 2005).  
 
At the regional and continental scale, soil moisture controls water distribution through land 
surface atmosphere feedback mechanisms (Koster et al., 2004; Gerten et al, 2007). The 
spatiotemporal variation in soil moisture indicates the presence of “active” or “contributing” 
areas or periods (Ambroise, 2004; James and Roulet, 2007; Spence et al., 2009; Ali and Roy, 
2010). This relates to hydrologic connectivity and to threshold processes with drastically different 
runoff responses (Zehe et al., 2007). Antecedent conditions are the major control on flood 
response: while these conditions are often estimated by pre-event runoff or groundwater levels 
(Peters et al., 2003; Vivoni et al., 2007; Latron and Gallart, 2008;), soil moisture is often described 
as another state variable which has major control on catchment response (e.g. Grayson et al., 
1997; Gutknecht et al., 2002; Meyles et al., 2003; Borga et al., 2007; Detty and McGuire, 2010; 
Steinbrech and Weiler, 2010; Zehe et al., 2010). Therefore, determination of soil moisture values, 
with reasonable temporal and spatial resolution, is required to improve ecological, agricultural, 
hydrological understanding and modelling. 
 

1.1.2 Problems in assessment –observe at the point scale, interested in catchment scale 

If soil moisture is choosen as a descriptor of antecedent conditions that control flood response, 
the problem of how to assess and represent this state variable for the catchment of interestwill be 
appeare. Soil moisture is traditionally described by point measurements that either need to be 
made at representative locations or need to be interpolated to provide a measure for the overall 
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catchment state. However, both of these possibilities are error prone and difficult to evaluate in 
their representativeness. Therefore most studies concerned with flood response and its 
dependence on antecedent conditions rely to a large degree on modelling (see Chapter 4). 
Experimental studies that relate observations of spatiotemporal soil moisture dynamics at the 
field or headwater scale to observed flows, either at the surface or in the stream (Burt and 
Butcher, 1985; Grayson et al., 1997; Starr and Timlin, 2004; McNamara et al., 2005; Lin, 2006; 
Frisbee et al., 2007; James and Roulet, 2007; Ali and Roy, 2010; Penna et al., 2010), are 
challenging due to the fact that soil moisture at the headwater scale exhibits huge spatial 
variability and single or even snapshots of distributed soil moisture measurements yield non-
representative data as they do not account for the temporal dynamics (Bronstert et al., 2011).  
 
In recent years a number of experimental techniques and equipment have been developed that 
allow either for a large number of data points in space while at the same time providing high 
resolution time series of either soil moisture or a close proxy. These include:  

• wireless sensor networks (Bogena et al., 2007, 2009; Trubilowicz et al., 2009) or  
• estimation of soil moisture dynamics with thermal infrared imagery (Katra et al., 2006, 

2007) 
• distributed temperature sensing along a fibre optic cable (Steele-Dunne, 2010; Sayde et 

al., 2010) 
• heat fluxes by scintillometry (Timmermans et al. 2009),  
• cosmic ray neutron probes (Zreda et al., 2008; Rivera Villarreyes et al., 2011),  
• GPS data sets (Larson et al., 2008, 2010) or  
• gravity dynamics (Creutzfeldt et al., 2010, a, b) or  
• sapflow data (Tromp-van Meerveld and McDonnell, 2006b; Kume et al., 2007, 2008; 

Zeppel et al., 2008). 
 
Geophysical methods are also capable of investigating near surface patterns of soil moisture. 
Possible techniques include:  

• ground-penetrating radar (GPR),  
• electrical resistivity tomography (ERT) and  
• electromagnetic induction surveying (EMI) (Butler, 2005).  

 
In addition, there are several remote sensing methodologies available to observe surface soil 
moisture at the watershed scale (Wagner et al.; 2007a and Tang et al.; 2010). More details on the 
different techniques are given below, listed according to their spatial support/extent. 
 
o Point measurements: Time and Frequency Domain Reflectometry  
Time Domain Reflectometry (TDR) is based on the travel time analysis of a defined pulse along a 
wave guide (Robinson et al., 2003). The travel time is related to electrical permittivity which is a 
function of soil moisture. Frequency Domain Reflectometry (FDR) determines the electrical 
permittivity by measuring the frequency changes induced by a changing value of the soil 
permeated by the fringing fields of the capacitor sensor (Baumhardt et al., 2000). The methods 
are less invasive and investigate at the point scale. The accuracy depends on the calibration of the 
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probe to the specific soil (Lesmes and Freedman, 2005). Besides soil moisture, electrical 
conductivity can be measured. Because of the large difference between electrical permittivity of 
water and ice, the frost depth can be observed (Baker et al., 1982; Boike and Roth, 1997). It is 
also possible to obtain the soil moisture profile along the wave guide with inversion algorithms 
(Heimovaara et al., 2004; Schlaeger, 2005; Greco, 2006).  
There are two common approaches to observe soil moisture in the field. One approach is to use 
a set of fixed TDR sensors to monitor temporal soil moisture dynamics at selected points, as for 
instance suggested by Bárdossy and Lehmann (1998) for the Weiherbach, Germany, Anctil et al. 
(2008) for the Orgeval watershed, France, Blume et al. (2009, 2008 a, b) for the Malalcahuello 
catchment in Chile, and Penna et al. (2009, 2010) for an alpine headwater in Italy. In recent years 
a number of experimental techniques and equipment has been developed that allow for the 
acquisition of a large number of data points in space while at the same time providing high 
resolution time series, e.g. wireless sensor networks (Bogena et al. 2007, 2009; Trubilowicz et al. 
2009). The advantage of using fixed stations is that they allow a high temporal resolution, which 
permits either comparison of observed point soil moisture dynamics with event scale discharge 
response and piezometer response as suggested by Blume et al. (2008a), or to use this 
information to improve discharge predictions, as recently shown by Anctil et al. (2008).  
The drawback of this approach is that it cannot be achieved a high spatial resolution, simply 
because of the high costs. Other authors thus prefer spatially highly resolved soil moisture 
sampling by means of mobile or portable TDR sensors, as for instance Grayson et al. (1997) or 
Grayson and Western (1998) for several catchments in Australia or Brocca et al. (2007, 2009b, 
2010) for three field sites in the upper Tiber valley, Italy. Spatially distributed sampling allows 
identification of temporal changes in correlation structure and spatial variability depending on the 
average near- surface wetness. Albertson and Montaldo (2003) and Western et al. (2004) found 
analogy in a reduction in variance and an increasing correlation length with increasing wetness of 
a field sites in Australia. Similarly, Brocca et al. (2007) report that soil moisture variance reduced 
during wet conditions at their rather homogeneous site and soil moisture was normally 
distributed in the flat valleys areas. Brocca et al. (2007) and Grayson and Western (1998) defined 
representative sites where soil moisture values are always close to the overall average. Brocca et 
al. (2009a) found further that the ranks of their distributed measurements in the univariate soil 
moisture distribution at a fixed time did not change much between different observation times. 
This temporal stability of the ranks suggests that the moisture pattern reflects the pattern of 
stationary soil properties, at least at the seasonal scale. Blume et al. 2008 (a, b), however, found 
partly contradicting results at a much more heterogeneous forested site. The main drawback of 
measurement campaigns is the limited temporal resolution which is too coarse for relating 
observed soil moisture dynamics to systems behaviour under rainfall driven conditions. 
 
o Geophysical methods 
Geophysical methods offer the opportunity to rapidly collect subsurface information in a non- or 
minimally invasive manner. These techniques are sensitive to the different physical attributes of 
subsurface materials such as their magnetic and electrical properties. Much of the related work 
and progress made in this field within the past decade is documented in different works (Rubin 
and Hubbard, 2005; Vereecken et al., 2006; Kirsch, 2007). Promising technologies to assess 
spatially distributed three-dimensional soil moisture proxies at the field scale are ground 
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penetrating radar (GPR) (Binley et al., 2002; Huisman et al., 2003; Roth et al., 2004), 
electromagnetic induction (EMI) (Sheets and Hendrichx, 1995; Brevik et al., 2006) or electric 
resistivity tomography (ERT) (Kemna et al., 2002; Wenninger et al., 2008; Cassiani et al., 2009). 
The first method yields the subsurface pattern of the dielectric permittivity, the latter two the 
subsurface pattern of the apparent specific resistivity. GPR and EMI are non-invasive, while 
ERT is less invasive. GPR observes the upper subsurface layers, depending on soil moisture, to a 
depth of 0.08 m-0.12 m (Galagedara et al., 2005). The physical principle of GPR is the same as of 
TDR measurement. The main difference is that TDR uses a guided electromagnetic wave 
whereas the GPR technique is based on an unguided wave. To investigate near surface processes 
the signal of the direct ground wave is used (Wollny, 1999), which is the electromagnetic wave 
that directly propagates below the soil surface from the transmitter to the receiver. Compared to 
the TDR-method, the direct ground-wave method enables the non-invasive and rapid collection 
of data over a larger area. The penetration depth of EMI depends on the facility. Brevik et al. 
(2006) documented a maximum depth of 0.9 m. ERT penetration depth depends on the distance 
between the electrodes. The difficulty for the methods is that there are no general petrophysical 
relationships available to transform the observed variables into soil moisture. The relationships 
between geophysical and hydrological target variables are usually complex, non-unique and site-
specific (Schön, 1998). Furthermore, geophysical parameters typically show complex 
dependencies on a variety of subsurface properties. For example, the electrical resistivity of 
subsurface materials depends on porosity, soil moisture, salinity of the pore fluid, mineral 
composition of the media, temperature, etc. (Schön, 1998). Therefore it is difficult to find a 
universal petrophysical relationship for the unsaturated zone (Paasche et al., 2006) Furthermore, 
reliable direct translations are impossible without detailed background information from for 
instance geology or soil science, which can be used to calibrate the petrophysical relationship for 
a specific site or landscape. In this context, flexible approaches to quantitatively integrate 
disparate data are needed (Holliger et al., 2008).  
 
o Dynamics in gravity anomalies 
Gravimetric observations have the ability to investigate the complete water storage of the 
surrounding surface and subsurface (up to a radius of 50 m to 150 m around the device) to 
characterise the hydrological system as a whole with high temporal resolution (Creutzfeldt et al., 
2010a, b). Nevertheless, practical aspects limit the application of gravimeters for hydrology and 
they are expensive in acquisition and operation. In general, they need a good infrastructure and 
are operated at a fixed location. The exact sampling volume is difficult to define because the 
radius of influence changes over time, and it is problematic to unambiguously identify the signal 
source (Creutzfeldt et al., 2010b). Additional observations (e.g. alternative measurements of soil 
moisture, groundwater, runoff, snow cover) have to be available to identify the exact source of 
the gravity signal. The signal has to be inverted with a hydrological model (Creutzfeldt, 2010a). 
The new superconducting gravimeter generation – the iGravTM SG – will improve the 
applicability in terms of portability, low drift and usability (GWR, 2009) as documented by Jacob 
et al. (2008, 2009) for hydrological applications. 
 
o Fibre optics and their feasibility for soil moisture monitoring  
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Distributed temperature sensing using fibre optic cables (DTS) has the potential to monitor soil 
moisture at temporal resolutions well under one hour and at high spatial resolution (≤1 m). The 
method could monitor soil moisture along cables exceeding 10,000 m in extent (Sayde et al., 
2010; Steele-Dunne et al., 2010). The disadvantages are: strongly invasive installation and the 
difficulty to achieve an exact and uniform depth for the complete cable and the contact of the 
device with the medium. 
 
o Global Positioning System (GPS) 
Larson et al. (2008, 2010) have shown that with continuously operating Global Positioning 
System (GPS) receivers the soil moisture of the 2 cm to 5 cm above the subsurface can be easily 
observed with a spatial extent of 50 m radius around the device on a vegetation sparse area. GPS 
receivers gather energy from ground reflections in addition to the direct signal that travels 
between the GPS satellite and receiving antenna. The characteristics of the reflected signal 
change as soil moisture, and therefore the dielectric constant of the ground, varies. 
For this reason denser vegetation patterns would have an effect on the measurement. After 
precipitation events the apparent soil moisture will overestimate the actual soil moisture, because 
only in the case of nearly saturated soils will the signal penetrate the soil (e.g. Larson et al., 2008, 
2010). 
 
o Cosmic ray  
Zreda et al. (2008) and Rivera Villarreyes et al. (2011) showed that cosmic-ray neutrons could be 
used to estimate soil moisture for a spatial-scale of 300 m radius around the measurement device, 
averaged over a depth of several decimetres. Contrary to GPS and TDR techniques, under wet 
conditions the measurement depth decreases, from 80 cm in dry soils to 10 cm in wet soils. 
Water bodies (lakes, storage ponds) and dense vegetation influence the signal. 
 
o Remote sensing  
Remote sensing has the capability to observe patterns, dynamic signatures and exchange 
processes at the land surface across multiple spatial and temporal scales. For that reason these 
techniques are of great interest for large scale hydrological applications. Patterns of land surface 
characteristics and their dynamics are retrieved by measuring electromagnetic emission and 
reflection using the several sensors available to detect these signals. These comprise optical multi- 
and hyperspectral imaging in the visible and near infrared spectral region, thermal infrared 
emissivity or passive and active microwave remote sensing. An overview of remote sensing 
applications to hydrology is provided by Schmugge et al. (2002), Wagner et al. (2007a) and Tang 
et al. (2010). 
Satellites with optical sensors provide remote sensing data on the extent of catchments which 
allow for identifying spatial surface structures of land use at spatial resolutions between 20 m and 
250 m (Dixon and Candade, 2008). Also, sensors operating in the visible and infrared parts of the 
electromagnetic spectrum have been used to infer soil moisture indirectly through monitoring of 
surface temperature and other surface state variables (Hausbrock et al., 2008). 
Microwave remote sensing can be used to determine the dielectric permittivity which is related to 
soil moisture of the soil surface (Kustas et al., 1998; Wagner et al., 2007b). Active systems (e.g. 
ENVISAT)operating in the C-band (wave length 3.8 cm - 7.5 cm) can observe soil moisture with 
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spatial resolution up to 3 m - 100 m. Multi-frequency passive systems (AMSR-E and SMOS) 
operate in the C- and L-Band (wave length 15 cm - 30 cm) with a resolution between 5 km and 
70 km. Both active and passive microwave techniques are sensitive to the dielectric properties of 
the land surface and therefore to soil moisture in the upper few centimetres of the soil, but 
scattered and emitted radiation also depends on surface roughness, the distribution of soil 
moisture over depth, soil temperature and strongly on vegetation (Schneeberger et al., 2004; 
Wilker et al., 2006; Fernandez-Galvez, 2008; Hajnsek et al., 2009; Koyama et al., 2010). 
The resolution in time is restricted to a few snapshots per day or even coarser. Aircraft or drone- 
mounted thermal, hyperspectral and/or microwave systems can be used to achieve higher 
temporal resolutions. The application of aircraft mounted systems is because of the high costs 
restricted to airborne campaigns (e.g. Famiglietti et al.; 2008, Hajnsek et al., 2009; Bronstert et al., 
2011). The robustness and usefulness of less cost-intensive systems such as thermal cameras 
and/or multiple digital cameras using specific optical filters mounted on drones are currently 
under investigation. However, there are still limitations, such as the need for parallel ground truth 
measurements for validation aspects, uncertainties in polarimetric decomposition techniques 
(Polarimetric-SAR), the influence of vegetation coverage and surface roughness on the 
measurement, low penetration depth, and the non-availability of continuous measurements. 
The studies presented by Albergel et al. (2009) and Brocca et al. (2010) show that with an 
exponential filter as the data preparation method, ASCAT (Advanced Scatterometer) data sets 
could be able to reproduce measurements at depths up to 40 cm, which would be important for 
assimilation of remote sensed data into hydrological models. 
The GRACE (Gravity Recovery and Climate Experiment) mission provides monthly water 
storage changes in a coarse resolution of a few thousand kilometres. Using GPS and a microwave 
ranging system, GRACE infers Earth’s gravity field through highly accurate measurements of the 
distance between a pair of satellites (Tang et al., 2010). 
 

1.1.3 How is soil moisture represented in hydrological models (conceptual, large scale 
vs. hillslope scale)? 

In hydrology two main types of model concepts can be characterised: conceptual and physically 
based models. Engineering practice has traditionally been either concerned with predictions of 
water driven hazards such as floods or with water resources management. This allows focus on 
successful prediction of catchment response, using conceptual hydrological models that represent 
the process patterns and redistribution of water inside the catchment with simplified concepts 
such as LARSIM (Bremicker, 1998), HBV (Lindstrom et al. 1997; Hundecha and Bárdossy, 
2004), TOPMODEL (Beven and Kirkby, 1978; Buytaert and Beven, 2009), IHACRES (Croke 
and Jakeman, 2004), SWAT (Arnold et al., 1998) or SWIM (Krysanova, 1998). It implies a) a 
certain catchment size so that errors due to simplified process conceptualisations may average 
out (Dooge, 1986), and b) stationarity of climate conditions and of the hydrological system itself 
(Sivapalan et al., 2003). The soil storage is described as a linear storage or as a cascade of several 
of them, which can not be directly compared to observed soil moisture. 
Conceptual hydrological models describe the processes inside the catchment and the underlying 
controls with a high degree of abstraction and by means of effective states, effective parameters 
and effective fluxes. Though these models often operate with very good results in upper meso-
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scale catchments (>200 km² - 104 km²), they are a virtue made out of necessity. The charm of 
conceptual models is that they are parsimonious and still allow reproduction and prediction of 
hydrological responses – mainly stream flow at the mesoscale (Uhlenbrook and Leibundgut, 
2002). 
However, conceptual model predictions are subject to considerable uncertainty (Beven, 2002; 
Wagener and Gupta, 2005; Bárdossy, 2007). Several sets of model parameters allow an acceptable 
reproduction of discharge observations at a catchment of interest.  
The major drawback of conceptual models is, however, that their ability to reproduce the runoff 
response at the catchment outlet does not necessarily mean that simulated dynamics inside the 
model domain can be expected to be consistent with the “true” distributed process dynamics 
within the catchment (Zehe and Sivapalan, 2009).  
Conceptual models cannot be directly updated either, since which combination of local processes 
and redistribution mechanisms caused the observed response at the catchment outlet, or which 
internal structures and states control the space-time organisation of flow and transport is 
unknown. It is therefore rather difficult a) to predict how changes of the system will translate into 
altered hydrological functioning (Sivapalan et al., 2003; Zehe and Sivapalan, 2009), b) to expand 
these models for spatially distributed predictions of water driven processes such as erosion or 
tracer transport and c) to use such conceptual models for operational forecasts at the lower 
mesoscale, even under current conditions. 
Physically based hydrological models describe soil water flow using the Darcy-Richards’ approach 
(including different approaches for preferential flow), solute transport using the convection 
dispersion approach and overland flow by 1D- or 2D hydraulic approaches. Well known 
examples are, for instance, CATFLOW (Zehe et al., 2001), HILLFLOW (Bronstert and Plate, 
1997), HillVi (Weiler and McDonnell, 2004), HYDRUS (Šimunek et al., 1999), InHM 
(VanderKwaak and Loague, 2001) and MIKE SHE (Refsgaard and Storm, 1995; Christiansen et 
al., 2004). The charm of these models is that they are able to integrate observed data sets and can 
reproduce the hydrological processes at the hillslope and the micro-catchment scales up to the 
order of 1 km². The models can be validated using distributed observations of soil moisture, 
runoff or evapotranspiration (ET) within the system. Hence, such models allow a much more 
reliable estimate of how local changes in system properties affect local process patterns and the 
redistribution of water into integral hillslope and catchment response. A direct comparison with 
state variables and therefore with soil moisture is possible. But they rely, however, on a vast 
amount of different parameters for soil, surface and vegetation. An adequate use of these models 
requires detailed high resolution data sets that capture the multivariate statistical and topological 
properties of subsurface parameters and flow paths. Except for a few microscale research 
catchments, this information will scarcely ever be available. However, application of physically 
based models at the lower mesoscale (10 km² - 200 km²) is not feasible, even if sufficiently 
resolved data were available. Achieving convergence, stability and accuracy of the numerical 
solution of a set of partial differential equations in a highly heterogeneous and very large model 
domain is a highly non-trivial issue of numerical mathematics. Thus, there is the obvious risk that 
too much effort has to be invested in implementing numerical solvers instead of working on the 
processes and process controls themselves. Increasing spatial resolution and moving to effective 
parameters while using the Richards’ equation is unlikely to solve the problem either. There is 
considerable argument against the validity of the Richards’ equation when used with grid sizes of 
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several 100 m (Vogel and Ippisch, 2008), on the validity/usefulness of large scale water retention 
curves (Zehe et al., 2006; Beven, 2006b; de Rooij, 2009; Baroni et al., 2010), or identifiability of 
useful effective parameters (Binley et al., 1989; Beven and Binley, 1992). Increasing the resolution 
and still using Richards’ equation as in case of WaSiM ETH II (Schulla, 1997), MIKE SHE 
(Refsgaard and Storm, 1995), or DHDVM (Wigmosta and Lettenmaier, 1994) has the effect of 
losing the physical basis.  
 

1.1.4 Can measured soil moisture data be used to improve hydrological models and 
how can that be implemented?  

A profound knowledge of the catchment wetness conditions (average values, and possibly also 
the areal and vertical distribution) prior to a rainstorm is considered to be important information 
for an improved forecast performance for flood runoff (Dunne et al., 1975). In simulation of the 
hydrological system these state variables will be affected by the errors in estimated and measured 
meteorological forcing, which can result in wrong conditions and patterns of the catchment state 
and thus will have an impact on the runoff generation (Aubert, 2003). There is a variety of 
methods to improve the knowledge of the conditions and patterns of state variables. The most 
traditional methods are the use of the pre-event precipitation (antecedent precipitation index, 
API) or the pre-event runoff as an indicator for the subsurface storage (Fedora and Beschta, 
1989; Pilgrim and Cordery, 1993; Berthet et al., 2009).  
For the integration of state variables like soil moisture into conceptual hydrological models there 
exists a scale problem between the observed scale and the model scale and the problem of non 
commensurability between observed and simulated state variable. The scale of the observed state 
variable of a point measurement is the size of a few cubic centimetres, and because of their 
nonlinearity, these variables are not directly transferable into larger volumes (Blöschl and 
Sivapalan, 1995; Merz and Plate, 1997; Vogel and Roth, 2003).  
Whichever measurement approach is employed (fixed set of sensors or measurement campaign) 
there is no simple method available to scale the information from the distributed set of point 
observations to the catchment scale because of non-linear process dynamics and strong sub-
catchment heterogeneity of soils and vegetation. Geostatistical interpolation, including updating 
approaches, suffer from the fact that they either assume stationary relationships between drift 
parameters and soil moisture, or the sampling is not sufficient to obtain useful posterior 
probability distributions of soil moisture within different classes of available soft information. 
However, there are several developments available to integrate observed soil moisture into model 
applications. The methods range from ground based measurements to remotely sensed data sets 
and combinations of both. That includes the initialisation of soil moisture by field measurements 
(Goodrich et al., 1994; Jacobs et al., 2003; Zehe et al., 2005; Brocca at al., 2009a; Noto et al., 
2008) and the updating by assimilation techniques (Aubert et al., 2003; Francois et al., 2003; Crow 
et al., 2005). An increase in model performance is observed but with minimal effect, according to 
Crow and Ryu (2009). 
Despite the above criticism, further research is required to explore the limits and potentials of 
soil moisture assimilation in rainfall-runoff models. In this context, an important question is: 
How can soil moisture observations be related to the model’s state variables? The answer to this 
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question is – on the one hand – subject to the modelling concept (e.g. lumped vs. distributed, 
event-based vs. continuous), and on the other hand the spatial scale and variability at that scale. 
 
 

1.2 Key research questions and approach  

1.2.1 Key questions: 

* Can representative soil moisture measurements at the plot scale help to understand flood 
generation in headwater catchments?  
Hydrologic systems often respond highly non-linear to rainfall events. Non-linear behaviour can 
have many reasons (Zehe et al., 2007). The system can be controlled by threshold processes 
which switch between system states and result in drastically different runoff response. This type 
of relationship can be found between runoff and driving forces such as precipitation (e.g. Tani, 
2007; Detty and McGuire 2010; Graham et al. 2010), state variables such as soil moisture (e.g. 
Western et al. 1998; Weiler and McDonell, 2007; Zehe et al., 2007; Detty and McGuire 2010; 
Penna et al. 2010), or groundwater levels (McGlynn et al. 1999; Detty and McGuire 2010). In this 
context, soil moisture can be seen as a key state variable that controls hydrological dynamics at 
various spatial scales. There is experimental evidence that the onset of point scale threshold 
processes such as fast preferential flow in soils (Zehe and Flühler, 2001a; Blume et al., 2009), 
Hortonian overland flow initiation (Zehe et al., 2007), or the switch between hydrophilic and 
hydrophobic conditions (Dekker et al., 2005) are strongly controlled by antecedent soil moisture 
conditions. As mentioned above, soil moisture is highly variable in space and time which make its 
observation difficult. The clustering of several TDR probes within one field site seems a 
promising strategy to observe and describe the spatiotemporal variability of soil moisture and to 
understand its role in runoff generation. These detailed measurements of soil moisture, given that 
they are located at representative study sites, will indicate whether different conditions in this 
state variable affect the system response, namely runoff, and thus provide a means to gain insight 
into the underlying processes. 
 
* Can representative soil moisture measurements at typical landscape elements help us to predict 
floods at the catchment scale? 
Various studies suggest that the antecedent soil moisture state exerts crucial control on rainfall-
runoff response at the field and headwater scale (Bronstert and Bárdossy, 1999; Gurtz et al., 
1999; Jayawardena and Zhou, 2000; Montgomery and Dietrich, 2002; Meyles et al., 2003; Chirico 
et al., 2003; Zehe and Blöschl, 2004; Zehe et al., 2005, Blöschl and Zehe, 2005). Brocca et al. 
(2009a) presented the importance of covering the variance in soil moisture to give a reasonable 
estimate of state. A profound knowledge of soil moisture with a spatial extent which covers the 
variance will provide the possibility for an indicator of the catchment state. The importance of 
soil moisture in the forecast will be tested with a statistical generalised linear model technique and 
will prove that knowledge of observed soil moisture can be used to update catchment state in the 
conceptual model WaSiM ETH. 
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* How can additional information be used to observe near surface processes? What is the 
potential of Spatial TDR? What is the potential of clustering TDR sensors at representative 
locations?  
There are different methods available to use the additional information gained from the reflection 
estimated with the TDR technique to observe near surface processes (e.g. Feng et al., 1999; 
Oswald et al., 2003; Schlaeger, 2005; Greco, 2006). To quantify the spatial distribution of the soil 
moisture along the wave guide, an inverse signal analyzing technology called “Spatial TDR” has 
been introduced by Becker (2004), Schlaeger (2005), and Scheuermann et al. (2009). The method 
promises to monitor moisture dynamics in a three dimensional way.  
Exploring the capabilities and limitations of Spatial TDR is of great importance for assessment at 
plot, field, and small catchment scale.  
 
 

1.3 Experimental approach and data analysis 

These three key questions are investigated in this work by experimental approaches and data 
analysis, moving from the lab scale to the catchment scale. 
The experimental approaches aim at testing the feasibility of the Spatial TDR systems under 
different conditions. The experiments can be distinguished according to their types of forcing 
conditions and investigation scales: 

 Controlled lab experiments with defined initial conditions and input volumes are 
conducted at the soil column scale to investigate the capabilities of Spatial TDR 
measurements. 

 An irrigation experiment in the field with controlled input volumes to investigate the 
dominating runoff processes at the hillslope scale. 

 Long-term observations under natural conditions are carried out at the field scale to 
observe spatiotemporal patterns. 

 
Data analysis and process modelling are used to validate inversion results, gain understanding of 
runoff processes and test the importance of soil moisture in the observed processes, again 
moving from the lab to the catchment scale. 

 The Spatial TDR inversion results are validated to identify the effects of structures and 
heterogeneous soil moisture distributions on the inversion results. 

 The field data are statistically analysed to understand spatial and temporal dynamics of a) 
the entire time series and b) selected flood events. 

 Physically based modelling at the hillslope scale is used to determine the importance of ET 
for soil moisture. 

 
In a last step a conceptual models at the catchment scale and a purely data driven model are 
compared to investigate the importance of soil moisture observations for the estimation of 
runoff volumes during flood events. 
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1.4 Structure of this dissertation 

This dissertation is part of the OPAQUE (operational discharge and flooding predictions in head 
catchments) project that aims on a better prediction of flood events in mountainous headwaters 
and has its main researche catchment in the Weißeritz. The project is funded by the German 
Ministry of Education and Research (BMBF) as part of RIMAX (Risikomanagement extremer 
Hochwasserereignisse). In the project the focus of the dissertation aims on the investigation of 
the influence and the impact of soil moisture the runoff formation. 
It is structured into five major chapters, which are briefly outlined below: 
 
Chapter 1 Introduction 
A general overview of the importance of soil moisture and the different techniques used to 
measure it, noting here the spatial and temporal resolution and error sources. The importance of 
soil moisture for hydrological systems is presented and how soil moisture is represented in 
hydrological models is described. The key questions are postulated and the approaches to answer 
them are presented. 
 
Chapter 2 Spatial TDR technology– methodology and feasibility for heterogeneous field soils 
This study presents an application of the Spatial TDR technology with the underlying theory. It 
will be reported in detail how error sources affect retrieval of soil moisture profiles in soils. Soil 
column experiments in glass beads and disturbed real soil from the study area under different 
conditions are presented. It will be reported in detail how these error sources affect retrieval of 
soil moisture profiles in these soils. 
 
Chapter 3 Soil moisture dynamics and runoff generation in headwater catchments: learning from 
field data 
An overview of the research area is presented. Spatial and temporal analyses of time series of soil 
moisture and runoff are carried out. Process understanding is gained by modelling the interaction 
of evapotranspiration (ET) on the soil moisture with the hydrological process model 
CATFLOW. A field scale irrigation experiment is carried out to get a better understanding of the 
near subsurface processes at the hillslope scale. A statistical analysis sheds light on the influence 
of different state variables and variables of meteorological forcing on the flood volume. A closer 
look is taken on selected events to understand the different responses during dry and wet 
conditions and identify possible threshold processes. 
 
Chapter 4 Soil moisture dynamics and runoff generation in headwater catchments: Learning from 
models of different complexity 
Here it will be discussed how different modelling strategies can help to increase the knowledge 
about relevant runoff processes and to improve the prediction of runoff volumes. The 
conceptual hydrological model WaSiM ETH I is used to asses if this kind of model can be 
helpful and if it is possible to incorporate measured values of state variables. Generalised linear 
models are evaluated to see how well they can predict runoff volumes. 
 
Chapter 5 Discussion, outlook and recommendations 
Section 5 contains the overall discussion and summary. 
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CHAPTER 2 SPATIAL TDR TECHNOLOGY– METHODOLOGY 
AND FEASIBILITY FOR HETEROGENEOUS FIELD SOILS 

2.1 Introduction 

Spatially and temporally distributed Time Domain Reflectometry (TDR) and Frequency Domain 
Reflectometry (FDR) measurements are widely used to observe soil moisture dynamics at the 
plot to hillslope scale (e.g. Starr and Timlin, 2002). Conventional TDR measurements allow 
estimation of the mean soil moisture and the bulk electrical conductivity of the surrounding 
media based on the travel time of a reflected electromagnetic wave guided in a waveguide/TDR 
probe installed in the soil. Excellent reviews are given by Robinson et al. (2003) and Cassiani et 
al. (2006). Several authors have shown that the shape of the reflected TDR signal, the 
reflectogram, contains information about the dielectric permittivity (ε) and thus the soil moisture 
along the probe (Oswald et al., 2003; Schlaeger, 2005). The retrieval of this detailed information 
is achieved by inversion or by graphical interpretation of the signal (Moret et al., 2006). Inverse 
estimation of the soil moisture profile seems to work well for synthetic data sets (Oswald, 2000), 
homogeneous soils at the lab scale (Becker, 2004; Greco, 2006; Bänninger et al., 2008) or volcanic 
ash soils with low bulk densities of ~1.0g cm-³ (Greco and Guida, 2008). 
The essential idea of Spatial TDR is to cluster several wave guides in a small area, operate them 
by a single sampling TDR and invert the reflectograms to elucidate the evolution of the soil 
moisture profile. Spatial TDR is originally proposed by Schlaeger (2005) and further tested by 
Scheuermann et al. (2009) to monitor moisture in sandy dams. The reflectogram of the TDR 
measurement is influenced by the probe geometry (Spittlehouse, 2000; Bänninger et al., 2008), 
solids in the sphere of influence (Knight et al., 1997), layered soils (Greco, 2008) or energy 
dissipation along the probe due to clay and salinity (Jones and Or, 2004; Chen et al., 2007; 
Kupfer et al., 2007). These different factors may hamper the application of Spatial TDR 
measurements in real world settings. The use of coated rods protects the TDR signal from energy 
dissipation (Ferré et al., 1998; Nichol et al., 2002), increasing the signal-to-noise ratio and thus 
allows the use of longer TDR rods compared to uncoated rods, which is essential for Spatial 
TDR applications (Dalton and Van Genuchten, 1986). The drawbacks of coated rods are that 
they are less sensitive to ε, that a coated material needs specific calibration (Ferré et al., 1996), and 
that the measurement of bulk electrical conductivity is restricted (Moret-Fernández et al., 2009). 
As the high clay content of the soils in the study area is around 16 %, the use of TDR probes is 
preferred with three coated rods. This allows the use of 0.60 m long probes, which is favourable 
for the observation of infiltration processes into the subsurface.  
In general, it is assumed that the TDR rods are installed parallel, but this is difficult to actually 
achieve when installing probes in natural soils, especially in the presence of stones, layers, or soil 
bulk density differences. Figure 1 shows an extreme example with rods converging or diverging 
with increasing depth for a rather heterogeneous soil located in the Ore Mountains, Saxony, 
Germany (see Section 3). 
The effect of the probe deformation on the reflectogram and the retrieved soil moisture has thus 
to be studied in detail, because it is essential for the Spatial TDR approach to use long TDR rods. 
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The influence of insulating solids in the sampling volume is theoretically described by Knight et 
al. (1997), but there is no study which studied the influence of solids on the reflectogram.  
The overall objective of this chapter is to shed light on the applicability of Spatial TDR in 
strongly heterogeneous field soils. Therefore, the questions posed for this research are: 1) How 
do coated probes of 0.60 m length react in these soils (heterogeneous, electrical loss), and are 
these probes indeed better suited for these soils compared to uncoated probes? 2) How does the 
effect of a) different probe deformations, b) solids (insulators, conductors) in the integration 
volume and c) high clay content in combination with a bulk density gradient influence the ε 
profile, the inverted moisture profiles and the average soil moisture along the probe? Different 
laboratory experiments are performed to shed light on these topics. 
 
 

 

Figure 1: Typical soil profiles with different horizons and coarse gravel and possible deformations of the 
TDR wave guides when installed in the soil (A to F), by A. Bauer.  

 
In Section 2.2 a review of different inversion techniques is given. Section 2.3 provides details on 
the technological components and discusses potential sources of errors observed in field 
applications. Section 2.4 introduces five different laboratory experiments. Section 2.5 discusses 
the step from applications in homogenous media or “the technical scale” to reliable applications 
in heterogeneous field soils, for instance when designing a site-specific calibration of transmission 
line properties. This step is crucial for hydrology because the relationship between soil moisture 
dynamics and runoff generation is not well understood yet; this is especially true for 
heterogeneous soils. These results are furthermore necessary to interpret soil moisture 
observations obtained with two Spatial TDR clusters installed in the Eastern Ore Mountains, 
presented in a closely related study by Section 3. That study will introduce the applicability of 
Spatial TDR in the field scale. 
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2.2 Theoretical background and Signal constrained inversion  

2.2.1 TDR inversion approaches 

In this section an introduction to the inversion methodology and an overview of the different 
inversion techniques is presented. Generally, it is necessary for the estimation of the soil moisture 
profiles along the TDR probe to simulate the propagation of the TDR signal in time domain by 
employing a numerical model (forward problem). This is achieved by simulating the forward and 
back propagation of the TDR signal along the wave guide and minimizing the differences 
between observed and simulated signals by using an optimization algorithm which updates the 
parameter profile along the transmission line. Full wave approaches solve Maxwell’s equations 
within the forward step (Rejiba et al., 2005). The target parameter of the optimization is the 
profile of the ε along the wave guide. Other studies have proposed simplified approaches based 
on multi-section transmission lines (Heimovaara et al., 2004) or heterogeneous transmission lines 
(Greco, 2006); the Spatial TDR approach (Schlaeger; 2005) belongs to the latter category. The 
wave propagation along the TDR probe is approximated by the telegrapher’s equation. The 
transmission line is conceptualized as a series of bulk electronic components such as resistors, 
inductors and capacitors. Hence, the target parameter of the optimization is the electrical 
capacitance profile (C). The Spatial TDR algorithm requires additional material laws that link C-ε-
soil moisture and – in the case of TDR probes with coated rods – C and electrical conductance G 
of the transmission line (compare section 2.3). 
 

2.2.2 STDR Signal inversion 

The TDR signal VR
o(t,x0,) or reflectogram is a superposition of the input voltage VI

o(t,x0), 
generated by the TDR device, and partial reflections of the input signal occurring at the junction 
of the probe and cable as well as at the end of the wave guide. The average ε along the 
transmission line is determined by the speed of the electromagnetic wave and can be calculated 
based on the travel time of the TDR signal. The average ε can be transformed into the average 
soil moisture content along the probe by appropriate calibration functions (see section 3.4). The 
form of the reflectogram between the first and second main reflection at the probe’s beginning 
and end is a finger print of the dielectric profile along the wave guide.  
 
The principle of the Spatial TDR inversion is to estimate the capacitance profile C(x) along the 
wave guide by means of inverse modelling and transform it into a soil moisture profile θ(x). As 
explained above, the forward step of the Spatial TDR algorithm is based on the telegrapher’s 
equation, which describes the propagation of a voltage pulse V(x, t) along the transmission line: 
 

Eq. 1 
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Here t is time and x the spatial coordinate along the wave guide. The capacitance C(x) and 
electrical conductance G(x) are both affected by the soil moisture profile θ(x) along the 
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transmission line. The inductance L(x) is a function of the transmission-line only and piecewise 
constant for the coaxial cable and moisture probe, as long as the rods are parallel. The spatial 
derivative of L in Eq. (1) accounts for the difference between coaxial cable and probe. Compared 
to the general telegrapher’s equation, it is assumed that resistive losses along the probe can be 
neglected and the electrical resistance R = 0. All parameter profiles will be given as specific values 
per unit length. Nichol et al. (2002) have shown that the true electric conductivity σ cannot be 
measured with coated probes. Therefore, G is not the real ionic conductance of the soil but an 
effective value of coating and soil conductivity.  
 
Within the inverse procedure Eq. (1) is numerically solved with appropriate initial and boundary 
conditions to simulate VR

s(t,x0|C) for given parameter profiles C(x) and G(x). Based on the 
difference between the simulated VR

s(t,xi|C) and observed signal VR
o(t,xi) between the first (at 

t = 0) and the second main reflection (at t = T), the transmission line parameters C(x) and G(x) 
are updated by the conjugate gradient method until the objective function J(C) in Eq. (2) is 
minimized. 

Eq. 2 
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The high quality of the recorded signal of the TDR100 (Campbell Scientific Inc), which has a 
time to peak of roughly 200 pico seconds, allows inversion at a spatial resolution of 0.01 m 
(Oswald et al., 2003; Lin et al., 2005). The solution of Eq. (1) is a profile of C(x) which has to be 
related to the permittivity profile of the porous medium ε(x) and finally to the moisture profile 
θ(x) (compare next sections). Subsequently, it will be referred to the resulting soil moisture profile 
which is obtained after conversion as the inverted moisture profile. For more details see 
Schlaeger (2005). 
 
 

2.3 Parameters and Potential error Sources of Spatial TDR-Measurements 

2.3.1 Technological components and setup of a Spatial TDR  

A TDR100 by Campbell Scientific Inc. is used to generate TDR pulses. Coated three-rod probes 
of type SUSU03 with a length of 0.60 m developed by Schädel (2006) are used as wave guides. 
These consist of a stainless steel core of 6 mm diameter with a 1 mm thick PVC coating. The 
distance between the rods is 0.03 m. The rods are screwed into the probe head that is connected 
to a 50 Ω coaxial cable of type RG213.The probes are connected to an eight channel multiplexer 
of type SNAPMUX (Becker, 2004) with coaxial cables of type RG213 with an impedance of 
50 Ω and a length of 15 m. The TDR100 is controlled and the data are logged by an ARCOM 
VIPER 1.2 Industrial-PC with embedded LINUX operating system. 
 

2.3.2 Calibration of probe parameters  

The pulse velocity of the TDR signal v is given by  
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Eq. 3 

tlv Δ= /2 , 
 
where l is the probe length and Δt the time difference between the first two main reflections in 
the reflectogram. 

The equation to link v to ε with ε/0cv = , with c0 as the speed of light, does not apply for 
coated probes because here the signal depends on an effective ε which is composed of the 
dielectric properties of the coating and of the surrounding medium and would lead to an 
underestimation of soil moisture (Ferré et al., 1996). Becker (2004) and Huebner et al. (2005) 
suggested that the pulse velocity v(ε) can be best expressed by the constant inductance L of the 
probe and the effective capacitance C(ε) of the system probe and medium: 

Eq. 4 

)(/1)( εε CLv ⋅= . 
 
In a second step ε of the medium is estimated with a relationship between C(ε) and ε in the case 
of the three rod TDR probe described by a simple circuit model consisting of a series of 
capacitors, representing the capacitor between the rods filled with the surrounding medium C1 
and describing the constant capacitance of the coating C2 (Figure 2): 
 

Eq. 5 

21 /1)/(1)(/1 CCC +⋅= εε . 
 

 

Figure 2: Total capacitance C of a 3-rod-probe as a function of the soil’s dielectric permittivity ε. (A) 

segment of three parallel rods immersed in soil; light grey: PVC coating; dark gray: metallic core; (B) 

equivalent circuit. C1, C2: constant capacitance parameters determined by the probe’s geometry (Becker, 

2004).  
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According to Eq. 4 and 5 the probe is characterized by the three parameters C2, C1, and L, which 
have to be estimated by calibration measurements. C1 and L are affected by the probe geometry, 
especially the distance of the wave guide rods. For parallel rods, the parameters are assumed to be 
constant. Becker (2004) found a good correspondence in the relationship between ε and C 
derived from full wave numerical simulations of coated three rod probes and the capacitance 
model shown in Eq. (5). Further laboratory observations corroborated the applicability of this 
capacitance model to parameterize the relationship between ε and C. 
 
Becker (2004) suggested a calibration approach based on measuring TDR pulse velocities vi = v(εi) 
for two different media with well known dielectric permittivity values ε1 and ε2 (water and air) to 
determine C2, C1, and L. Combining Eq. 4 and Eq. 5 for the two media and solving them for C1 
and C2 yields: 

Eq. 6 
))(/()( 2

2
2
112121 LvvC ⋅−−= εεεε , and ))/(()( 2

11
2
22122 LvvC ⋅−−= εεεε . 

 
Finally, L is estimated with the relationship to the rod impedance: 

Eq. 7 

)(/)( εε CLZ = . 
 
The jump between the impedance of the probe plus the surrounding medium Z(ε) and the 
impedance of the connecting cable Z0 causes a partial reflection of the TDR signal at the junction 
of cable and probe. By measuring the amplitudes of incoming and reflected signal, denoted by AI 
and AR, the reflection coefficient will be obtained that is linked to the impedance as follows: 
 

Eq. 8 
))(/())((/)( 00 ZZZZAAr IR +−== εεε , 

 
Substitution of Eq. 4 and Eq. 7 into Eq. 8 and solving for L yields: 
 

Eq. 9 
)(/))(1/())(1( 0 εεε vZrrL ⋅−+= . 

Table 1: Probe parameters estimated based on Eq. 5 and 9 and absolute errors calculated with Gauss’ law. 

Parameter Value Abs. Error 

L [nH m-1] 625.0 23.0 

C1 [pF m-1] 22.4 0.9 

C2 [pF m-1] 304.6 30.0 

 
Based on Eq. 6 and Eq. 9, the probe parameters C1, C2, and L have been derived from TDR 
reflectograms obtained in de-ionized water (ε = 80 at 20°C) and air (ε = 1) with parallel rod 
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geometry for all probes, as presented in Table 1. Based on the standard deviation of the dielectric 
permittivity values, the relative measurement error to 5 % can also be quantified. 
 
 

2.3.3 C-G relation  

As coated rods do not allow direct measurements of the electrical conductivity, an empirical 
function that relates C(x) to G(x), as proposed by Hakansson (1997), to close the set of equations 
is employed: 

Eq. 10 

⎩
⎨
⎧

≤≤
≥−−−⋅

= ∞

.0if,0
,if),/)(exp(1(

)(
0

00

CC
CCCCCG

CG d  

 
G∞ is the conductance at saturation, C0 is a capacity threshold below which conductance is zero 
and Cd determines how fast C reaches its maximum value. Becker (2004) showed with numerical 
simulations that Eq. 10 is a suitable model. In general, Cd, G∞, and C0 have to be determined 
empirically. Furthermore, in a clay-rich soil one could expect G to be non-zero for a C smaller 
than C0. The parameter estimation requires manual calibration during the inversion of a known 
soil moisture profile.  
 

2.3.4 ε-soil moisture relationship 

Different models linking ε and soil moisture are reviewed by Cassiani et al. (2006) and Lesmes 
and Friedman (2005). Because of different geochemical and geophysical properties it is difficult 
to find a universal petrophysical relationship for the unsaturated zone (Paasche et al., 2006). In 
this study, the soil moisture from ε is calculated using the empirical relation proposed by Topp et 
al. (1980) for sand and glass beads. The ε-soil moisture relationship is developed using 11 
undisturbed soil samples in a plastic core cylinder (diameter = 0.057 m, length 0.10 m) from 
different horizons of the study area. In the laboratory, samples are saturated and in each sample a 
3-rod 0.075 m long TDR probe (CS640-L connected to a TDR100, both Campbell Scientific 
Inc.) are inserted. The samples are slowly dried. Once or twice a day the soil moisture is 
estimated by gravimetric method and the dielectric permittivity by TDR measurements. Different 
approaches to link ε and θ soil moisture are tested (Alharthi and Lange, 1987; Roth et al., 1992; 
Malicki et al., 1996; Friedman, 1997). For the soils in the study area, the linear relationship 
between the refractive index and soil moisture (Herkelrath et al., 1991) is found to be most 
suitable:  
 

Eq. 11 

εθ ⋅+= ba .  
 
The parameters a and b are fitting parameters.  
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2.3.5 Probe deformations during installation 

It is investigated whether Spatial TDR clusters allows assessment of distributed soil moisture 
profiles under natural conditions in the headwater of the Weißeritz catchment close to the village 
of Rehefeld in Saxony, Germany. Soils are mainly Cambisols in periglacial weathering strata. In 
the summer of 2006, two Spatial TDR clusters were installed at two hillslopes close to the village 
of Rehefeld. Table 2 shows the mean soil characteristics determined from 20 undisturbed soil 
samples extracted in profiles excavated up to a depth of 0.70 m close to one of the clusters. 
Additional details of the project context, the spacing of TDR probes and the catchment are 
discussed in Section 3. The importance for the present study is that the installation of the 0.60 m 
long Spatial TDR probe at this field site is a challenging task, due to the large amount of gravel of 
up to 0.4 kg kg-1 (Landesamt für Umwelt, Landwirtschaft und Geologie, 2006), the increasing 
density with depth and the heterogeneity of the soils. Similar problems are documented by 
Spittlehouse (2000). A steel template with three holes set at the right distance between the rods is 
used, as well as a power drill with a 0.60 m long auger. Several attempts (on average about two) 
are necessary to drill three holes with the appropriate distance and depth due to gravel blocking. 
Nonetheless, difficulties occur in ensuring that the rods of the probes are parallel. Figure 1 
illustrates typical deformations of the probes; the rods converge (Figure 1A) or diverge 
(Figure 1B) towards the end with increasing depth. As the theory of the inversion assumes 
parallel geometry of the rods, these deformations will likely cause errors in the estimated soil 
moisture profiles, because C1 and L cannot be assumed as constant over the profile. In section 
3.2, the experimental setup to investigate the influence of simple rod deformations on the 
inversion is described. 
 

Table 2Soil texture (following the United States Department of Agriculture (USDA), 1993 classification), 
bulk density θb, saturated soil moisture θS and permanent wilting point (PWP) of the dominating Cambisol 
at the Rehefeld study area, and experimental glass beads. ρ and θS are estimated for 1.00 m³ soil cores with 
grain density of 2.65 g cm-3. PWP is the soil moisture at 160 m pressure head. The glass beads have a grain 
size ranging from 0.25 to 0.5 mm in diameter. Standard deviation is abbreviated as STD. 

Soil type 

Sand 

[%] 

Silt 

[%] 

Clay 

[%] 

ρb 

[g cm-3] 

STD ρb 

[g cm-3]

θS 

[m3m-3] 

PWP 

[m3m-3] 

Cambisoil 

Rehefeld 
52 32 16 1.15 0.11 0.56 0.08 

Glass beads 100 - - 1.50 0.05 0.38 0.03 

 

2.3.6 Gravel and stones 

The pulse velocity measured with TDR is related to the average volumetric soil moisture. This 
can, as suggested by Topp and Davis (1982), lead to misinterpretations when abrupt water 
content changes along the transmission lines are present. Knight et al. (1997) discussed 
theoretically the influence of “gaps” in the integration volume which are filled with materials with 
either a lower than average or higher than average permittivity. They found materials with lower 



 

 20

than average permittivity to have stronger impacts on TDR measurements. From a soil physical 
view, coarse gravel and stones in the integration volume of the TDR probe reduce the total 
volume of the pore space Φ at that depth.  
 
 

2.4 Laboratory experiments to quantify error sources  

This section shows the setup of the five different laboratory experiments and the results are 
presented. In Experiment 1 to 4, glass beads with a grain size of 0.25-0.5 mm diameter are used 
to ensure that the performance test took place in a medium with homogeneous pore space. In 
Experiment 5, disturbed soil from the field as described in Table 2 is used to test the method 
within a heterogeneous medium. 
 

2.4.1 C-G relation, ε-soil moisture relation and constraining of inverted moisture 
profiles 

The three parameters Cd, G∞, and C0 of Eq. (10) are estimated within Experiments 2 and 5. The 
results are listed in Table 3. The parameters of Eq. (11) a and b are estimated at -0.2291 and 
0.1324, respectively. The coefficient of determination R² is 0.9837. 
 

Table 3: Parameter sets characterizing the C-G relations for inversion of the reflectograms into soil 
moisture profiles both for glass beads and soils. 

Exp. Name 

G∞ 

[mS m-1] 

C0 

[pF m-1] 

Cd 

[pF m-1] 

1 Glass beads 1.5 50 18 

2 Rehefeld soil 2.0 50 18 

 
The last crucial step to ensure that the inverted soil moisture profiles complied with soil physics 
is to constrain the inversion within a physical range. The upper end is defined by soil saturated 
water content (θS) and the lower end by the permanent wilting point (PWP). This can easily be 
achieved by using the inverse ε to θ and the inverse C to ε relationships to obtain upper and lower 
limits for C. The parameters for the different soil substrates are listed in Table 2. 
 

2.4.2 Experiment 1: effect of uncoated and coated probes on the reflectogram in field 
soils  

Two SUSU03 probes are compared, one of each with and without coating. Experiments are 
accomplished in a plastic box with a height of 0.70 m and edge length of 0.30 m by 0.30 m 
(Figure 3A). Both probes are installed in the middle of the box and a wooden template is placed 
at 0.59 m depth to secure ideal probe geometry (Figure 3A). The box is carefully filled with glass 
beads that are moderately compacted to ensure good contact between soil and TDR probes 
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(Table 2). The experiment is conducted at two different wetness conditions, namely 0.08 m3m-3-
0.09 m3m-3 (dry) and 0.20 m3m-3-0.21 m3m-3 (wet).  
 

 
Figure 3: Sketch of the plastic box with installed SUSU03 and position of the wooden template (A), and 
sketch of the four different probe geometries (B). 

 

 
Figure 4: Reflectograms obtained with coated (CP) and uncoated (UP) SUSU03 probes with 0.60 m rods at 
two different soil moistures, measured in an experimental box with glass beads (Table 2). Bulk electrical 
conductivity is 1.0 10-2 dS m-1 for the dry case and 6.7 10-2 dS m-1 for the wet case. 

 
Figure 4 shows the reflectograms of a coated and an uncoated rod probe at two different soil 
moistures in glass beads. In both cases the travel time of the coated probe is smaller compared to 
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the uncoated which is an effect of the isolating PVC coating. Estimated bulk electrical 
conductivity based on the method suggested by Huisman et al. (2008) and Lin et al. (2007) 
yielded values of 1.0 10-2 dS m-1 and 6.7 10-2 dS m-1 for the dry and wet case, respectively. For the 
case of uncoated rods, even a low electrical conductivity has already a strong influence on the 
shape of the reflectogram. Especially in the wet case, there is a strong attenuation between 2 and 
14 ns that is much less pronounced for the coated rods. Despite the low value of bulk electrical 
conductivity, its influence on the uncoated probe is significantly strong. Coated rods will deliver 
the more reliable reflectograms and should be used in these soils when using a probe length of 
0.60 m.  
 

2.4.3 Experiment 2: performance in homogeneous media during transient conditions 

 
Figure 5: Sketch of the setup of Experiment 2. A SUSU03 probe and two FDR probes (THETA probes, 
Delta-T-Devices) are installed in PVC tubes and the tubes are filled with glass beads. At the bottom of the 
tube, an outlet permits the controlled and stepwise drainage of water in the tube. 

 
Figure 5 shows the experiment setup. The experiment is conducted in a 1 m high and 0.15 m 
wide PVC tube. Glass beads are filled into the tube and compacted, resulting in a bulk density of 
1.51 g m-3 and a saturated water content of 0.38 m3m-3 (Table 2). Two T-pieces with a diameter of 
0.15 m and a length of 0.09 m in the tube allowed for the installation of FDR probes (THETA, 
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Delta-T-Devices) with a shaft length of 0.11 m, rod length of 0.06 m and a diameter of 0.04 m. 
One probe of type SUSU03 is installed in the centre of the tube with rods pointing from the 
upper edge of the tube to the bottom and the narrow side of the probe facing the T-pieces. 
Independent soil moisture measurements are obtained with two THETA probes placed at a 
depth of 0.30 m and 0.55 m, which work in the FDR domain with a measurement error of 
±0.01 m³m-³ (Gaskin and Miller, 1996). The FDR probes reach 0.03 m into the centre tube. The 
rods of the THETA probes have a distance of 0.04 m from the rods of the SUSU03 to avoid 
interaction of the measured signal. The sample area of a coated probe is of low range outside the 
rods (Ferré et al., 1998). The reflectograms are additional proven if the FDR probes influence the 
measurement signal. The experiment is started with a tube that is fully saturated with de-ionized 
water and the soil moisture is reduced by sucking off 250 ml of water at the bottom of the tube 
every 6 hours. Soil moisture profiles are inverted at the different moisture conditions and 
compared to the FDR probes. 
 

 
Figure 6: Comparison of inverted soil moisture profiles obtained within glass beads with independent soil 
moisture measurements by means of FDR probes (marked with circles). The colour coding is the same for 
both data sets. 

 
Figure 6 presents inverted moisture profiles in comparison to the FDR probe obtained during 
the experiment. For the inversion, the parameter set “Exp. 1” in Table 3 is used. The profile data 
are aggregated to 0.05 m for a better comparability. Table 4 shows the absolute error of the 
inverted profiles to the FDR probes and goodness of fit criteria for the inversion calculated from 
observed and reconstructed reflectograms. Both data sets are generally in good agreement, except 
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for days 1.5 and 2.5. The higher values of the FDR probe measurements may result from effects 
of the T-pieces, which may have retained higher water content during drainage. Finally, it is 
important to stress that even a glass bead medium is not perfectly homogeneous. The reader 
should note the small variations in the moisture profile at the beginning of the experiment, which 
reflect small differences in saturated water content.  
 

Table 4: Difference of inverted soil moisture to point measurements with FDR probes (THETA probe, 
Delta-T-Devices) as absolute error (AE) of the soil moisture in m³m-³; goodness of fit criteria calculated 
from observed and reconstructed reflectograms: root mean square error (RMSQ), mean error (ME), 
standard deviation of error (STDE), Nash-Sutcliffe efficiency (NSE) and the objective function (Eq. (2)). 

Time [d] 0 1.5 2.5r 3.5 4.5 

AE 0.30 m -0.022 -0.032 0.022 -0.002 -0.003 

AE 0.55 m 0.003 0.000 0.010 -0.029 0.019 

RMSQ 1.50 10-3 4.52 10-3 6.18 10-3 8.05 10-3 6.65 10-3 

ME -1.02 10-3 -3.06 10-3 -4.60 10-3 -5.95 10-3 -4.51 10-3 

STDE 1.10 10-3 3.35 10-3 4.02 10-3 5.06 10-3 4.81 10-3 

NSE 0.995 0.994 0.992 0.990 0.993 

Objective Function 3.35 10-14 3.06 10-13 5.69 10-13 9.63 10-13 6.55 10-13 

 
 

2.4.4 Experiment 3: effect of probe deformations  

Table 5: Mean soil moisture observed with different probe deformations at soil moisture of approximately 
0.04 m3m-3, 0.08 m3m-3 and 0.20 m3m-3 estimated with SUSU03 and FDR probes (THETA probe, Delta-T-
Devices). Standard deviation is abbreviated as STD. 

Type of 
deformation 

Convergence Standard Divergence
Strong 

Divergence
Mean THETA 

probes 
STD THETA 

probes 
Distance 
between the 
outer rods [m] 

0.03 0.06 0.10 0.14 - - 

0.04 m3m-3 0.036 0.038 0.039 0.039 0.040 0.005 
0.08 m3m-3 0.077 0.081 0.079 0.073 0.080 0.010 
0.21 m3m-3 0.207 0.199 0.200 0.195 0.200 0.020 

 
The effect of probe deformation on the estimated soil moisture profile and the mean soil 
moisture are studied by deforming the two outer rods under controlled conditions with the 
assumption of a parameter set up for a correctly parallel installed probe. Here four different cases 
are studied: parallel rods, converged rods, diverged rods and strongly diverged rods (Figure 3B 
and Table 5). The experiment is conducted with glass beads in a plastic box and a template to 
ensure the probe deformation (Figure 3A). The experiment is conducted at three soil moisture 
levels: 0.04-0.05 m3m-3, 0.07-0.09 m3m-3, and 0.20-0.23 m3m-3. The values are cross-checked with 
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FDR probe measurements along the experimental box. A TDR measurement is performed and 
inverted into a soil moisture profile. The procedure is repeated for all selected deformations. 
Establishing a homogeneous soil moisture profile during a single experiment is rather difficult 
and could only be achieved approximately.  
Figure 7 presents the reflectograms and the inverted soil moisture profiles at different average 
soil moistures of 0.05 m3m-3 (Figure 7A and D), 0.08 m3m-3 (Figure 7B and E) and 0.20 m3m-3 
(Figure 7C and F) for the four different rod geometries shown in Figure 3B. During inversion the 
parameter set for glass beads (Table 3) are used. It has to be noted that due to installation and de-
installation of the probe, which required refilling of the box, the soil moisture and bulk density 
profiles varied slightly between different experiments (Table 5 and Figure 7A-C) when comparing 
the different geometries.  
 

 

Figure 7: Reflectograms and inverted soil moisture profiles obtained with different probe deformations at a 
soil moisture of approximately 0.04 m³m-³ (A) and (D); 0.08 m³m-³ (B) and (E); and 0.20 m³m-³ (C) and (F). 
‘Standard’ denotes according to Figure 3 ideal geometry, ‘Convergence’ means convergent rods with 
increasing depth, ‘Divergence’ and ‘Strong Divergence’ values signify a divergent probe as described in 
Figure 3. 

 
A decreasing distance between the wave guide rods means an increasing capacitance of the 
transmission line. Hence, the probe parameters C1 and L should vary along the transmission line. 
However, they are currently assumed to be constant, because the effect of rod deformation on 
the retrieved soil moisture profile is studied by the supposition of a parallel geometry on de facto 
different geometries. For convergent rods, the average soil moisture is measured correctly 
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compared to the measurement with parallel rods. However, the soil moisture along the rod 
increases with depth in all three cases, implying an underestimation of soil moisture in the upper 
half and an overestimation of soil moisture in the lower half. This becomes especially apparent 
for intermediate conditions and wet conditions. 
 
For the case of divergent rods, the apparent soil moisture profile is just flipped in comparison to 
the convergent case. Thus, in the upper half an overestimation and in the lower part an 
underestimation of the soil moisture is observed. It is important to note that the average soil 
moisture calculated from the travel time with constant parameters is in most cases within the 
error range almost unaffected by deformations of the probe (Table 5). The experiments are also 
repeated in coarse sand of 0.06 to 0.60 mm grain size, with similar results (not shown). Thus, it 
can be stated that unknown changes in probe geometry will lead to a systematic bias in inverted 
soil moisture profiles, but will leave the average values largely unchanged in the case of the 
SUSU03 probe used.  
 
As a first step, a simple quality measure is tested to identify probe deformations by introducing 
the coefficient of amplitude CA, defined as: 

Eq. 12 

1maxmin1max /)( VVVCA −= , 
 
where Vmax1 = maximum voltage of the first reflection and Vmin is the inflection point before the 
second reflection in the reflectogram. The corresponding values for the deformation cases are 
listed in Table 6. In the convergent case, CA has positive values and is negative in the standard 
and divergent case. With increasing divergence CA values become larger. This is consistent with 
the theory of a plate capacitor, as an increasing distance between the rods corresponds to a 
decreasing conductance. The amplitude at the end of the reflectogram will thus increase, which 
yields a negative value for CA. In the convergent case the conductance increases at the end of the 
probe, which means a small amplitude and thus a positive CA. However, in the case of layered 
soils, where the lower part can be systematically drier/wetter than the upper soil, or in the case of 
gradients in salt, clay or organic content, identification of probe deformations using Eq. 12 is not 
that straight-forward. 
 

Table 6: Amplitude coefficient (CA) for different probe deformations at soil moisture of approximately 
0.04 m3m-3, 0.08 m3m-3 and 0.20 m3m-3. 

Type of 
deformation 

Convergence Standard Divergence
Strong 

Divergence
Distance 
between the 
outer rods [m] 

0.03 0.06 0.10 0.14 

0.04 m3m-3 0.11 -0.33 -0.58 -0.75 
0.08 m3m-3 0.22 -0.20 -0.66 -0.80 
0.21 m3m-3 0.46 -0.25 -0.58 -1.31 
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2.4.5 Experiment 4: effect of solid objects in the integration volume 

 
Figure 8: Reflectograms and inverted soil moisture profiles with an iron block, dry and wet wood, PVC 
block, brick and boulder with a volume of approximately 1.5 l at a depth of 0.30 m. All probes are measured 
with ideal geometry. The mean soil moisture is about 0.04 m³m-³, (A and D, dry case) 0.16 m³m-³ (B and E, 
intermediate case) and 0.30 m³m-³ (C and F, wet case). Wood is abbreviated to W. 

 
The purpose of this experiment is to study the influence of different solids on the reflectogram 
and the estimated soil moisture profile. A coated SUSU03 probe is installed in the same box used 
in Experiment 1 (Figure 3A); ideal parallel geometry is ensured by installing a wooden template at 
a depth of 0.59 m. An iron block (a conductor), a dry and a saturated piece of wood (insulator), a 
PVC block (insulator) and a brick or a boulder from the study area, all with a volume of 
approximately 1.5 l, are placed close to the probe at a depth of 0.30 m. The box is filled with 
glass beads (Table 2). TDR measurements are performed at three different soil moisture levels: 
0.04 m³m-³ (dry case), 0.16 m³m-³ (intermediate case) and 0.30 m³m-³ (wet case). 
Figure 8 presents the reflectograms as well as the inverted soil moisture profiles for the brick, the 
iron block, the dry and saturated wood, and the boulder block. Table 7 lists the soil moisture 
observed with FDR probe measurements along the profile, the mean soil moisture estimated 
with the SUSU03 and the soil moisture in the area of the object. During inversion, parameter set 
“Exp. 2” (Table 3) is used to characterize the transmission line. Similar to Experiment 3 it has to 
be noted that due to installation and de-installation of the probe, soil moisture and bulk density 
profiles varied slightly between different experiments. This leads to a non-constant profile in the 
inverted profiles, especially in the intermediate and wet case (Figure 8E and F). 
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As the iron block is an ideal conductor, the electric conductivity is strongly increased at a depth 
of 0.30 m. Consequently, soil moisture appears to be higher at that depth in the soil moisture 
profile, which is indicated in the reflectogram by the pronounced decrease in the amplitude at 
5 ns in Figure 8C. The inversion yielded a soil moisture value of 0.37 m3m-3 at 0.30 m, whereas 
the true soil moisture is approximately 0.30 m3m-3. The other objects, with the exception of the 
wet piece of wood, show up as a slightly drier region in the reflectogram, marked by the small 
increase in normalized voltage at 5 ns in Figure 8B and C. The wet piece of wood has no 
influence in the dry and intermediate case and less effect on the profile in the wet case, although 
slight heterogeneities in the pore space could be observed and have similar impact on the 
reflectograms. Inversion yields slightly lower soil moisture at 0.30 m when compared to the 
values below and above. The effect of the iron block and the other objects agree with the 
expected behaviour. 
 

Table 7: Mean soil moisture observed with FDR probes (THETA probe, Delta-T-Devices) and estimated 
with the different objects and the soil moisture in the area of the object. 

  Soil moisture between 0.28-0.33 m depth [m3m-3] 

T 
Mean 

THETA 
probe 

Iron Boulder Dry Wood Sat. Wood Plastic Brick 

dry 0.04 0.094 0.034 0.031 0.034 0.031 0.034 
intermediate 0.16 0.240 0.131 0.135 0.152 0.142 0.140 

wet 0.30 0.378 0.306 0.308 0.307 0.299 0.328 
    mean soil moisture SUSU03       

dry 0.04 0.037 0.034 0.034 0.033 0.034 0.035 
intermediate 0.16 0.160 0.147 0.147 0.154 0.166 0.161 

wet 0.30 0.310 0.313 0.313 0.312 0.315 0.316 
 
 
It is important to stress that an ideal conductor in the integration volume has the same influence 
on the reflectogram and the inverted moisture profiles as a convergent probe geometry (compare 
Figure 7A and Figure 8A). Both lead to a strong decrease in the amplitude of the reflectogram. 
Fortunately, gravel, boulder blocks and other solid objects of low electric conductivity and low 
permittivity seem to be not as critical as is expected. Their effect on the reflectogram is rather 
small.  
 

2.4.6 Experiment 5: measurement of soil moisture in disturbed soil  

The applicability of TDR in soils of high clay content is generally hampered because of relaxation 
phenomena and high energy losses along the transmission line (Chen et al., 2007; Kupfer et al., 
2007). As the soil at the field sites contains about 16 % clay, irrigation experiments are performed 
using field soil material (Table 2) in the box described in Experiment 1 with the wooden template 
to guarantee an ideal probe geometry. The plate at the base is perforated to allow for exfiltration 
of irrigated water. To set up the experiment, the box is first filled to 50 % with disturbed soil 
material from the field site, the SUSU 3 probe is installed in the template, two FDR probes 
installed at depths of 0.25 m and 0.50 m and then the remaining volume filled. Additionally, a 
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0.30 m uncoated TDR probe of type CS610 (Campbell Scientific Inc.) is installed vertically from 
the top into the box to measure the bulk electrical conductivity. After filling and probe 
installation, the soil material is compacted to avoid air gaps between the rods and the surrounding 
soil. The spin-up time of the experiment is two months and irrigated with 74 l m-2 every fourth 
day to achieve stable initial conditions. The actual irrigation experiment lasted 10 h, with a 
temporal sampling interval of the soil moisture data before irrigation of 20 min and during and 
after irrigation of 10 min. The soil is irrigated twice (74 l m-2 4 min-1) using de-ionized water. 
During the inversion the profile information of the previous time step is used as the initial 
condition for the following step. Inverted soil moisture profiles obtained with Spatial TDR are 
compared to measurements with the FDR probes at two different depths.  
 
Figure 9 presents the temporal development of the inverted soil moisture profile during two 
irrigations of approximately 74 l m-2 in a period of 4 minutes at 5:20 h and 6:40 h (A), the 
absolute error of inverted profile compared to FDR probe measurements (B), the objective 
function of the inversion (C), and the inverted profiles (D). The range of the bulk conductivity 
measured with a CS610 is 0.04-0.10 dS m-1. The spatial resolution is aggregated to 0.05 m length 
for a better comparability with the FDR probe measurements. During inversion, parameter set 
“Exp. 2” (Table 3) is used to characterize the transmission line. 
 

 
Figure 9: Inverted soil moisture profiles obtained in an experimental box filled with soil from Rehefeld with 
A) the irrigation, B) the absolute error of inversion compared to measurement with FDR, C) the objective 
function (shortened with OF) of the inversion and D) the inverted profiles to a depth of 0.55 m. 
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The soil column is relatively dry before the irrigation, with a dry top layer and a slight increase in 
soil moisture towards the bottom. During the irrigation, the infiltration front reaches a depth of 
approximately 0.15 m in the first 10 min, and then the infiltration front reaches the bottom after 
further 10 min. Exfiltration starts at the bottom of the soil column, with some 10 l m-2 leaving 
the column in the first few minutes after the infiltration front has reached the bottom. In the top 
layer, up to a depth of 0.10 m, the soil moisture decreases while the lower layers remain saturated 
for 2 hours, after which the second irrigation experiment is initiated. The wetter soil reacts much 
faster upon irrigation. Drying then starts again, mainly forced by evaporation, and the profile 
evolves to the initial conditions. First, the soil moisture decreases from 0.56 m³m-³ to 0.25 m³m-³ 
in the top layer up to a depth of 0.08 m within a few hours. The deeper parts have lower rates of 
drying depending on the depth, and at the end of the experiment the lowest 0.12 m are still 
saturated.  
The estimated absolute error (Figure 9B) of the inverted value minus the measured soil moisture 
with FDR probes in the depths 0.20 m and 0.50 m shows that the inverted value slightly 
underestimates the soil moisture measured with the FDR probes before the irrigation. During the 
irrigations, the inversion overestimates the soil moisture, and during the drying the soil moisture 
is underestimated again. Especially during the irrigation phase, the absolute error is larger for the 
upper probe (0.15 m3m-3) than for the lower one (0.05 m3m-3). During the drying phase, the soil 
moisture for the upper probe is slightly overestimated, and for the lower it is underestimated. 
One explanation for the differences of < 0.03 m3m-3 between inverted soil moisture and FDR 
probe measurements during the experiment is small scale heterogeneity in the soil column. 
Figure 9C shows the temporal development of the objective function for the inversions, which is 
an uncertainty measure for the inverted soil moisture values. A higher value of the objective 
function implies a high uncertainty of the measurements. The objective function slightly 
decreases at the beginning of the experiment. It increases with the start of the irrigation. Between 
the two irrigation events, the objective function remains constant, but increases again after the 
second irrigation. Finally, the objective function value decreases continuously with decreasing soil 
moisture content. The increase in the objective function and the large difference to the upper 
FDR probe during the irrigation indicate that fast soil moisture changes are problematic for the 
inversion procedure, which applies especially for the upper part of the probe.  
 
 

2.5 Discussion and Conclusions 

Different laboratory experiments are carried out to investigate the feasibility of retrieving soil 
moisture profiles with Spatial TDR technology in glass beads and heterogeneous loamy soils with 
substantial clay content. 
 
This study shows that deformation of the probe geometry, which can be assumed to be the rule 
rather than the exception when installing long TDR probes in heterogeneous soils, influence 
both the reflectogram and the inverted soil moisture profile. In the case of divergent or 
convergent rods, neither the inductance L nor the capacitance C1 can be assumed to be constant 
along the transmission line. Fortunately, probe deformations leave the average moisture content 
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along the probe almost unchanged. The average value is determined from the pulse travel time 
between the first and second main reflections in the reflectogram. Their location is not affected 
by probe deformations, because of the use of coated probes here. Average soil moisture values 
obtained with uncoated probes are, however, more sensitive to probe deformations, as shown by 
Bänninger et al. (2008) and Spittlehouse (2000). Spittlehouse observed a reduction in average soil 
moisture in the divergent case and predicted an underestimation of the sampling volume for the 
convergent case. Ferré et al. (1998) showed that coated probes have a clearly smaller sampling 
volume than uncoated probes and that three rod probes have a smaller sample volume than two 
rod probes. A decreasing/increasing of the sample volume in the case of convergent/divergent 
probes has thus a smaller effect when using coated three rod probes, which explains the 
robustness of average soil moisture contents obtained here. A much stronger deformation than 
has been investigated here could surely have an effect on the average soil moisture values. 
However, in the present study just realistic rod deformations are investigated that are observed in 
a related field study (Chapter 3).  
 
It is also good news that solid objects like gravel, wood or boulder blocks only have a small effect 
on the inverted soil moisture profiles. They show up as slightly drier regions in the reflectogram. 
However, when a solid electrical conductor (an iron block) is present, soil moisture in this region 
is strongly overestimated by the inversion. Similar problems could occur in soils with a high 
content of iron-rich minerals, as discussed by Robinson et al. (1994) and Van Dam et al. (2002).  
 
Finally, observations with THETA probe-type FDR probes and soil moisture values retrieved 
from the same depths are generally in good accordance, both in glass beads and disturbed natural 
soil from the field site. It should be noted that during infiltration or withdrawal, the accuracy of 
the inverted profile decreases. It is demonstrated furthermore that Spatial TDR is capable of 
monitoring fast infiltration and redistribution of irrigation water in soil.  
 
The sources and subsequent impacts of different kind of errors are analysed. The biggest 
problem is certainly the bias that is introduced by probe deformations. The suggested CA 
measure allows the assessment of whether the probe is convergent or divergent. During the 
experiments, positive values are found in the case of convergent rods; negative values are 
observed for parallel and divergent rods. The absolute value of the negative values increases with 
increasing divergence. Thus, if the reflectogram of a probe shows strongly negative or positive 
values under different conditions, it is likely that the probe geometry is deformed. In the case of a 
small negative CA, the function is not able to give clear information about the probe geometry if 
the probe is parallel or slightly divergently installed. This could lead to a biased inversion with a 
slight underestimation of the depth. This error source can only be identified by excavation of the 
probe. In the case of layered soils where the lower part can be systematically drier/wetter than 
the upper soil, or the case of gradients in salt, clay or organic content, identification of probe 
deformations using Eq. 12 is not that straight-forward. The amplitude coefficient should to be 
evaluated for different wetness states: if the amplitude coefficient remains unchanged while 
observed, a probe deformation is likely. It can be recommended, furthermore, that assessment of 
detailed information on the soil profile and the soil’s physical properties within different layers be 
used to assist interpretation of the amplitude coefficient. 
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Future steps should further enhance the calibration of transmission line parameters. Especially 
for soils rich in fine particles, Eq. 10 should be revisited, to check whether the assumption of 
zero conductivity is reasonable when C drops below C0. Independent data on the electrical 
conductivity of the soil will facilitate solving this problem. Furthermore, information about soil 
chemical properties and mineral content could be used as a pedo transfer function in 
supplementary work. It might also be necessary to introduce separate parameterization of the C-
G relationship in Eq. 10 for strongly different soil horizons.  
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CHAPTER 3  SOIL MOISURE DYNAMICS AND RUNOFF 
GENERATION IN HEADWATER CATCHMENTS: LEARNING 
FROM FIELD DATA  

3.1 Introduction and Motivation 

3.1.1 How to observe the spatial distribution of soil moisture 

Soil moisture is a key state variable that controls hydrological dynamics at various spatial scales. 
There is experimental evidence that the onset of point scale threshold processes such as fast 
preferential flow in soil (Zehe and Flühler, 2001a ; Blume et al., 2009), Hortonian overland flow 
initiation (Zehe et al., 2007), or the switch between hydrophilic and hydrophobic conditions are 
strongly controlled by antecedent soil moisture conditions (Dekker et al., 2005). Furthermore, 
various studies suggest that the antecedent soil moisture state exerts crucial control on rainfall-
runoff response at the field and headwater scale (Bronstert and Bárdossy, 1999; Gurtz et al., 
1999; Jayawardena and Zhou, 2000; Montgomery and Dietrich, 2002; Meyles et al., 2003; Chirico 
et al., 2003; Zehe and Blöschl, 2004; Zehe et al., 2005; Blöschl and Zehe, 2005) or on the 
preferred flow regime in small catchments (Grayson et al., 1997). However, most of the listed 
studies rely to a large degree on modelling. Experimental studies that relate observations of 
spatiotemporal soil moisture dynamics at the field or headwater scale to observed flows, either at 
the surface or in the stream, are rare (Burt and Butcher, 1985, Grayson et al., 1997; Starr and 
Timlin, 2004; McNamara et al., 2005; Lin, 2006; Frisbee et al., 2007). This is notwithstanding that 
they could offer additional – probably unexpected – pieces of information to the puzzle that up 
to now has largely comprised model extrapolations. The reason for the limited number of field 
studies is well known. Soil moisture at the headwater scale exhibits huge spatial variability and 
single or even distributed TDR measurements yield non-representative data.  
 
Promising technologies to assess spatially distributed three-dimensional soil moisture proxies at 
the field scale are ground penetrating radar (GPR) (Binley et al., 2002; Roth et al., 2004) or 
electrical resistivity soundings (ERT) (e.g. Kemna et al., 2002; Graeff et al., 2009). The former 
yields the subsurface pattern of the dielectric permittivity, the latter the subsurface pattern of the 
apparent specific resistivity. The difficulty for both methods is that there are no general 
petrophysical relationships available to transform the observed variables into soil moisture 
content (Paasche et al., 2006). A draw-back of both methods is that observations are – in most 
cases – restricted to field campaigns and therefore provide only a coarse temporal resolution. 
 
Most past and recent studies have largely relied on distributed TDR observations. One approach 
is to use a set of fixed TDR sensors to monitor temporal soil moisture dynamics at selected 
points, as for instance suggested by Bárdossy and Lehmann (1998) in the Weiherbach, Germany, 
Anctil et al. (2008) in the Orgeval watershed, France or Blume et al. (2009, 2008 a, b) in the 
Malalcahuello catchment in Chile. The advantage of using fixed stations is that they allow a high 
temporal resolution, which allows either comparison of observed point soil moisture dynamics to 
event scale discharge response and piezometers response as suggested by Blume et al. (2008a), or 
to use this information to improve discharge predictions as recently shown by Anctil et al. (2008). 
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The drawback of this approach is that a high spatial resolution with this approach cannot be 
achieved, simply because of the high costs. Other authors thus prefer spatially highly resolved soil 
moisture sampling by means of mobile or portable TDR sensors, as for instance Grayson et al. 
(1997) or Grayson and Western (1998) in different catchments in Australia or Brocca et al. (2007, 
2009) for three field sites in Italy. Spatially distributed sampling allows identification of temporal 
changes in correlation structure and spatial variability depending on the average near surface 
wetness. Albertson and Montaldo (2003) and Western et al. (2004) found, for instance, a 
reduction in variance and an increasing correlation length with increasing wetness of a field site in 
Australia. Similarly, Brocca et al. (2007) report that at their rather homogeneous site soil moisture 
variance reduced during wet conditions and soil moisture is normally distributed in the flat valleys 
areas. Furthermore, Brocca et al. (2007) and Grayson and Western (1998) defined representative 
sites whose soil moisture values are always close to the overall average. Brocca et al. (2009) found 
further that the ranks of their distributed measurements in the univariate soil moisture 
distribution at a fixed time did not change much between different observation times. This 
temporal stability of the ranks suggests that the moisture pattern reflects the pattern of stationary 
soil properties, at least at the seasonal scale. Blume et al. (2008 a, b) found, however, at a much 
more heterogeneous and forested site, partly contradicting results. The main drawback of using 
mobile TDR sensors is the limited temporal resolution that is too coarse for relating observed 
soil moisture dynamics to systems behaviour under rainfall-driven conditions.  
 
In this study, in a headwater catchment in the Ore Mountains, another approach is suggested to 
assess representative soil moisture data for typical landscape units and to explore subsurface 
wetness control on runoff generation. The idea is to combine advanced Spatial TDR technology 
(Schlaeger, 2005; Becker, 2004; Graeff et al., 2010) that allows retrieval of soil moisture data with 
an innovative sampling strategy, that combines the advantage of both approaches discussed 
above. Before further elaboration on this sampling strategy, it is helpful to define precisely what 
is the meaning of “soil moisture variability” and what determines a “soil moisture ensemble” in a 
statistical sense. Spatiotemporal variability of soil moisture is determined by a multitude of spatial 
patterns that interact in a nonlinear way in space and time. During and after extreme precipitation 
events the spatial rainfall pattern can be expected to be dominant. Hence, soil moisture is 
expected to be spatially uniform (Grayson et al., 1997, Grayson and Western, 1998; Brocca et al. 
2007). With increasing dryness, terrain, soil types and vegetation begin to dominate more and 
more and soil moisture variability is expected to increase as shown by Brocca et al. (2007), 
Grayson et al. (1997), Grayson and Western (1998) or Western et al. (2004). Thus, a soil moisture 
ensemble is defined as an area - that is uniform with respect to soil type, terrain properties and 
vegetation class (Wilson et al., 2004), but also rainfall and radiation forcing. At least the first 
moment of the soil moisture pattern – the mean – should be constrained by soil type, vegetation 
and terrain. Understanding this deterministic part of spatial soil moisture variability requires 
therefore the determination of representative mean values within different ensembles or strata. In 
heterogeneous systems this is, however, highly complicated by local scale statistical soil moisture 
variability within such an ensemble that stems from local fluctuations in soil hydraulic properties, 
macropores and micro topography. For instance, Zehe and Blöschl (2004) found the variance of 
soil moisture observed within a cluster of 25 TDR measurements at a 4 m2 large field plot is, at 
0.04 (m3m-3)2, as large as the soil moisture variance observed at 61 locations in the 3.2 km² 
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Weiherbach catchment. However, they showed furthermore that the first two moments observed 
within a different cluster of 25 TDR measurements at a different plot are, within the confidence 
limits, identical to those obtained at the plot. Similarly Brocca et al. (2007) found that 9 to 35 
measurements allow assessment of a stable mean soil moisture values.  
 
Therefore clustering of several TDR probes within different ensembles/strata could thus be a 
promising strategy to discriminate different sources of soil moisture variability (deterministic and 
stochastic) and combine the advantages of high temporal and locally high spatial resolution. A set 
of fixed TDR stations equally distributed in a catchment would mix these sources of variability 
because it will cover several ensembles. As long as the total spatial extent of the network is small 
enough to neglect spatial variability in rainfall and radiation, both sources of variability may still 
be un-revealed using appropriate geostatistical methods and a stratified sampling (Bárdossy and 
Lehmann, 1998; Zehe et al., 2005). However, the sampling size in the individual classes may 
become too small to allow representative estimates of prior distributions, even when up to 100 
TDR stations are installed, as reported in the study of Bárdossy and Lehmann (1998). A TDR 
cluster may furthermore be operated at a sampling interval of 10 minutes for up to 40 sensors 
and may cover an area of up to 500 m2. This can be deemed as sufficient to investigate soil 
moisture control on runoff generation and to shed light on a possible dependence of field scale 
soil moisture variance on the average wetness state or on the spatial pattern of soil moisture 
changes under different conditions. The ideal case is that the individual TDR probes within such 
a cluster yield soil moisture profiles instead of an integral value along the probe. This would allow 
assessment of highly resolved infiltration data to test and improve the current generation of soil 
hydrological models for flow in the unsaturated zone (compare Chapter 2). The drawback of 
operating Spatial TDR clusters is, however, that a single one costs roughly 12-15 k€.  
 
This study presents an application of the outlined TDR technology (the underlying theory is 
explained in detail in Chapter 2), in a headwater of the Weißeritz in the German eastern Ore 
Mountains, where two TDR clusters have been installed since autumn 2006. In principle, one 
may obtain two types of soil moisture data from these clusters: (1) the standard vertically 
averaged soil moisture values at the individual probes based on the travel time of the TDR signal 
as is used here, and (2) inverted soil moisture profiles based on the approach suggested by 
Schlaeger (2005), as explained in Chapter 2. Identification of reliable soil moisture profiles in 
these soils is, however, complicated by unexpected error sources such as very strong probe 
deformations, strong vertical gradients in porosity and density, and the presence of gravel and 
stones in the integration volume, which all arose when installing the TDR probes in these highly 
heterogeneous soils. Chapter 2 reports in detail how these error sources affect retrieval of soil 
moisture profiles in these soils. It is found that the vertically averaged soil moisture is not 
affected by these errors but inverted soil moisture profiles may be strongly biased.  
 

3.1.2 Investigation of the dominating runoff processes 

One key challenge during rainfall driven conditions is to understand the fingerprints in the 
response time or residence time for tracer distributions at the plot (Beven and Germann, 1982; 
Germann and Beven, 1985; Zehe and Flühler, 2001a, b; Vogel et al. 2005a, b) and hillslope 



 

 36

(Tromp-van Meerveld and McDonnell, 2006a; Weiler and McDonnell, 2007; Lehmann et al., 
2007) that are caused by vertical and lateral preferential flow. Here, the response time for the 
response by the measurement device (e.g. gauge or TDR probe) and residence time i.e. the time 
water and solute spend travelling from its entry point to a certain depth, interface or the 
catchment outlet, are key signatures to characterise flow and transport at all scales (McGuire and 
McDonnell, 2006). Depending on the system state, the interactions between catchment 
characteristics and precipitation may cause abrupt changes, both in internal process patterns and 
the way they transform into integrated catchment response (Zehe and Sivapalan, 2009). Such 
threshold behaviour in catchment response is often caused by preferential flow in subsurface 
connected structures, which may even extend over entire hillslopes, and its interaction with deep 
percolation into the bedrock (Tromp-van Meerveld and Weiler, 2008; Wienhöfer et al., 2009). 
Different authors have investigated residence time and the dominating processes within 
sprinkling experiments. Cassiani et al. (2009) observed fast infiltration through the soil into the 
subsurface and regolith. Bronstert (1998) detected mainly overland flow in a loess dominated 
catchment. Montgomary et al. (1997) and Montgomary and Dietrich (2002) did not observe 
surface runoff on a very steep hillslope but could observe runoff response in all sprinkling 
experiments and explain that by subsurface processes on impermeable layers. Tromp-van 
Meerveld and McDonnell (2006a) and Wienhoefer et al. (2009) monitored lateral subsurface 
storm flow only on the bedrock surface. Sprinkling experiments in combination with different 
soil moisture measurements and dye tracer experiments are used to understand the dominating 
processes. 
 
The main objective of the present study is thus to:  

• Investigate how different clusters determine the mean, variance and correlation length 
(range) of vertically averaged soil moisture values and whether the variance and range 
depends on the average wetness within the ensemble.  

• To explore the relationship between spatial average soil moisture dynamics obtained 
within one TDR cluster and the discharge response at the outlet of the 16 km2 large 
catchment. 

• To compare observations with long-term simulations from the physically based 
hydrological model CATFLOW to investigate soil and vegetation controls on observed 
soil moisture dynamics and explore whether the spatial extent of the TDR clusters does 
indeed allow for an assessment of a representative mean soil moisture dynamics. 

• Identify the dominating hydrological processes during an irrigation experiment. 
 
 

3.2 Research area and additional data sets/methods incl. CATFLOW 

3.2.1 Research area 

The research area is the headwaters of the Weißeritz River. The Weißeritz basin is located in the 
eastern part of the Ore Mountains, Czech Republic/Germany, between 50° 40' and 50° 49' 
northern latitude and 13° 35' and 13° 45' eastern longitude. It consists of two main channels, the 
Red and Wild Weißeritz, which jointly contribute to the Elbe River at the city of Dresden. The 
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area is selected because basins of the Ore Mountains are typically well known for their sensitivity 
to flash floods response and the direct effect of the Weißeritz River on the city of Dresden 
(LFUG, 2004; Pöhler, 2006; Guse et al., 2009; Uhlemann et al, 2010). The basin covers an area of 
384 km2 and stretches over 15 km from north to south. The work is focusing on the headwater 
catchment of the Wilde Weißeritz down to the gauge at Ammelsdorf, which lies above the 
storage reservoir Lehnmühle. The complete catchment of the Weißeritz is not under 
investigation because of the effect of three storage reservoirs in the downstream part of the 
catchment and their strong influence on the runoff evolution. The catchment is ranges from 
910 m at Pramenáč to 527 m at its outlet. The area is characterized by plateaus with only gentle 
slope divided by steep valleys. The metamorphous bedrock is mostly covered with a strongly 
heterogeneous periglacial soil structure covering layers of loamy soils with Podzol-Cambisoil 
associations (Heilmann and Symmangk, 2008). Conifer forest dominated by Picea abies (European 
spruce) and arable land appear in approximately equal shares in the catchment to the 
Ammelsdorf gauge (Table 8). The watershed of the Rehefeld gauge is dominated by forests and 
the Becherbach has only a small amount of pasture. 
 

Table 8: Landuse in the three sub-basins 

Subbasin Land use 

Ammelsdorf 
 50% forest, 13% arable land, 3% bogs, 30% pasture, 4% 
settlements 

Rehefeld 61% forest, 11% bogs, 26% pasture, 2% settlements 
Becherbach 80% forest, 20% pasture 
 
For more than 20 years water levels have been observed at the Rehefeld and the Ammelsdorf 
river gauges operated by the Federal State of Saxony (Landestalsperrenverwaltung Sachsen). The 
small watershed of the Becherbach is a typical steep tributary of the Weißeritz river network 
(Table 9) and is instrumented with a capacitance water level measurement device of the type 
“TruTracks” (Intech Instruments LTD.). Different events are sampled using NaCl as a tracer to 
estimate the runoff volume. A rating curve is calculated and used to transform water stages to 
runoff.  
 

Table 9: Topographic and hydrological (of the period 2000–2010) characteristics of the nested watersheds. 

 
Catchment  
size [km²] 

mean 
Slope 

[°] 

std 
Slope [°]

Mean q 
l s-1km-2

q05 
l s-1km-2

q95 
l s-1 km-2

Mean Q 
m³s-1 

Q05 
m³s-1 

Q95 
m³s-1 

Becherbach 2 7.5 4.8 17.63 0.81 151.11 0.043 0.002 0.366
Rehefeld 17 6.3 4.4 19.56 1.33 98.9 0.339 0.023 1.712
Ammelsdorf 49 7.9 5.1 19.28 1.96 89.23 0.988 0.101 4.574

 
The mean flow rate at the Ammelsdorf gauge is about 0.99 m³s-1 and the specific discharge  
19 l s-1km-2, at the Rehefeld gauge it is 0.34 m³s-1 with a specific discharge of 20 l s-1km-2 for the 
period 2000-2010, and at the Becherbach gauge it is 0.04 m³ s-1 with a specific discharge  
18 l s-1km-2 for the period 2007-2010. Average annual precipitation at the meteorological station 
Zinnwald (877 m a.s.l.) (Figure 10) is 1000 mm during the period of 2000-2009 and the average 
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precipitation amount for the summer half year is approximately 600 mm. Average annual 
temperature is between 4-5.5 °C.  
 

 

Figure 10: Map view of the headwaters of the Wilde Weißeritz (50°43’-50°49’ N; 13°38’-13°45’ O) with 
instrumentation, as well as photos to highlight the differences between the two TDR cluster sites of C1 
(left) and C2 (right). 

 
The headwater is additionally instrumented with six rain gauges, a meteorological station 
positioned at the grassland site, several “TruTracks” to observe shallow groundwater, 
tensiometers, profiles of FDR probes (THETA probes, Delta t) as reference measurement and 
two TDR clusters. Figure 11 shows the spatial extend of the installed probes at the two study 
sites. 
Cluster C1 is installed in open grassland and consists of 39 TDR probes (Figure 3.1). There is an 
elevation difference of 5 m between the upper and lower part of the study site with a mean slope 
of 12°. Cluster C2 has been installed at a forested site and consists of 31 sensors. The TDR 
sensors used are 60 cm long insulated three-rod probes of type SUSU03 (Schädel, 2006. The 
probes are connected to a TDR100 (Campbell Scientific Inc.) via an eight channel multiplexer of 
type SNAPMUX (Becker, 2004) by means of coaxial cables of type RG213 with an impedance of 
50 Ω and a length 15 m. The TDR100 is controlled by ARCOM VIPER 1.2 Industrial-PC with 
embedded LINUX operating system that also serves as data logger. A combination of a HS-L 
130 solar panel (Siemens) with a power rating of 130 W and a 12 V gel battery guided by a solar 
controller SLR 2016 provides an independent power supply in the field even under winter 
conditions. Data collection of soil moisture data started in May 2007 at a sampling interval of 
1/2 h. Installation, which is done from the surface, of the 60 cm long TDR probes at both sites is 
a challenge, mainly due to the large amount of gravel as well as high soil stability. Even when 
using a steel template with three holes at the right distance and an electric drill, on average about 
two attempts are necessary to drill three holes down to a sufficient depth. Soil profiles that are 
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excavated to check for proper installation showed that TDR probes are often deformed. Probe 
deformations affect the capacitance of the transmission line which is crucial in the context of 
TDR inversion (Becker, 2004; Schlaeger, 2005). In Chapter 2 the laboratory study showed that 
probe deformations have a minor influence on TDR travel times and therefore on the vertically 
averaged soil moisture. However, retrieved soil moisture profiles can be seriously corrupted by 
rod deformations.  
 

 
Figure 11: Spatial extent of installed TDR probes with elevation lines and additional instrumentations at the 
two study sides, C1 (grassland) and C2 (forest). 

 
The soil at C1 was investigated through 4 soil pits, 40 auger drills to a depth of 1 m and 39 pits to 
depth of 0.7 m after the dismounting of the TDR probes in November 2009. At C2 10 auger 
drills to a depth of 1 m were conducted and 3 pits to a depth of 70 cm. 120 soil samples were 
collected at different depths to estimate the grain sizes. At both sites the soils were classified as 
Cambisoils (Table 10) and the parent bedrock at C1 consists of Cambric phylite, at C2 of 
Palaeozoic red gneiss. 250 soil samples in 1.00 cm³ soil cores taken to estimate the bulk density 
(ρ) and porosity (Table 11). In situ measurements of hydraulic conductivity were taken close to 
the TDR for different depths between 20 cm, 40 cm and 80 cm by means of an Amoozimeter 
(Ksat Inc., Raeigh, North Carolina). The principle is to maintain a constant water level in an 
auger hole and measure the discharge through the walls of the hole, based on the decrease in a 
water table with time (Amoozegar, 1989a). After a steady state is established, ks is calculated 
according to Amoozegar (1989b). The support volume of the measurement is in the order of 10-
40 H×r² where H is the level of water maintained in the auger hole and r is the radius. Gravel 
content is quantitatively estimated using photogrammetric analysis of the soil pits. 
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Table 11: Average soil properties obtained at grassland site C1, ρ is the bulk density, ks is saturated 
hydraulic conductivity, θs is saturated water content and OC is organic content. ρ and θS are estimated on 
1.00 cm³ soil cores with grain density of 2.65 g cm-3. 

Depth [m] S [g g-1] U [g g-1] Cl [g g-1] ks [mm d-1] ρ [g cm-3] θs [m³m-³] OC [g g-1] 

Gravel 
content 
[m²m-²] 

0.00    8,640.00     
0.10 0.37 0.49 0.14 1,884.73 1.04 60.59 0.11 0.02 
0.30 0.38 0.52 0.09 89.16 1.15 56.45 0.09 0.07 
0.50 0.35 0.52 0.12 449.21 1.09 58.70 0.02 0.02 
0.70 0.48 0.39 0.13 142.15 1.19 55.05 - 0.05 
0.90 0.38 0.46 0.17 34.56 1.65 37.74 - 0.12 

 
The soil at the grassland site of C1 is a sandy loam (Table 11). The upper 20 cm exhibit a high 
content of organic matter which is reflected in the low bulk density of 1 g cm-3 and large porosity 
of 0.63. Soil stability is nonetheless high due to the large amount of gravel and aggregated 
material. Consequently, soil hydraulic conductivity in the top layer is large, around 2,000 mm d-1, 
and decreases by one order of magnitude in 30 cm depth. Surface infiltrability measured with a 
constant head infiltrometer is at around 8,640 mm d-1 with a high variance (Figure 12). The soil at 
the forested site of C2 has an even higher infiltrability - beyond the measurement range - which is 
explained by the dominating grain sizes of loamy sand, lower bulk density and higher organic 
content of the top soil (Table 12). 
 

Table 12: Average soil properties obtained at forested site C2, , ρ is the bulk density, ks is saturated 
hydraulic conductivity, θs is saturated water content and OC is organic content. ρ and θS are estimated on 
1.00 m³ soil cores with grain density of 2.65 g cm-3. 

Depth [m] S [g g-1] U [g g-1] Cl [g g-1] ks [mm d-1] ρ [g cm-3] θs [m³m-³] OC [g g-1] 
0.10 0.87 0.08 0.05 172,800.00 0.75 71.70 0.13 
0.30 0.88 0.08 0.04 486.79 0.85 67.77 0.09 
0.50 0.91 0.06 0.03 34.02 1.14 57.03 0.03 
0.70 0.92 0.04 0.04 43.20 1.30 50.94 - 
0.90 0.86 0.09 0.05 25.92 1.35 49.06 - 

 
At both sites gravel content increases with depth, which is for C2 only qualitatively observed. In 
the laboratory study in Chapter 2 it is shown that gravel within the integration volume has a 
minor influence both on TDR travel times (and thus average soil moisture) as well as on retrieved 
soil moisture profiles. 
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Figure 12: Distribution of the median of hydraulic conductivity ks, grain size distribution (the prevailing 
texture following the United States Department of Agriculture, USDA notation), bulk density ρ, saturated 
water content θs and gravel content at grassland site C1 Rehefeld (black line) and C2 Becherbach (red line) 
with the confidence intervals 0.25 and 0.75.  

 

3.2.2 Data Analyses and Modelling  

3.2.2.1 TDR travel times, depth integrated soil moisture and outliers 
This study will be focus on data observed in the period between the 3rd May 2007 and the 26th 
October 2007, which is the frost-free period in 2007. TDR travel times are determined by 
detecting the time of steepest ascent in the first (signal entry) and second main reflection 
(reflection at the open end of the probe) in the reflectogram (Becker, 2004). Although there is a 
large amount of data gathered within an automated procedure, reflectograms of each individual 
probe are visually inspected frequently for their quality. Based on the calculated average dielectric 
permittivity, the average soil moisture is calculated after Herkelrath et al. (1991); compare 
Chapter 2. The data underlying this study are hence time series of vertically averaged soil 
moistures obtained within the two clusters and the related time series of temporal soil moisture 
changes.  
 
3.2.2.2 Statistical and geostatistical analysis 
First, for both sites the time series are cleaned of outliers that are defined as values that drop 
outside the 99.9% range observed at an individual probe. Next, time series of the spatial mean 
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and standard deviation, both of the soil moisture values and the hourly soil moisture changes, are 
computed. Periods where the number of TDR probes producing measurements dropped below 
10 are excluded from this procedure.  
 
The spatial covariance structure of vertically integrated soil moisture is analyzed in two steps. 
First the temporal means and standard deviations for the individual TDR probes in a cluster are 
calculated, simply to reduce noise that is introduced by small-scale variability in surface and 
subsurface water flow during individual events. Based on these values, dry and wet days are 
selected where the individual soil moisture values at the TDR probes differed more than 
plus/minus one standard deviation from the mean and then these values averaged in time to 
assess average conditions during dry and wet conditions for the individual probes. The resulting 
values reflect the average spatial distribution of soil moisture during average wet and dry 
conditions. In a second step, experimental variograms are calculated using the Matheron 
estimator and fitted to a spherical variogram function by minimizing least squared differences. 
Minimum lag is 1.1 the minimum probe distance; lag tolerance is set to 50%. Lag classes with less 
than 30 pairs are not included in the fit. As necessary conditions for second-order stationarity, 
the residuals are proven on a Gaussian distribution with zero mean. This is fulfilled in all cases. 
Due to the small extent of a TDR cluster, geostatistical analysis is somewhat limited as the 
maximum detectable range corresponds roughly to 50% of the maximum lag. The maximum lag 
distance is 15 m. 
 
3.2.2.3 Rank stability 
Rank stability plots (Teuling et al. 2006; Lin 2006; Starks 2006; Brocca et al., 2009, 2010) are used 
to understand the temporal persistence of spatial soil moisture patterns on the one hand and can 
help in identifying representative sites, where the measured soil moisture closely resembles that of 
the spatial mean. 
The relative differencing technique scales the measurements from each location against the 
associated field mean, thus stabilizing the variance due to the changing value. The relative 
difference δij with location i and time j is calculated by: 

Eq. 13 

j

jij
ij = θ

θθ
δ

− , 

 
where jθ is the mean of each time step j: 
 
For each location i, the mean and iδ  and standard deviation σ(δi) of the relative differences are: 
 

Eq. 14 
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Eq. 15 
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with M the number of time steps. 
A stable location in time is characterised by a low value of σ(δj). The jδ  is a measure for the bias 
of the soil moisture for each location. By combining the values with the root mean square error 
(RMSEδ) the locations of higher temporal stability can be identified by low RMSEδ values and jδ  
close to zero (Joshi et al., 2011). 

Eq. 16 

( )22
iiRMSE δσδδ +=  

 
The results from Eq. 14 to 15 are sorted by rank and plotted from the lowest mean to the highest 
to identify the location with the highest stability. 
The estimated values are compared with topographic values of elevation, slope and topographic 
wetness index of the two hillslopes by the Spearman rank correlation with, 

Eq. 17 
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where the variables x and y are ranked separately, given R(xi) and R(yi). n is the sample size. The 
coefficient is based on the sum of difference between the corresponding ranks of x and y and 
reach values between -1 to 1. The topography is measured with a differential GPS (DGPS, 
Trimble 5700/5800) at C1 and because of the canopy coverage with a levelling instrument at C2 
with a point density of 50 cm and a measurement accuracy of +/- 2 cm. 
The topographic wetness index (TWI; Beven and Kirkby, 1979) is used to investigate if there is 
correlation to that index on the small scale. The index describes the affinity of a subarea to 
saturate as long as the total extend of the elevation model is large enough to describe the local 
catchment size (AS) of the subarea. 
It is calculated as: 

Eq. 18 
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where is β the local slope. Large values are an indicator for areas with a tendency to saturation 
and results from large local catchment size and small angle. 
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3.3 Vegetation control on soil moisture dynamics: learning form physically based 

simulations  

The water balance of the grassland site and the forested site is simulated using the physically 
based hydrological model CATFLOW and averaged simulated and observed soil moisture 
dynamics compared at both sites. The idea is to investigate concurring influences of soil and 
vegetation parameters on the model results as well as to test the hypothesis that the spatial extent 
of the TDR clusters is large enough to assess an unbiased spatial average soil moisture at both 
sites during the observation period. The latter is the case, if a spatially homogeneous model setup 
that uses observed soil hydraulic data allows unbiased reproduction of the mean dynamics. 
 
3.3.1.1 Model description 
CATFLOW allows physically-based simulations of flow and solute transport at the hillslope and 
small catchment scales (Maurer, 1997; Zehe et al., 2001). The model represents a hillslope along 
the steepest descent line as a 2-dimensional cross section that is discretized by 2-dimensional 
curvilinear orthogonal coordinates. The hillslope is thus assumed to be uniform perpendicular to 
the slope line. Soil water dynamics is described by the Richards’ equation in the potential form 
that is numerically solved by an implicit mass conservative Picard iteration (Celia & Bouloutas 
1990). Accordingly, the model allows simulation of subsurface flow under saturated and 
unsaturated conditions. Soil hydraulic functions are described after van Genuchten (1980) and 
Mualem (1976). Evaporation and transpiration is simulated using an advanced approach based on 
the Penman-Monteith equation, which accounts for annual cycles of plant morphological and 
plant physiological parameters, albedo as a function of soil moisture and the impact of local 
topography on wind speed and radiation. In the case of infiltration excess or saturation excess, 
surface runoff is routed along the main slope line and using the convection-diffusion 
approximation of the one-dimensional Saint-Venant equation. It is numerically solved by an 
explicit upstream finite difference scheme. 
Enhanced infiltration due to preferential flow and macroporosity is represented by a simplified, 
effective approach motivated by experimental findings of Zehe and Flühler (2001a). If soil 
saturation at a surface node exceeds field capacity, effective soil hydraulic conductivity is 
increased by a macroporosity factor. Detailed explanation of the macroporosity is given by, Zehe 
et al. (2001) and Zehe and Blöschl (2004). 
The model, including the effective approach to account for enhanced infiltration, has been 
successfully applied to simulate the long term water balance and the effect of soil moisture 
variability on flooding in the Weiherbach catchment, Germany (Zehe et al., 2001; Zehe and 
Blöschl, 2004; Klaus and Zehe, 2010) as well as to simulate the rainfall-runoff response in a small 
alpine catchment (Lindenmaier et al., 2005) and in the Malalcahuello catchment in Chile (Blume, 
2008). 
 
3.3.1.2 Model setup and simulation variants  
The concurring influences of soil hydraulic parameters and plant morphological parameters on 
soil moisture are investigated in a two step procedure to find the most parsimonious model setup 
that allows a successful prediction of the time series of observed average soil moisture at both 
sites.  
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Table 13: The parameters θr (residual water content), α (air entry value) and n (width parameter) for the 
different layers are estimated based on the pedo transfer function of Carsel and Parrish (1998). The values 
are kept constant during simulation. 

Depth [cm] θr [m-3m-3] α [m-1] n [-] 
0-20 0.065 7.5 1.89 

30-120 0.078 3.6 1.56 
120-200 0.095 1.9 1.31 

 
The 35 m long hillslopes are discretized into a two-dimensional finite difference grid. Vertical 
resolution is 2 cm in the upper 0.60 cm and 0.20 m down to 2 m depth. Lateral resolution is 
0.5 m. Surface model elements extend over a width of 26 m which corresponds to the width of 
the hillslopes. Both model hillslopes are thus assigned a homogeneous three-layer soil profile, 
neglecting stochastic variability of soil parameters as first guess. In a first step three different soil 
profiles A, B, C and the vegetation parameters for forest and grassland that are determined in the 
Weiherbach catchment (Zehe et al., 2001) (see next section) are compared. The van Genuchten 
parameters θr (residual water content), α (air entry value) and n (width parameter) in the different 
layers are estimated based on the available texture data using the pedo transfer function of Carsel 
and Parrish (1988) kept constant during the simulations (Table 13). The saturated hydraulic, ks, 
conductivity and porosity, θs, varied within the three soil profiles. Profile A and B used the 
average values observed at the grassland and the forested site, respectively, for the upper two 
layers. The deep layer is parameterized according to Carsel and Parrish (1988). Profile C used 
values derived by Carsel and Parrish in all layers, assuming that only texture data are available 
(Table 14). Please note that the porosities and hydraulic conductivities of the pedo transfer 
function are clearly smaller compared to the measured values. Simulation results are evaluated 
using the root mean square error (RMSE), the absolute bias (Bias) and the correlation coefficient 
R. 
 

Table 14: Saturated hydraulic conductivity (ks) and porosity (θs) used in the different profiles. 

 Profile A  Profile B  Profile C  
Depth [m] ks 

[m s-1] 
θs  

[m3m-3] 
ks 

[m s-1] 
θs  

[m3m-3] 
ks 

[m s-1] 
θs  

[m3m-3] 
0-0.20 4.16×10-5 0.63 1.23 10-4 0.68 1.23 10-5 0.50 

0.30-1.20 1.58×10-6 0.61 2.89 10-6 0.66 2.89 10-6 0.52 
1.20-2.00 7.22×10-7 0.41 7.22 10-7 0.41 7.22 10-7 0.41 

 
In the next step the most suitable soil profile and adjusted vegetation and landuse parameters are 
selected. The latter include the annual cycles of plant morphological parameters (leaf area index 
LAI, plant cover, root depths, plant height, as well as plant roughness), several parameters that 
control the evapotranspiration model such as plant albedo, minimal stomata resistance, a factor 
and an inflexion point parameter of the soil moisture weighting function for stomata resistance 
computation (Zehe et al., 2001). These parameters as well as the annual cycles of plant 
morphological parameters are determined for different crops, forest and grassland in the 
Weiherbach catchment in South West Germany, based on detailed field survey, remote sensing 
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and process model studies (Zehe et al. 2001). Plant physiology may be assumed to be 
independent from the catchment setting. Thus the complete corresponding parameters sets are 
taken over. However, the annual cycles of plant phonological parameters such as LAI, plant 
cover and also root depth depend of course on the climate setting and climate in the Rehefeld is 
on average three degrees cooler than in the Weiherbach catchment. Thus the annual cycles of 
plant morphological parameters from the Weiherbach dataset by dividing the daily values by their 
annual maxima are normalised. LAI, plant cover and root depth of these normalised annual 
cycles range thus from zero to one. By multiplying these normalised annual cycles by slightly 
different annual maxima of LAI, plant cover and root depth, slightly different annual cycles 
during different simulations can be tested. The combinations of LAI maxima, plant cover 
maxima and root depths that are used are presented in the results section. Again, RMSE, the bias 
and correlation coefficient are used as quality criteria.  
 
The upper boundary condition during simulation is atmospheric, based on the observed 
precipitation and meteorological data observed at C1. At the lower boundary, gravity flow is 
established. The left boundary condition at the hill top is set to zero flow; the right boundary 
condition is a seepage interface to allow subsurface flow to exfiltrate from the hillslope. 
Simulation started on 1st March 2007, which is already snow free, to assure a sufficiently long 
initialization period and lasted up to 26th October 2007. The focus lies on the period from 1st May 
to 26th October 2007. 
 
 

3.4 A field scale irrigation experiment to explore fast vertical and lateral flow processes  

A sprinkling experiment was carried out to understand the dominating runoff processes on the 
grassland hillslope C1. Before the experiment was initiated, the vegetation is cut to a length of 
3 cm, to avoid channelling of overland flow in the existing herbal layer. The last precipitation 
event occurred three days prior and had an amount of 12 mm. The median soil moisture of the 
TDR probes one day before the irrigation experiment was 0.37 m3m-3.  
 

3.4.1 Irrigation rates and sprinkling 

Two irrigation experiments were carried out. Using a groundwater pump (MP1, GRUNDFOS, 
Bjerringbro, Denmark) water from the Wilde Weißeritz was allowed to irrigate an area of 13 m by 
8 m (Figure 13) through two oscillating sprinklers. The intensity of 12 mm h-1 thus corresponds 
to a return period of half a year due to the KOSTRA atlas (Bartels et al., 1997) in the region. The 
first irrigation of 36 mm d-1 has a return period of ½ a and the second with 60 mm d-1 of 2 a. The 
absolute irrigation amount was measured with 10 rainfall accumulators (13 cm diameter, 10 cm 
height). 
To investigate interactions of subsurface and surface processes with emphasise of lateral flow, 
only the upper part of the instrumented field was irrigated. Thus it will be distinguish four classes 
of TDR probes in operation: a) irrigated directly, b) at a down slope distance of 0.1 m to 0.5 m to 
the irrigated plot, c) at a down slope distance of 1.4 m to 1.7 m distance, and d) at a down slope 
distance of larger than 2.0 m. 
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Figure 13: Sprinkling experimental subset on the grassland site C1 Rehefeld. 

 
3.4.1.1 Installation of soil moisture profile sensors 
The hillslope was additionally instrumented with access tubes of a TRIME T3C pipe probe 
(IMKO GmbH) up to a depth of 3 m. Laurent et al. (2005) and Evett et al. (2006) have discussed 
in detail the accuracy of the method. With a COBRA drill hammer auger holes were prepared 
half a centimetre in diameter less than the TRIME pipes (4.4 cm) to guarantee a good contact to 
the soil. The tubes were than driven into the soil by a hammer. Gaps around the access tube that 
occur during the installation process at the surface were filled in with soil material from the 
drilling. The installation was completed 2 months before the experiment. 
Five tubes were installed on the experimental field (see Figure 1). The installation depth varied 
between 1.9 m and 3.0 m depending on the gravel content. Two were located in the irrigation 
field, one just below the plot and two were installed at a distance of 5 m and 10 m. Measurements 
taken at each 10 cm in three directions determined the mean soil moisture. These snapshots of 
soil moisture profiles were measured at irregular intervals, as the assessment of the entire profile 
proved to be very time consuming. 
 
3.4.1.2 Dye tracing  
The dye tracer brilliant blue is a widely used labour intensive and invasive method to understand 
the near surface flow processes (Zehe and Flühler, 2001b; Stamm et al., 2002; Weiler and Flühler, 
2004; Kim et al., 2006; Blume et al., 2008; Anderson et al., 2009, Van Schaik et al., 2010). On an 
area of 1 m² (Figure 1) using a dye concentration of 4 g l-1, 40 l of water and dye was injected 
before the second irrigation and excavated one day later. Vertical profiles were opened each 
10 cm to depth of 80 cm - 90 cm. All profiles are photographed with a digital camera, rectified 
with WGEO (DHI-WASY GmbH, Berlin, Germany) and enhanced with GIMP (GNU Image 
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Manipulation Program) by disaggregating the image into the channels of the colour space of HSV 
(Hue- Saturation- Value). The tone curves were adjusted to increase the contrast between stained 
and non-stained areas and the grey scale image analyzed where light grey represents the stained 
area and dark grey the unstained (Blume et al, 2008). 
 

3.4.2 Control of pre-event conditions and rainfall characteristics of flood events 

3.4.2.1 Estimating runoff coefficients 
The runoff coefficient (Cr) is the classical measure for describing the catchment runoff response 
at the annual or event scale (Mosley and McKerchar, 1992). Blume et al. (2007) gave a broad 
overview of the different methods to estimate the event-based Cr. Here, the ratio of direct runoff 
and total precipitation amount at the event scale is used. There are different concepts of how to 
separate the direct runoff from baseflow, each of them based on a considerable amount of 
conceptualisation and all of them bear systematic errors (Blume et al. 2007). Exclusively tracer 
methods do allow a realistic quantification of the baseflow component (Hoeg et al., 2000; 
Ladouche et al., 2001). However, this is laborious, expensive and restricted to a small number of 
events and catchments which is insufficient for a statistical analysis. The main difficulty is to 
define the end point of the flood event when no tracer data are available (Nathan and McMahon, 
1990; Merz and Blöschl, 2003; Blume et al. 2007). In the present study Blume’s method is 
employed for base flow separation which assumes that at the end of the event the catchment 
starts to drain like a linear reservoir. The areal precipitation amount is estimated with the inverse 
distance weighting method.  
 
Only those events with >5 mm precipitation are included in the sample, which corresponds to 
the 5% quantile of the sample, and a ratio of peak discharge to pre-event discharge larger than 0.5 
for the Rehefeld and Ammelsdorf gauges and 0.6 for the Becherbach, similar to Noribiato et al. 
(2009). The minimum time to define separate events was set to 6 hours. Events that occurred 
closer in time are aggregated to a multi-event. In general, runoff coefficients are estimated only 
for the snow-free period, as the density of the snow measurement network is too low to 
adequately represent the liquid water content in the snow store. 
 
3.4.2.2 Estimators of catchment wetness and the meteorological forcing 
In general, predictor variables are classified into those estimating the catchment’s antecedent 
wetness and those which can be determined a priori, from those that characterise the 
meteorological forcing which can only be estimated based on a posteriori observations or based on 
predictions (both with uncertainty). 
 
The catchment’s state is characterised by pre-event runoff q0 as a proxy for the wetness of the 
deep subsurface. Pfister et al. (2003) and McIntyre et al. (2007) used q0 to predict runoff volume 
and peak of an arid and a humid catchment using statistical models. Additionally, soil distributed 
moisture observation areas – if available – are often used for characterising near surface 
catchment wetness (Meyles et al., 2003; Blume, et al. 2009; Brocca et al. 2009b; Zehe et al., 2010; 
and Penna et al., 2010). In the present study the spatial average soil moisture (WC0) is used as 
well as the coefficient of variation of soil moisture within the cluster (CV). Additionally, the 
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antecedent precipitation index API is as a widely used measure of the antecedent catchment state 
(Brocca et al., 2009b). However, the API remains a subjectively determined and implemented 
parameter (Heggen, 2001), defined by N days before the event and α, the decay constant. 
 

Eq. 19 

( ) ( )∑ ⋅−

N

=i

i
i αtP=tAPI

1
00  

 
The API has the disadvantage of not representing any soil and geological specific difference, 
which is of importance in a heterogeneous subsurface and depends on the density of the 
measurement network. Longobardi et al. (2003), Brocca et al. (2008), and Graeff et al. (2009) 
have documented that API did not improve their predictions. However there are other studies 
which have presented the contrary: Xia et al. (1997), Descroix et al. (2002), and Berthet et al. 
(2009) have all shown that considering API improved the quality of their runoff and stream flow 
estimations. 
 
Furthermore, the antecedent precipitation AP, i.e. the cumulated rainfall sum over a defined fixed 
period without a decay factor is tested. Although this parameter is sometimes criticized (Heggen, 
2001), several studies have shown that it might be useful for small catchments (e.g. Ali and Roy, 
2010). Several APN and APIαN in the ranges of N =5d - 60d and α = 0.8 - 0.99 are tested but will 
only results for best estimators (AP60 with a temporal window of 60 days and API0.95

30 with a 
window size of 30 days and α = 0.95) will be presented here for sake of briefness.  
 
The meteorological forcing is characterised by the accumulated event rainfall P, cumulative 
rainfall in the first two hours of the event P2h, mean hourly rainfall intensity I, and duration of 
rainfall DP. Proxies for pre-event evapotranspiration ET are daily evapotranspiration of the 
previous day (Ali and Roy, 2010; Hrnčíŕ, et al., 2010) and antecedent sunshine duration index 
(Graeff et al., 2009). However, these parameters are less relevant at the event time scale and are 
not considered in this study. 
 
 

3.5 Results  

3.5.1 Average dynamics and spatial variability of soil moisture at the two clusters 

Figure 14 gives a first overview on the precipitation input and temperature forcing (A and B) 
during the period 5rd May 2007 and end at the 1th of October 2007 at a meteorological station 
installed close to the cluster C2 as well as on the time series of vertical average soil moisture for 
the individual probes for cluster C1 at the grassland site (C) and C2 at the forested site (D). The 
period of missing data is due to a break-down of the multiplexers that took a while to be fixed. 
The total range of soil moisture values within the probes of cluster C2 is smaller compared to 
cluster C1. The most downslope TDR probe at C2 is influenced by shallow groundwater and is 
consequently very wet during the entire period. The probes at the dry end of the spectrum are 
installed in a debris-rich, fast-draining spot. At both sites there is a small diurnal variation in 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=diurnal&trestr=0x801�
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=variations&trestr=0x801�
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measured soil moisture. The amplitude is of the order of 0.002 m3m-3, correlation with air 
temperature is negative and strongest at a lag of 12 h. The negative correlation could be explained 
by evaporation and transpiration loss during the day which is regained due to dew formation 
during the night. A daily fluctuation of 0.002 m3m-3 in soil moisture at porosity of 0.6 and along a 
length of 60 cm corresponds to an evaporation loss of 0.8 mm during daytime. This appears to 
be reasonable. 
 
Figure 15 A) and B) compares time series of the first two spatial moments at both clusters. The 
temporal dynamics of the spatial means at both sites looks similar to a hydrograph, with fast 
rising “peaks” and long “recessions”. Average soil moisture at the grassland site is significantly 
larger than at the forested site as can be seen from the box plots in Figure 15 C). Coefficients of 
variations (not shown) at both sites are pretty constant at the grassland site with on average 0.22 
and a narrow range between 0.23 and 0.2 compared to C2 where the relative spatial variability is 
fluctuating between 0.22 and 0.15 with an average around 0.18. The Spearman rank correlation 
coefficient between the time series of spatial average soil moisture at both sites is 0.73. Thus, 
50% of the temporal soil moisture variance observed at one site may be explained by the variance 
observed at the other site. As the climate forcing is supposed to be very similar it can be 
concluded that 50% of the soil variance is determined by climate conditions, the rest is 
determined by soil and vegetation. 
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Figure 14: Precipitation (a) and air temperature (b) in the observation period, vertically average soil 
moisture at probe locations at C1 (c) and C2 (d). Period starts at 5rd May 2007 and end at the 1th of October 
2007. 
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As can be seen from the box plots in Figure 15 C), the spatial mean of soil moisture within the 
upper 60 cm is on average 0.04 m3m-3 larger than at the forested site C2. The marginal soil 
moisture distribution at C2 is clearly skewed towards the right; at C1 it is rather symmetrical. 
Hourly soil moisture changes at both sites are on average zero (Figure 15 D). Their marginal 
distributions appear rather similar. The second spatial moments of hourly soil moisture changes 
are small, at around 0.001 m at both sites. The coefficients of variation of hourly soil moisture 
changes are, however, very large, with values up to 100. This highlights that the relative spatial 
variability of the hourly soil moisture changes are large when compared to the relative spatial 
variability of the absolute moisture values, which underlines the heterogeneity of this site.  
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Figure 15: Time series of spatial average soil moisture (A) and spatial standard deviation at both clusters 
(B), box plots of spatial average soil moisture (C) and of the spatial average soil water increments 
(difference between values at two adjacent time steps (D). 
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3.5.2 Average covariance structure  
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Figure 16: Experimental variogram and fitted spherical variograms for both sites (left column of panels is 
C1, the right is C2). Upper panels represent average wet conditions, middle overall average conditions and 
lower panels average dry conditions. The panel headers list the nugget, sill and range of the fitted spherical 
variogram function. 

 
The correlation length of the long-term averages of soil moisture at individual probes at C1 
turned out to be 2.8 m (Figure 16 C). This small value is not astonishing due to the extensive 
small-scale heterogeneity observed at this site. Gravel content and porosity especially vary 
strongly between neighbouring plots. For wet/dry conditions the range shows a slight 
increase/decrease of 0.2 m. The sill to nugget ratio – a measure for the part of the variability that 
is explained by the variogram - increases from dry to average to wet conditions as 3/1 over 4/1 
to 5/1. This finding, and the increasing correlation length with increasing wetness, is consistent 
with findings of Western et al. (2004) or Grayson et al. (1997). However, contrary to their 
findings, in the case total soil moisture variance (nugget + sill) in C1 increases with increasing 
average wetness (Figure 16 A). This due to the fact that a few probes are located in gravel-rich 
soil spots which drain very fast due to the high permeability and low water retention. These 
probes stay relatively dry even when the rest of the field wets up during rainfall events. Brocca et 
al. (2007) found at their grassland site in the upper Tiber valley effective ranges that are 
approximately 28 - 35 metres and also a nugget of sill ratio that changed with average saturation. 
 
At the forested site, C2 correlation length does not vary with average wetness and is - at 6.2 m - 
roughly 50% of the maximum probe distance (Figure 16 B, D, E). Also the sill to nugget ratio is 
almost constant at approximately 1 : 1. Also here total variance is maximum in the wet case and 
minimum in the dry case. The reason is the same as in the case of C1: some spots of high 
permeability never really wet up due to fast drainage. The constant correlation length and the 
constant nugget to sill ratio reflect the stationary pattern of throughfall within this 
spring/summer period. Disturbances due to large rain events are simply filtered out to deal with 
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temporally-averaged data that reflect average dry, total average and average wet conditions at the 
probes.  
 

3.5.3 Rank stability of soil moisture time series 
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Figure 17: Ranks of the deviation of the spatial mean for the different probes. A is the lot for C1 and B) for 
the C2. 

 
Figure 17 shows the rank ordered mean relative difference for the two sites and each probe to 
show how individual site values deviate from the mean during the complete measurement. 
Winter periods are not included. The variability of the probes in C1 and the variation of each 
single probe are smaller compared to the forest site C2. Probe 20 is located close to the channel 
and is affected by groundwater. The dryer locations are because of higher gravel content 
examined by auger drills. 
As Figure 18 shows, there is in C1 no visible relationship with topographic factors. Texture and 
geomorphologic features should here be the controlling factors. 
For C2 with increasing elevation (ρ = -0.46) and decreasing angle (ρ = -0.35), wetness increases 
but not strongly. The TWI has no gaining of cognition about soil moisture patterns for both 
sides. The microtopography is not adequately represented in DEM and soil moisture is more 
controlled by soil type. 
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Figure 18: Relationship of the two clusters’ mean residual difference to topography (A and D), slope (B and 
E) and topographic wetness index (C and F) for C1 (A to C) and for C2 (D to F). In the header Spearman’s 
rank correlation ρ is given.  

 

3.5.4 Vegetation and soil control on hillslope scale soil moisture regimes  

3.5.4.1 Model sensitivity to different soil profiles 
As can be seen from Table 6, soil profile A) yields the best model performance for the grassland 
site, whereas profile B) yields the best model performance for the forested site. This underlines 
the value of observed soil hydraulic data, as both profiles use data that are measured at the 
respective sites. Profile C), which has a smaller porosity and smaller ks, causes - at both sites - the 
highest bias, the worst correlation and RMSE, respectively.  
 

Table 15: Root means square error (RMSE, scale is 10-4), bias (scale is 10-3) and correlation between 
simulated and observed average soil moisture obtained with the three different soil profiles (compare 
Tables 13 and 14 for soil parameters)  

 Grassland   Forest   
Profile RMSE×10-4 

[-] 
Bias×10-3 

[m3m-3] 
R  
[-] 

RMSE/10-4

[-] 
Bias/10-3 

[m3m-3] 
R  
[-] 

A 6.9 14 0.753 78.2 47 0.725 
B 27 -60 0.010 10.4  32  0.850 
C 33 -74 0.169 18.0 -54 0.630 
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3.5.4.2 Model fine tuning with LAI, plant cover and root depth  
Table 16: Annual maxima of leaf area index (LAI), plant cover and root depth run through during the 
model fine tuning and corresponding model goodness parameters root means square error (RMSE, RMSE, 
scale is 10-4), bias (scale is 10-3) and correlation. The annual maxima observed in the Weiherbach 
catchments are in bold italics, the best parameter sets are in bold (compare Figure 19). 

Site LAI 
[m2m-2] 

Plant 
cover [-] 

Root depth 
[m] 

RMSE×10-4

[-] 
Bias×10-3 

[m3m-3] 
R  
[-] 

Forest 13.5 0.9 1 5.4  11 0.892 
Forest 14.0 0.8 1 10.4 32 0.850 
Forest 14.0 0.9 1 10.4 32 0.850 
Forest 14.0 0.85 1 8.1 23 0.876 
Forest 13.5 0.8 1 5.1 9.2 0.891 
Forest 13.5 0.85 1 4.7 5.7 0.889 

Grassland 4 1 0.2 7.0 -12 0.727 
Grassland 5 1 0.2 7.2 -14 0.716 
Grassland 6 1 0.2 7.5 -16 0.71 
Grassland 4 1 0.3 10.1 -24 0.655 
Grassland 5 0.9 0.2 6.8 -8 0.749 
Grassland 5 0.9 0.3 9.2 -19 0.700 
Grassland 6 0.9 0.2 7.0 -10 0.743 
Grassland 6 0.9 0.3 9.5 -20 0.695 
Grassland 4 1 0.1 6.9 14 0.753 
Grassland 4 .95 0.1 7.3 16 0.763 
Grassland 4 0.9 0.1 8.4 20 0.780 
Grassland 3.5 1 0.1 7.0 15 0.751 
Grassland 3.5 0.95 0.1 7.6 17 0.763 
Grassland 3.5 0.9 0.1 9.2 22 0.788 
Grassland 3.0 1 0.1 7.6 16 0.762 
Grassland 3.0 0.95 0.1 8.5 20 0.776 
 
Table 16 lists the annual maxima of leaf area index, plant cover and root depth run through 
during the model fine tuning as well as corresponding model goodness parameters. The annual 
maxima observed in the Weiherbach catchments are printed in bold italics, the best parameter 
sets are obtained at both site are printed in bold (compare Figure 19). As can be seen from 
Table 16, slight changes in the annual maxima of LAI and plant cover yielded a clear 
improvement in the model’s performance. Figure 19 B) highlights the surprisingly good 
accordance of the averaged simulated soil moisture in the upper 60 cm with the averaged soil 
moisture observed at the forested site. Despite small overestimation of the soil moisture peaks 
during rainfall events, the averaged simulated soil moisture is most times within the confidence 
interval of the observed average soil moisture. The confidence interval is estimated by dividing 
the standard deviation within a cluster by the square root of the number of sensors that are 
available at this date. It is furthermore remarkable that simulated averaged soil moisture is still a 
good match for the observations, even after the period of missing data. A good prediction of soil 
moisture at the forested site is possible when using the normalised annual cycles of plant 
morphological parameter observed in the Weiherbach catchment and a slight adaptation of the 
annual maxima of LAI and plant cover. 
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Figure 19: Precipitation observed at grassland site C1 (a), spatially averaged soil moisture in the upper 
60 cm simulated with CATFLOW (solid red line), observations (solid blue line) and confidence interval of 
the spatial average soil moisture (dashed blue line) for the grassland site C1 (c) and the forested site C2 (b). 
The confidence interval is estimated by dividing the standard deviation within a cluster by the square root 
of the number of sensors that are available at this date. The plotted period starts at 5th May and ends at 26th 
October 2008. Please note that the period between day 120 and 160 is a period of missing data. 

 
Reproduction of the observed average soil moisture time series at the grassland site is not that 
straightforward, although other parameters are observed, including variations in root depth 
(Table 16). The best simulation, parameters printed in bold, has higher RMSE, larger bias and 
smaller correlation coefficient when compared to the best simulation at the forested site. 
Figure 19 C) shows that the model systematically underestimates soil moisture between day 100 
and day 160 which corresponds to the period between mid-June to the start of September. Even 
a strong variation of the annual maxima of LAI, plant cover and root depth, while leaving the 
normalised annual cycle unchanged, is obviously not sufficient to match observed soil moisture 
dynamics as well as at the forested site. 
 
3.5.4.3 Simulated average soil moisture dynamics  
Based on the model results, it can be concluded that a homogeneous soil setup that uses local 
observations of ks and porosity produces as good a model performance at both sites as using soil 
profiles that are completely parameterized through the pedo transfer function of Carsel and 
Parrish (1998). This is not surprising but underlines on one hand the value of local ks and 
porosity observations for setting up physically based models. And it shows on other hand that 
the residual water content, α the air entry value and n parameter estimated based on the pedo 
transfer function of Carsel and Parrish (1998) are sufficient to achieve a good model acceptable 
performance. This is good news as direct measurement of these parameters is laborious.  
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At the forested site furthermore, a small adjustment of the annual maxima of LAI and plant 
cover can be found, while assuming that their normalised annual cycles are the same as observed 
in the Weiherbach catchment (Zehe et al., 2001) leads to a strong improvement of the model bias 
and RMSE. Simulated averaged soil moisture is for almost the whole period within the 
confidence interval of the observed spatial average soil moisture. It can be concluded that the 
best model setup (soil profile A, LAI = 13.5, plant cover = 0.85) is a promising representation of 
key areas in the Rehefeld headwater, that could serve as building blocks to represent forested 
areas in a catchment model. Further it can be concluded that the extent of the sampling grid is 
large enough to assess the dynamic spatial average soil moisture in an almost unbiased way. At 
the grassland site, fine tuning of the model results based on adjusting the annual maxima of root 
depth, LAI and plant cover is not as successful. The normalised annual cycle of grass 
morphological parameters in Rehefeld must differ from those in the Weiherbach. Negative bias 
in the model is not due to non-representative sampling but due to insufficient representation of 
vegetation. A better model performance requires survey of the annual cycles of these plant 
morphological parameters, especially during periods of obviously bad model performance (in 
early May and in summer).  
 

3.5.5 Irrigation experiment for the identification of the dominant runoff processes 

3.5.5.1 Spatial pattern of sprinkling rates 
Because of wind drift and the fact that an oscillating irrigation system was in use, homogeneous 
irrigation of the field could not be achieved (Figure 20); furthermore, the mean pumping rate was 
in both cases higher than the median irrigation sum in the totalisators. During the irrigation the 
surface of the irrigated field is saturated and overland flow occurred. During the first experiment 
the maximum extent of overland flow was 0.3 m and during the second 0.5 m downhill from the 
lower border of the irrigated plots. 
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Figure 20: Distribution of the two irrigation fields. The red X is the mean irrigation measured by the 
amount of pumped water. The sample size is for both experiments 10. 

 
3.5.5.2 Soil moisture dynamics from Spatial TDR and FDR observations 
The TDR probes within the irrigated plots and the FDR probe at 0.2 m depth showed an 
immediate reaction to the irrigation pulse (Figure 21). The shallow subsurface reached a state 
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close to saturation in one hour. The range in soil moisture increases was from 0.05 m3m-3 - 
0.10 m3m-3 for the TDR probes and much higher for the FDR probes, 0.07 m3m-3 - 0.20 m3m-3. 
The strongest response was observed in the deepest probe. Soil moisture dropped immediately 
after irrigation ended, without any detectable lag.  
 
Probes located at a downhill distance of 0.1 m to 0.5 m reacted with a lag time of 0.5 to 1 hour. 
The total soil moisture increases ranged between from 0.05 m3m-3 - 0.15 m3m-3. At this distance 
overland flow was detected by eye during the two irrigation experiments and measured with 
handheld FDR probes (THETA probe, Delta-T-Devices). The maximum down slope distance at 
which probes outside the field reacted to the irrigation is 1.7 m. The observed lag time was 2.5 to 
3 hours for the 4 probes at this location. Total of soil moisture increases were between 0.05 m3m-

3 and 0.10 m3m-3. Probes with a distance >2.0 m did not show any response to the irrigation. In 
the recession of soil moisture all probes reacted differently due to their specific soil physical 
properties. 
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Figure 21: Probe response during irrigation of A) the direct irrigated TDR and FDR probes, the down slope 
probes are at a distance of 0.1 m - 0.5 m (B) and 1.4 m - 1.7 m (C) to the irrigation field. 

 
The FDR sensors within the profile reacted generally with stronger soil moisture increases 
compared to the TDR probes. Here it has to be taken into account that the integration volume of 
a FDR probe(type THETA) is only 0.37 l while the TDR probes have a sampling volume larger 
than 3.0 l (see Chapter 2). The FDR probe at 0.2 m depth responds directly to the irrigation. The 
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two deeper FDR probes reacted with a lag of one hour for the first irrigation pulse and zero for 
the second pulse. This suggests that fast preferential flow pathways became active during the first 
event and there activation threshold was still exceeded when the second pulse started. 
 
3.5.5.3 Soil moisture profiles 
Pre-event soil moisture was wet in the top 0.2 m of the profile, dropping to low values at depths 
of 0.4 m to 0.5 m and remained dry in the lower parts of the profile (in Figure 22 as changes in 
soil moisture, Appendix, Figure 1 shows the measured absolute values). In tube 4 a water table 
was observed at a depth of 2.5 m.  
 
During the irrigation, the soil moisture response differed from location to location, which reflects 
the complex structure of the subsurface and the variable flow process. All access tubes in the 
irrigation field (1 and 2) and close to the field (3 and 5) showed a response in the top layer to a 
depth of 0.1 m to 0.3 m.  
 
Tube 1, located in the centre of the irrigation field, showed a response only to a depth of 0.2 m 
during the first event but the reaction reached greater depths and was still ongoing after the 
experiment for the second pulse of irrigation. Tube 2, which is located at the upslope edge region 
of the irrigation field, responded to a depth of 0.3 m during both experiments. Deeper parts of 
the profile were not connected. After the experiment soil moisture at a depth of 2.6 m showed a 
positive increase which can be explained by water transport through preferential flow pathways 
which were not within the sampling volume of the tube. Tube 3 was located at a down slope 
distance of 0.4 m to the irrigation field. During the first experiment no data were obtained from 
the tube and it showed little response to the second.  
 
Tube 5 was installed with a similar distance to the irrigation field as tube 3. It responded in the 
top horizons to a depth of 0.3 m and in the bottom at a depth of 2.4 m during the first irrigation. 
The response time occurred 1.5 hours from the start. Soil moisture returned to the initial 
conditions before the second irrigation and then the soil moisture increased from the depth 
upward during the experiment to a depth of 1.5 m after the event. The first response was 
observed 2 hours after onset of the irrigation.  
 
Tube 4, located at a distance of 10 m down slope, showed no response to both irrigation inputs 
at the near surface. At the end of the second irrigation pulse the water table rose by 0.05 m to a 
level of 2.45 m and soil moisture increased, which is a clear hint of a lateral transport component. 
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3.5.5.4 Dye tracer experiment 
One dye tracer experiment was carried out in the irrigation field and soil profiles excavated 
directly after the second irrigation. The excavation depth was limited to a depth of 0.8m because 
of a large boulder at that depth. High pixel values indicate flow pathways and the relative dye 
coverage along the depth on the left panel shows the distribution along the profile. The upper 
profile, to a depth of 5 cm to 15 cm, was dominated by homogeneous infiltration (Figure 23 A 
and B). Preferential flow then controlled the transport of the dye to the bottom of the profile and 
even deeper than the excavated level. In Figure 23 A) the infiltration was dominated by flow 
through gravel on the left hand side. Flow through macropores located at 0.4 m and 0.65 m at a 
depth of 0.4 m was a secondary flow path. Macropores from earth worms burrows and root 
channels were observed up to a depth of 0.4 m in all the profiles investigated. Figure 23 B) shows 
infiltration in discontinuous patterns governed by the presence of gravel. Between 0.5 m and 
0.8 m depth and 0.3 m and 0.6 m, macropores dominate flow. 
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Figure 23: Dye tracer profile and dye coverage of the vertical profiles at 30 cm and 70 cm. Areas with higher 
pixel values (brighter colour) have higher dye coverage which is an indicator for flow pathways. 
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3.5.6 Control of pre-event conditions and rainfall characteristics of flood events  

Figure 24 shows scatter plots of the observed runoff coefficient Cr against selected 
meteorological predictors for the three nested catchments (the correlation matrix is in the 
Appendix, Table 4-6). Please note that individual events at the different catchments have 
different characteristics and runoff data are not always available for all three gauges. Rainfall 
intensity (I) has obviously no influence on the runoff coefficient, as can be seen from the scatter 
plots in the second and third row. This corroborates that Hortonian overland flow is not a 
relevant process in these catchments. Runoff coefficients in each catchment show some 
dependency on total rainfall amount P and rainfall duration DP. In the Becherbach catchment, 
this relationship suggests a threshold dependence: rainfall events with a duration shorter than two 
hours and an amount less 25 mm did not cause any flood formation. However, the sample size at 
the Becherbach is still too small to infer general behaviour and derive something like a general 
response threshold.  
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Figure 24: Scatter plots of meteorological forcing variables rainfall (P), mean rainfall intensity (I), 2-h-sum 
of precipitation (P2h), and duration of rainfall (DP) compared to the runoff coefficient (Cr). The Spearman 
rank correlation between predictor and Cr is plotted in each panel. 
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Figure 25: Scatter plots of the pre-event conditions predictor variables pre-event WC0 for the STD clusters 
C1 (grassland) and C2 (forest), pre-event runoff (q0), antecedent precipitation index (API300.95), antecedent 
precipitation (AP60) and coefficient of variation of WC0 (CV ) compared to the runoff coefficient (Cr). The 
Spearman rank correlation between predictor and Cr is plotted in each panel. 

 
Figure 25 presents Cr plotted against the measures for antecedent catchment wetness. Again, a 
threshold-like dependence of Cr on pre- event discharge q0 and WC0 can be observed when 
looking at the Becherbach. When soil water saturation at the forest cluster reaches 0.33 m3m-3 
and specific discharge reaches 10.0 ls-1km² the system’s response is clearly enhanced. Hereby WC0 
shows a clearer trend compared to q0 above the threshold value. As can be seen from the other 
scatter plots in Figure 25, none of the other predictors of the pre-event conditions are useful to 
explain the observed runoff coefficients. 
Soil moisture observed at the forest C2 is a better predictor for the strength of the flood response 
than soil moisture at the grassland site. It could be due to the fact that high runoff coefficients 
are simply missing for C1. However, it could also be due to the fact that TDR cluster C2 is 
closely located to the riparian zone (Zehe et al. 2010) and a high average soil moisture in this 
cluster could indicate that upslope forested areas get connected to the riparian zone and will thus 
contribute to runoff formation in case of a precipitation event. James and Roulet (2007) 
suggested a similar a threshold-like change for the Westcreek catchment. 
 

3.5.7 Analysis of bimodal runoff response 

As demonstrated in Figure 25, a WC0 of 0.33 m3m-3 the Becherbach causes much higher runoff 
coefficients. This is further enlighten by a closer look at the rainfall runoff events from 9th May 
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2007, 15th June 2007, 11th September 2007, and 28th September 2007 (Figure 26). All these events 
had a similar rainfall input but show a completely different runoff response. The first event 
(Figure 25 A) consisted of 30 mm of rainfall, but the specific discharge volume was Q volume of 
0.3 mm, which correspond to a Cr of 0.004. The respective WC0 is 0.25 m3m-3, a specific prevent 
discharge q0 of 1.2 l km-2s-1. The third event (Figure 25 C) behaves completely different during 
initial conditions (WC0 0.33 m3m-3, q0 8.2 l km-2s-1): 27 mm of rainfall produced a Cr of 0.10 and 
the runoff response shows a bimodal hydrograph. After the direct response to rainfall a second 
peak occurs with its maximum two days after the rainfall and producing more than 2/3 of the 
complete runoff volume. 
 
These bimodal events are the typical response above the threshold value of 0.33 m3m-3 WC0. 
Similar runoff response characteristics are observed in adjacent head watersheds (Prange, 2010) 
but not in the Weißeritz itself (gauge Rehefeld and Ammelsdorf).This is a clue that that event 
type is triggered by a catchment condition analogous to that in the Schäfertal (Graeff et al., 2009) 
and Löhnersbach (Zillgens et al., 2007) and that the observed small tributaries in the headwater 
area of the Wilde Weißeritz produce a much higher response in streamflow above a certain 
threshold in antecedent wetness conditions. 
 

A closer look at the relationship of discharge (Q) to soil moisture and groundwater level below 
ground (GWL) reveals hysteretic effects (Figure 26). The relationship is plotted from the 
beginning of the rainfall to the ending of the event in hourly time steps. The event from 7th May 
2007 shows a clockwise response in WC to runoff. Runoff directly reacts to rainfall and returns 
to the baseflow level afterwards, whereas the WC response is slower and longer, and also 
decreases much slower before it returns to the starting level. The GWL shows no direct response 
to rainfall and only a small increase of 5 mm after 6 hours. The relationship between Q and GWL 
is also clockwise. During the event with wet antecedent conditions (11th September 2007) the 
hysteretic response shows a reverse response in the WC-Q relationship. The response of WC is 
only a small increase from 0.25 m3m-3 to 0.28 m3m-3 and WC returns back to starting conditions 
faster than Q. The bimodal response is not observed in WC. GWL reacts more slowly but is 
long-lasting and decreases less fast compared to runoff. Similar findings can be found for two 
other examples. During dry conditions, clockwise hysteresis between WC and Q is observed and 
during wet conditions anticlockwise. 
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The hysteresis between GWL and Q is always clockwise and the reaction has a lag time of 4 to 6 
hours under dry conditions and occurs directly but slower under wet ones. 

Under dry conditions the fast runoff component is faster compared to the soil storage. Under 
wet conditions the soil storage does not increase over a value 0.37 m3m-3. For the presented 
events the rainfall intensity under wet condition is below 5 mm h-1 and therefore smaller 
compared to the dry conditions (7-12 mm h-1). However, the response in groundwater occurs 
simultaneously to Q, which indicates fast bypassing of the unsaturated zone under wet conditions 
and fast mobilisation of groundwater. On the other hand, under dry conditions only a small 
response in GWL can be observed and the unsaturated zone absorbs nearly all of the input 
rainfall. 

A possible hypothesis is that vertical preferential flow and thus bypassing of the unsaturated zone 
dominates wet conditions. Unsaturated ks has already reached high values due to higher soil 
moistures and macropores are connected. Water is directly transferred to the groundwater and 
fast groundwater flow contributes to runoff generation. 
 
 

3.6 Discussion and Conclusions 

3.6.1 Deterministic and stochastic soil moisture variability  

The analysis presented gives clear evidence that clustering of TDR probes, even if they simply 
yield the usual vertical average, allows identification of deterministic soil moisture variability, i.e. 
the difference between the first and second moment, and even allows a first glimpse of the 
differences in higher moments such as skewness of the two soil moisture ensembles. Spatial 
variability in soil moisture values is quite large at both sites, between 0.07 m3m-3 and 0.08 m3m-3

. 
This is considerably larger than that which has been observed in the Weiherbach catchment in 
Germany (Bárdossy and Lehmann, 1998), or in the upper Tiber valley, Italy (Brocca et al., 2007) 
but comparable to what Blume et al. (2009) observed in the Malalcahuello catchment in Chile. 
The total extent of the clusters at 400 m2 is rather small. This underlines the fact that a single 
TDR probe is not very useful to assess the representative average soil moisture status in such a 
heterogeneous environment. On the other hand, Brocca et al. (2007, 2009b) reports are 
consistent with the findings of Grayson and Western (1998) on the existence of representative 
monitoring sites, where the observed soil moisture is, on the weekly scale, always close to the 
overall spatial average of the field/ catchment. However, such sites may not be identified a priori, 
which underlines the value of any kind of distributed soil moisture observations in general.  
 
It is interesting and important to note that the soil moisture time series in Figure 14 do not 
intersect. The ranks of the soil moisture values observed at different locations in a cluster remain 
thus temporarally stable. Also Brocca et al. (2007) report temporal stability of the ranks within 
their soil moisture data sets. These findings suggest that the spatial variability in soil moisture 
measurements reflects spatial heterogeneity of stationary soil properties as well as of the micro 
topography. Soil moisture time series within each cluster are furthermore highly correlated (0.90), 
which underlines that the dynamics observed at a single probe is a good estimator for average soil 
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moisture dynamics at the small field scale in the Rehefeld catchment. Thus, a distributed set of 
single TDR stations may yield representative information on temporal soil moisture dynamics at 
the headwater scale, which can be very important information for many modelling studies and 
maybe even for flood warning purposes, as shown for instance by Anctil et al. (2008) in the 
Orgeval watershed. 
 
Furthermore, clear evidence is found that clustering of TDR probes in combination with long-
term monitoring allows identification of average spatial covariance structures at the small field 
scale at different wetness states. It has to be admitted that the small extent of cluster C2 likely 
gives only a limited picture of the spatial covariance of soil moisture at the forested site. The 
estimated range is almost 50% of the maximum probe distance, which is the theoretical limit. 
Distributed sampling that covers a larger extent is clearly desirable here. Spatial correlation length 
at the grassland site seems in contrast to be rather short, due to small-scale heterogeneity in soil 
properties. Zimmermann et al. (2008) found a similar small correlation length for the hydraulic 
conductivity at a steep grassland site in Ecuador. Brocca et al. (2007) found at their grassland site 
in the upper Tiber valley effective ranges that are approximately 10 times larger. The much 
shorter ranges at that site may be explained by the huge small scale heterogeneity due to the high 
gravel content of these soils. It is important to note that the small-scale heterogeneity of soil 
properties at the forested site is similar to the grassland site. Therefore it can be concluded that 
the correlation structure at the forested site is dominated by the pattern of throughfall and 
interception and therefore vegetation; at site C1 it is dominated by small-scale variability in soil 
properties. This is of course not astonishing for a forested site: the important point is that a 
cluster of TDR probes allows quantification of such a statement. 
 
The investigation of temporal stability shows that variability of each probe is low at the grassland 
site (C1). Here six probes can be selected to represent the mean WC, but the location is not 
correlated with topographic characteristics. Soil physical properties are thus dominant. At the 
forested site (C2) variability is higher and two probes (12 and 13) are close to the zero line. There 
is clear negative correlation with elevation and slope with a low rang value. The highly 
heterogeneous soils are governing the distribution of WC. 
 

3.6.2 Simulated average soil moisture dynamics  

Based on the model results, a homogeneous soil setup that uses local observations of ks and 
porosity gives a better model performance at both sites than when soil profiles are parameterized 
using the pedo transfer function of Carsel and Parrish (1988). This is not astonishing but 
underlines on one hand the value of local ks and porosity observations for setting up physically 
based models. And it shows on other hand that the residual soil moisture,  the air entry value and 
n parameter estimated using the pedo transfer function of Carsel and Parrish (1988) are sufficient 
to achieve an acceptable model performance. This is good news as direct measurement of these 
parameters is laborious.  
 
At the forested site, a small adjustment in the annual maxima of LAI and plant cover, while still 
assuming that their normalised annual cycles are the same as those observed in the Weiherbach 
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catchment (Zehe et al., 2001), leads to a strong improvement in the model bias and RMSE. 
Simulated averaged soil moisture is within the confidence interval of the observed spatial average 
soil moisture for almost the whole period. The best model setup (soil profile A, LAI = 13.5, 
plant cover = 0.85) is a promising representation of key areas in the Rehefeld headwater, that 
could serve as building blocks to represent forested areas in a catchment model. The extent of 
the sampling grid is large enough to assess the dynamic spatial average soil moisture in an almost 
unbiased way. At the grassland site, fine tuning of the model results based on adjusting the annual 
maxima of root depth, LAI and plant cover is not as successful. The normalised annual cycle of 
grass morphological parameters in Rehefeld must differ from those in the Weiherbach. Thus it 
can be concluded that negative bias in the model is not due to non-representative sampling but 
rather to insufficient representation of vegetation. A better model performance requires a survey 
of the annual cycles of these plant morphological parameters especially during periods of 
obviously bad model performance (in early May and in summer).  
 

3.6.3 Identification of dominating processes with an irrigation process 

The sprinkling experiment gives a good view on the dominating flow processes at the grassland 
site C1 Rehefeld. The interaction in the TDR cluster shows that overland flow is of minor 
importance, similar to the findings from time series analysis. During the experiment an intensity 
of 12 mm h-1 was achieved and produced overland flow with a maximum length of 0.5 m. 
Subsurface flow between the probes could be observed to a length of 1.7 m, with a lag time of 
2.5 to 3 hours which is an effective lateral hydraulic conductivity of approximately 10-4 m s-1. That 
value is similar to the highest measured hydraulic conductivity. Lateral flow in the top layers was 
only observed in the second irrigation experiment which is indicative that specific soil moisture 
has to be reached and or the amount of precipitation must be above a specific value to initialise 
lateral fluxes. The FDR profile could hint at vertical transport for the top 0.6 m. Here a lag for 
the two deeper probes during the first experiment indicated a hydraulic conductivity of the same 
magnitude as for the lateral flow and during the second experiment they reacted instantaneously 
under wet conditions. The response to soil moisture on the second irrigation was faster in the 
interaction of the FDR profile. 
The measurement in the access tubes show that all profiles react to the irrigation input in the top 
0.2 m to 0.5 m, that the following horizons are not connected, and in the case of access tubes 2 
and 5 that the deeper layers saturate from the bottom to the top upward. In case of tube 5 a 
response to the first irrigation was observed after 1.5 hours for the first irrigation and after 2 
hours for the second, which led to the conclusion that a hydraulic conductivity > 5×10-4 m s-1 
existed at that position. An impermeable layer below or the groundwater table could be the 
reason. Tube 4, which is at a distance of 10.0 m, reacted with a lag of <6 hours and here again, an 
effective hydraulic conductivity of approximately 10-4 m s-1 can be approximated. 
The dye tracer showed that only in the upper horizon to a depth of 0.15 m was matrix flow 
dominant and that preferential flow could be observed to the end of the excavated profile. The 
transport from the B horizon to the groundwater surface was dominated by preferential flow 
paths with a high transport velocity. Wetting starts then from the groundwater surface upward, as 
the access tubes 2 and 5 show. 
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These findings are similar to the experimental results of Pöhler (2006), who has done infiltration 
experiments in the Weissbach which is another subcatchment of the Weißeritz further 
downstream.  
 
Overall it can be concluded that the suggested sampling strategy of clustering TDR probes in 
typical functional units is promising for exploration of soil moisture control on runoff 
generation, as it yields dynamics of representative soil moisture states at a high temporal 
resolution. Long term monitoring of such critical landscape elements - the forested site here - 
could maybe yield valuable information for flood warning. Furthermore, TDR allows the 
unravelling of different types of stochastic and deterministic soil moisture variability within and 
between different soil moisture ensembles. Thus it can be concluded that TDR provides a good 
combination of the advantages of permanent sampling with spatially highly resolved soil moisture 
sampling using mobile rods. The main drawbacks of TDR are the high cost of a single moisture 
cluster (12-15 k€) as well as the challenge of installing 60 cm long TDR probes in heterogeneous 
environments. Monitoring should thus be carefully selected.  
 

3.6.4 Soil moisture control on event runoff  

Average antecedent soil moisture at the forested site has a high Spearman rank correlation to 
runoff coefficients of the three catchments (Becherbach = 0.63, Rehefeld = 0.67 and 
Ammelsdorf = 0.54) Duration of rainfall and precipitation volume have similar values. API30

0.95, 
AP60, CV and rainfall intensity have lower correlation values.  
Pre-event runoff alone correlated also with the runoff coefficient to a high degree to and is 
strongly correlated with average soil moisture at both sites. Thus it can be concluded that 
subsurface storm flow or fast groundwater flow is the dominant feature of the runoff generating 
process, at least in the snow-free period. Saturation excess overland flow plays a large role due to 
the high permeability of the top soil, which is more than 10-4m s-1, and the large amount of gravel 
a minor role. Subsurface storm flow is reported to be the dominant runoff process in many other 
studies in forested areas (Zehe and Sivapalan, 2009) such as those of Uhlenbrook et al. (2002), 
Tromp-van-Meerveld et al. (2006a) and Blume et al. (2008a, b). Interestingly, the wetness state of 
the lower hillslope sector in forested sites seems to be of higher importance for event runoff 
production than average catchment wetness represented by pre-event discharge. In the 
Ammelsdorf and Rehefeld catchments, forested sites likely contribute more strongly to event 
scale runoff production than does grassland. This highlights that spatiotemporally highly resolved 
sampling of representative soil moisture in key landscape units yields very valuable information 
for explaining and predicting runoff production. The forested site close to the Becherbach is 
obviously such a key site - not to determine the average catchment wetness as suggested by 
Grayson and Western (1998) or Brocca et al. (2007) - but to determine the average wetness of 
landscape areas that contribute to flood formation.  
 
Under dry conditions the unsaturated zone dominates runoff response and groundwater has a 
minor effect. If the catchment wetness increases over a threshold value of WC0 the upslope areas 
are connected to the main catchment which results in a fast response in groundwater level while 
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the WC decreases to the starting level. This hypothesis will have to be validated with additional 
instrumentation and/or tracer techniques.  
This hysteretic behaviour between streamflow/subsurface flow and soil moisture is found by 
several other authors (Graham et al. 2010, Hrnčíŕ et al. 2010, Penna et al. 2010). Spence et al. 
(2009) also found hysteretic patterns between discharge and storage. However, discovering 
hysteretic behaviour between storage and discharge is an indicator of system controls and time-
variant dominant processes. 
 
 



 

 73

CHAPTER 4 SOIL MOISURE DYNAMICS AND RUNOFF 
GENERATION IN HEADWATER CATCHMENTS: LEARNING 
FROM MODELS OF DIFFERENT COMPLEXITY 

4.1 Motivation: how can modelling help? Different models for different 

questions/scales (incl. Hillslope scale) 

The field of hydrological modelling covers different approaches and a variety of applications 
(Singh, 1995; Beven, 2002). Physically based models are based on observable state variables and 
parameters. They may thus help to gain understanding of for instance how distributed processes 
and parameters control hydrological behaviour at larger scales (Tromp-van Meerveld and Weiler, 
2008). They are also useful to shed light on how soil at the small scale control flow and transport 
processes (Klaus and Zehe, 2010). Physically based models are however data intensive, their 
setup is time consuming and needs experience and for that reason not popular in engineering 
hydrology. Conceptual models represent the process patterns and redistribution of water inside 
the catchment with simplified concepts and are often designed for a specific modelling target 
such as flood predictions or water balance calculations. Conceptual models allow simulations 
catchment scale streamflow response in an adequate way, which does not at all mean that the 
simulated dynamics inside the catchment is a good match of real internal dynamics. They are thus 
limited to a scale where errors due to simplified process conceptualisations may average out 
(Dooge, 1986). 
 
By focusing only on the simulations of flood events, the researcher may have several different 
intentions such as to understand the processes and process interactions which control flood 
formation, to design and compare mitigation measures or to forecast timing, peak discharge or 
total volume of floods. Commonly, hydrologists use distributed conceptual hydrological models 
for real-time stream flow forecasting, flood warning purposes or to assess landuse change 
impacts on floods. Alternative approaches to continuous flood forecasting models are 
nonparametric models based only on stream flow series (Costa et al., 2011) or artificial neural 
networks (de Vos and Rientjes, 2008; Schmitz and Cullmann, 2008). Flood volumes, which are of 
key importance for operating storage reservoirs, can be predicted using regionalized runoff 
coefficients or linear regression models that are based on different predictors to characterise pre-
event conditions (Pfister et al., 2002, 2003; Blume et al., 2007; McIntyre et al. 2007, Hrnčíŕ et al. 
2010).  
 
Even if the rainfall runoff model in operation is a perfect one, uncertainties in the observed and 
predicted meteorological forcing could cause errors in projected runoff and projected model state 
variables (Aubert et al., 2003). As representative data on the catchment scale soil moisture pattern 
are usually not available, state variables or model parameters of continuous flood forecasting 
models are usually updated by assimilating the observed stream flow prior to issuing a 
hydrological forecast (Refsgaard, 1997, Kneis et al., 2010). The past ten years, however, have 
witnessed a rapid development towards the direct integration of observed soil moisture data into 
rainfall runoff modelling. This comprises the use of distributed ground-based point data, 
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remotely sensed soil moisture patterns, or combinations of both. Soil moisture patterns have 
been used to initialize state variables (Goodrich et al., 1994; Jacobs et al., 2003; Zehe et al., 2005; 
Noto et al., 2008; Brocca at al., 2009a) and to update model state variables by assimilation 
techniques (Aubert et al., 2003; Francois et al., 2003; Crow et al., 2005). While these authors 
report that assimilation soil moisture data increased the quality of hydrological forecasts or flood 
predictions, Crow and Ryu (2009) argue that the improvements achieved from these efforts are 
relatively low. They stress that antecedent moisture conditions are of minor importance for very 
intense storm events and predictive uncertainty is dominated by the error introduced by rainfall 
estimation. Furthermore, Crow and Ryu (2009) criticize assimilation techniques such as the 
Kalmann filter as being ill-suited for updating the non-linear relationship between antecedent soil 
moisture and runoff.  
 
Nonetheless, whether it is dealing with updating of continuous model states or regression of 
flood volumes, both procedures require representative data on the catchment wetness. 
Traditional approaches for event-based models consider the antecedent precipitation (API) or the 
pre-event discharge (q0) as an integral indicator for the filling of the catchment scale groundwater 
store (Fedora and Beschta, 1989; Pilgrim and Cordery, 1993; Berthet et al., 2009). These 
approaches, however, yield no information about the spatiotemporal variability of soil moisture 
within the catchment. This information is clearly desirable as those areas that contribute to flood 
formation are variable in time. It is therefore essential to be interested in the wetness of those 
landscape elements that indicate whether upslope areas and subsurface storages connect to the 
riparian zone and start to contribute to the flood formation process (Zehe et al. 2010). Most 
strategies to assess distributed information on soil moisture dynamics still rely largely on 
distributed point measurement, by means of either FDR or TDR methods. One approach is to 
use a set of fixed TDR/FDR sensors to monitor temporal soil moisture dynamics at selected 
points, as for instance suggested by Bárdossy and Lehmann (1998), Anctil et al. (2008) or Blume 
et al. (2008 a, b). The advantage of using fixed stations is that they allow a high temporal 
resolution; the drawback is that spatial resolution is either coarse or the total extent of the 
network is small. Thus, other authors prefer spatially highly resolved soil moisture sampling by 
means of mobile or portable TDR sensors, as for instance Grayson et al. (1997) or Grayson and 
Western (1998) in different catchments in Australia or Brocca et al. (2007, 2009) for three field 
sites in Italy. Zehe et al. (2010) recently used a clustering design of soil moisture sensors to assess 
spatiotemporal highly resolved data to characterise soil moisture dynamics at typical hillslope 
units. The drawback of this approach is that it is limited to two to three clusters. 
 
In summary, it seems there is neither a commonly accepted strategy for how to obtain useful data 
on distributed soil moisture dynamics or the antecedent wetness in headwater catchments nor 
whether such data might be helpful to predict runoff volumes or to update states of continuous 
states for improving food forecasts. The main objectives of the present study are thus: 

1. To demonstrate that average soil moisture dynamics observed at a representative 
forested landscape element in Rehefeld catchment is of key importance for predicting 
runoff coefficients in three nested catchments by means of generalised linear models 
(GLM).  
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2. To investigate whether a distributed rainfall runoff model, which has been calibrated 
for these catchments, allows similar good predictions of the runoff coefficients 
compared to GLM. The model WaSiM ETH is used, which is frequently used in 
meso-scale catchments (Schulla, 1997; Niehoff et al., 2001; Gurtz et al., 2003; Krause 
and Bronstert, 2007; Bormann et al., 2008). 

3. To compare soil moisture dynamics observed at the representative site to soil 
moisture simulated with WaSiM ETH at this location.  

4. To compare the relationship of runoff coefficients and soil moisture at the 
representative location for both observed data and model results.  

 
It is assumed that the distributed process oriented rainfall runoff model “which works for the 
right reasons” should not only match the observed rainfall runoff behaviour but also match the 
interplay between average soil moisture of representative sites and runoff coefficients that has 
been observed in the target catchment.  
 
 

4.2 Model descriptions: WaSiM ETH, GLMs 

4.2.1 Generalized linear models 

The objective of this statistical analysis is to identify the best describing predictors that 
characterize the rainfall forcing as well as the near surface and deep subsurface wetness state of 
the catchment in order to predict the Cr. Generalized linear regression models (GLMs) are used 
with a binomial error distribution to estimate the relationship between the runoff coefficient as 
the response variable and different predictor variables. In the case of proportional data, Crawley 
(2002) recommended the use of binomial GLMs; because they weight the estimates depending 
on their binomial denominators (low weights to estimates with small binomial denominators), 
they use a maximum likelihood estimation compared to the sum of squares used for Linear 
Models (LMs). GLM may furthermore cope with non-normal and heteroscedastic residuals. It is 
adequate to use a binomial GLM to predict relative data without a direct countable context (e.g. 
McPherson and Jetz, 2007). Francke et al. (2009) discusses the pros and cons of LMs versus 
GLMs in detail. The above mentioned generalisations are here based on the logit transformation 
– a function that links linear predictor to the response variable (Crawley, 2007). The runoff 
coefficients are constrained to the range [0, 1] whereas their range on the logit scale is [-∞, 
+∞].The generalized linear regression model using the n predictors is shown in (Eq. 1) 
 
The generalized linear regression model using the n predictors is shown in (Eq. 1) 

Eq. 20 
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where the regression coefficients (β0…βi) are estimated to obtain an optimum fit. The predictor 
variables (xi...xn) are used without normalization, as shown in Appendix Table 1-3.  
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4.2.1.1 Predictor selection and development of the GLM 
4.2.1.1.1 Estimators of catchment wetness and the meteorological forcing 
As discussed in Chapter 3 I distinguished predictor variables that characterise/estimate the 
catchment’s antecedent wetness and can be determined a priori, from those that characterise the 
meteorological forcing which can only be estimated based on a posteriori observations or based on 
predictions (both with uncertainty). The predictor variables and their relation to event scale 
runoff coefficients were already presented in Chapter 3.5.7. 
 
4.2.1.1.2 GLM assessment  
Multicollinearity or linear dependence among the predictors can be problematic when 
interpreting coefficients or for prediction, if the correlation structure is not constant (Fox, 2002; 
Dormann et al., 2011). To avoid this problem the predictors and the corresponding full models 
were assessed within a five-step analysis that was followed by a validation procedure:  

1) Determination of the correlation matrix and classification of highly correlated 
parameters into two different subsets.  

2) The resulting subsets of predictors are submitted to hierarchical partitioning where 
the independent predictive power of each predictor variable is computed. This results 
in a reduced subset.  

3) The resulting possible general linear models built from all possible combinations of 
the parameters of the reduced subsets are compared with an exhaustive search 
method (Morgan and Tatar 1972) using the Bayes Information Criterion (BIC) as a 
measure of model performance.  

4) Evaluation of the calibrated models: The two best models of the subsets are evaluated 
using different performance criteria.  

5) Validation of the two models: Jack-knifing is used, i.e. leave-one-out cross validation, 
for internal validation to obtain an unbiased estimate of the model performance 
(Harrell, 2001; Blume et al., 2008; McIntyre et al., 2008).  

 
The entire analysis is carried out for all three sub-basins and the five steps are further explained in 
the following: 
 
Step 1): Predictors with a Spearman rank correlation |ρ| > 0.7 (Green, 1979) are not used within 
the same model (cf. Appendix Table 4-6). Average soil moisture WC0 and present runoff q0 had 
the highest correlation to the runoff coefficient for all catchments. However, at the same time 
they are strongly correlated to each other. Thus two subsets of predictors are created, one 
including the antecedent water content and one including the pre-event runoff. These subsets 
included 8 predictors each: CV, AP60, API0.95

30, P, P2h, DP, I and WC0 or q0. 
 
Step 2): The best parsimonious model for the three catchments is estimated with hierarchical 
partitioning (Mac Nally, 1996, Heikkinen et al., 2005) using the R-scripts (R-Team Development 
Core, 2009) of Walsh and Mac Nally (2009). In hierarchical partitioning, the independent 
predictive power of each predictor is computed and joint contributions to the model resulting 
from collinearity are separated (Olea et al, 2010). The predictors with a higher independent 
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explanatory power than 10% are selected, where 100% corresponds to the sum of the 
independent explanatory power of all predictors. 
 
Step 3): As exhaustive search methods have the disadvantage that they do not account for 
multicollinearity between the predictors (Dormann et al., 2011), the search method is only used 
to identify the best models after the subsets have been submitted to hierarchical partitioning. 
Here the exhaustive search algorithm by McLeod and Xu (2010) was used. The Bayes 
Information Criterion (BIC) is chosen instead of the more commonly used Akaike Information 
Criterion (e.g. Reineking and Schröder, 2006) as it is stricter and more selective towards models 
with fewer predictors (parsimonious models). The BIC is defined as: 

Eq. 21 
( )knL=BIC loglogmax2 ×− , 

 
with, the maximum log-likelihood 
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n the sample size, and k the number of parameter in the model. 
 
Step 4): The two best models of both subsets are compared in using four performance criteria: 
The BIC criterion, the Spearman’s rank correlation coefficient (ρ), describing how much of the 
variability the model can explain, Root mean square error (RMSE) and Nash Sutcliff efficiency 
index (NSE). 
 
Step 5): As the observation period is dominated by dry weather conditions, only few larger events 
are observed. As a result, the sample size of rainfall runoff events is too small and the distribution 
much too skewed to allow a split sampling for model validation. Therefore jack-knifing is used as 
cross-validation technique. The performance of the model within jack-knifing is evaluated by 
means of the RMSE, the mean absolute error (MAR) and the Nash Sutcliff efficiency.  

4.2.2 The hydrological model WaSiM ETH 

The hydrological watershed model WaSiM ETH (Schulla, 1997; Niehof et al., 2001) is used to 
address objectives 2 and 3. The model conceptualises interception based on a storage approach, 
Evapotranspiration based on the Penman-Monteith equation, and infiltration based on the Green 
and Ampt approach (Peschke, 1987). Flow in the vadose zone is determined from the saturation 
deficit based on the TOPMODEL principles and the topographic wetness index (Beven and 
Kirby, 1979). This is deemed to fit well to the dominating runoff mechanism which is due the 
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findings in Chapter 3 vertical preferential flow, subsurface stormflow and fast mobilisation of 
ground water. Water storage in the unsaturated zone is described in a simplified manner by 
distinguishing three different subsurface stores: a) field capacity unsaturated store, b) gravitational 
store with free water above field capacity and c) the saturated store. The field capacity 
unsaturated storage is vertically sub-divided into the root zone and the below-root zone. When 
infiltration into the soil occurs (which is calculated in a preceding step), water fills the field 
capacity unsaturated storage if free pore space is still available. Otherwise, the infiltration water 
enters the gravitational unsaturated zone. Figure 27 gives an overview of the different storages. 
 

 
Figure 27: Sketch of the different storages used in WaSiM ETH, after Niehoff (2002) modified. 

 
The gravitational unsaturated zone store controls interflow generation (which exfiltrates into the 
river system) and percolation into the saturated zone store. Exfiltration from the saturated zone 
store forms baseflow. Total runoff is composed from surface runoff, interflow and baseflow. 
Surface runoff and interflow, as well as the unsaturated zone storage, are conceptualised by 
means of linear stores for each grid cell while baseflow is calculated as a linear store for the entire 
sub-basins. The actual moisture conditions of the whole catchment are calculated continuously 
by the overall saturation deficit (SD) representing the catchment-wide difference between full 
catchment saturation and the actual moisture state. The spatial mean of the SD is calculated for 
each time step. The local SD distribution within the catchment (i.e. the local saturation deficit at 
each grid cell) is estimated indirectly from the spatial mean and the spatial distribution of 
topographic index (Beven and Kirkby, 1979; Krause and Bronstert, 2007). Therefore, not all soil 
water fluxes are simulated explicitly for each grid cell which results in a fast performance and 
allows the meso-scale usage. The kinematic wave concept is used for the routing of stream flow. 
For more details on WaSiM ETH please refer to Schulla (1997), and Schulla and Jasper (2007). 
 
4.2.2.1 Calibration of WaSiM ETH 
The model is setup at a regular grid size of 100 m and operated at an hourly time step. The 
Dynamically Dimensioned Search (DDS) optimization algorithm (Tolson and Shoemaker, 2007, 
Francke, 2010) is used for automatic calibration within the R environment (R-Team 



 

 79

Development Core, 2009) to estimate an adequate parameter set for the calibration period. DDS 
may be characterised as a parsimonious algorithm with quick convergence compared to other 
methods, especially for high-dimensional optimization problems. However, the procedure needs 
a sufficiently high number of evaluation steps to avoid convergence to a local minimum (Tolson 
and Shoemaker, 2008).  
 
A set of 15 parameters was calibrated using the ranges (cf. Appendix Table 7) suggested by 
Reusser et al. (2009) for the two catchments of Ammelsdorf and Rehefeld according to three 
different versions during snow free conditions as explained below. Plant parameters were 
adjusted based on the findings of Chapter 3 for forest, for all other landuse values by Breuer et al. 
(2003) were used. Soil physical parameters were taken from Maidment (1993). 
 
Version A): The model was calibrated for the period 2000-2006 and validated in the period of 
2007-2010 based on the runoff time series and a baseflow time series produced by smoothed 
minima technique (Nathan and McMahon, 1990) of the runoff time series. A weighted sum of 
the Nash-Sutcliff efficiency index (NSE) and relative mean error (RME) as objective function 
(Eq. 24) and introduced a penalty (PB) for large errors during baseflow dominated periods 
(Tolson and Shoemaker, 2008) was used. 
 
Version B): The model is calibrated for the complete time series 2000-2010 based on the Nash 
Sutcliff efficiency as objective function.  
 
Version C): The model is calibrated for the complete time series 2000-2010 with the same 
objective function as in version A.  

Eq. 24 
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Eq. 27 
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Where Qsim is the simulated runoff, Qobs the observed, GWsimQ  simulated mean groundwater, GWobsQ , 
the observed mean groundwater, and n the sample size. 
 

4.2.3 Data driven models to predict runoff coefficients  

The obtained GLMs (Table 17) allow a good estimation of the Cr and are significantly better than 
the null model. It is worth to note the best models always rely on both measures for catchment 
wetness and measures for the either the total rainfall amount and, in case of the q0 subset also for 
rainfall duration. For all three sub-basins P is the predictor with the most explanatory power 
followed by DP and WC0 and q0. Other predictors had, as could be expected from the scatter 
plots in Figure 24 and 25, a negligible explanatory power. 

Table 17: Coefficients, error values and P-values of the best models for the three catchments and two 
subsets. The P-value is the estimate of the probability that the coefficient is significant. Herby are low 
values an indicator for significance. The standard error (Std. Error) describes the uncertainty of the 
coefficient. 

Catchment Subset 
Predictor 
variable 

Coefficient Std. Error P-Value 

Ammelsdorf WC0 Intercept -7.58 0.89 < 0.0001 

  WC0 13.29 2.82 < 0.0001 
    P 0.03 0.01 < 0.0001 

 q0 Intercept -3.99 0.28 < 0.0001 

  q0 0.03 0.01 < 0.0001 
    P 0.03 0.01 < 0.0001 

Rehefeld WC0 Intercept -7.78 0.63 < 0.0001 

  WC0 14.08 1.98 < 0.0001 
    P 0.04 0.01 < 0.0001 

 Q0 Intercept -3.77 0.17 < 0.0001 

  q0 0.02 0.00 < 0.0001 
    P 0.03 0.01 < 0.0001 

Becherbach WC0 Intercept -15.44 1.48 < 0.0001 

  WC0 35.25 4.79 < 0.0001 
  DP 0.40 0.07 < 0.0001 
    P 0.02 0.01 0.037 

 Q0 Intercept -5.10 0.21 < 0.0001 

  q0 0.07 0.01 < 0.0001 
  DP 0.67 0.04 < 0.0001 

 
The equations of the best models for the three catchments are presented in Table 17 with P-
values and standard error of the coefficients. The P-value is a measure of creditability of the null 
hypnotise (Crawley, 2007). Large P-values means that there is no compelling evidence to reject 
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the null hypnotise and that the predictor has low explaining power to describe the target variable. 
Low values are an indicator for rejecting it and therefore the predictor has a significant explaining 
power for target but in dependency of sample size and the number of predictors. By the standard 
error low values compared to the absolute value of the coefficient are aspired. 
 
Table 18 presents the goodness of fit criteria for the best GLMs both for the entire dataset and 
for the cross validation. The Nash-Sutcliffe efficiencies for the best models at gauge Ammelsdorf 
are 0.61 for the q0 subset and 0.68 for the WC0, and 0.48 and 0.56, during cross validation 
respectively. Please note that although the catchment area is five orders of magnitude larger than 
the total extent of the soil moisture cluster, the WC0 based GLM outperforms the GLM based on 
pre-event discharge. At Rehefeld is the same situation: the WC0 based model outperforms the q0 
model for all sub-basins. The performance criteria NSE and RMSE for the Becherbach are in the 
calibration for both predictor variables similar. But ρ is lower for WC0 compared to q0. In the 
cross validation NSE of WC0 shows a better performance. The reason therefore is the high 
variation in q0 compared to WC0 under wet conditions (see 3.5.6). 
 

Table 18: Comparison of the simple and best models for the nested catchments with performance criteria 
calculated from observed and modelled Cr: Spearman’s rank correlation (ρ), root mean square error 
(RMSE), degrees of freedom (DF), jackknifing results of the best models of the three catchments with 
performance criteria: Nash Sutcliff efficiency index (NSE), and root mean square error (RMSQ).  

      
After 
jackknifed 

  
Sample 
size 

DF ρ NSE RMSE NSE RMSE 

Ammelsdorf WC0 59 56 0.79 0.68 0.028 0.56 0.033 
Ammelsdorf q0 59 55 0.72 0.61 0.031 0.48 0.036 
Rehefeld WC0 76 72 0.81 0.68 0.034 0.64 0.036 
Rehefeld q0 76 71 0.80 0.54 0.040 -0.20 0.065 
BecherbachWC0 54 50 0.57 0.98 0.018 0.69 0.065 
Becherbach q0 54 51 0.76 0.95 0.025 0.58 0.075 
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4.2.4 Quasi process based model WaSiM  
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Figure 28: Simulated (with the NSE calibration scheme B) and observed runoff of the two catchments 
Rehefeld and Ammelsdorf exemplarily shown for the period 2009-2010. Only the simulated runoff for the 
snow free period is presented. Axes are cut at 6 m³s-1 (Rehefeld) and 12 m³s-1 (Ammelsdorf) for better 
readability. The maximum peaks in Rehefeld are at 7 m³s-1 for the shown period. In the header are NSE 
and RMSE for the complete simulation period. 

  
Calibration with scheme A (see section 3.5) yielded a NSE of 0.60 at gauge Rehefeld and 0.32 at 
gauge Ammelsdorf. During the validation period, the model performed much worse with a NSE 
of -0.37 and -3.66 for these gauges, respectively. The best results were obtained with calibration 
scheme B when calibrating the model to the entire period based on the NSE as objective 
function. A NSE of 0.7 at gauge Rehefeld was optained and 0.53 at gauge Ammelsdorf. The 
simulated runoff for the winter period is not shown, because the focus of the work was on the 
snow free period (and the parameters of the snow model were not calibrated). Simulated 
discharge based on calibration scheme C matched observed values with a NSE of 0.6 at gauge 
Rehefeld and 0.4 at gauge Ammelsdorf. Whereas the baseflow is better represented with scheme 
C several events are not identifiable. Further analysis was carried out exclusively for the best 
model setup version B. Modelled and observed time series are shown in Figure 28. 
 
Figure 29 shows observed Cr plotted versus predicted Cr after jackknifing and the best WaSiM 
ETH simulation for all three catchments. Cr values estimated with the GLM < 0.1 are 
overestimated for the two larger catchments and underestimated in the Becherbach. The absolute 
error in the two larger catchments increases with increasing Cr. 
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Runoff coefficients at gauge Ammelsdorf with WaSiM ETH are strongly underestimated, which 
may be explained with the relatively low model efficiency of 0.53. The accordance between 
simulated and observed Cr is clearly better at gauge Rehefeld, but still worse than for the 
predictions by the GLM. Please note that Figure 29 presents the runoff coefficients from the 
cross validation procedure of the GLM while runoff coefficients from WaSiM ETH are from a 
pure calibration procedure, i.e. without cross validation.  
 

 
Figure 29: Simulated Cr from the jackknifing based on the best GLM (red circles) and from the best 
calibration with WaSIM ETH (grey squares) plotted against the observed Cr. 

 
The temporal occurrence of the observed, fitted and predicted Cr are shown in Figure 30. Larger 
events with Cr > 0.1 normally occur in spring and autumn for all three catchments, except for 
June 2010 where severel convective precipitation events causes high runoff coefficients. The dry 
year 2008 can be well identified by Cr < 0.05 in the period June-September. Here the GLMs and 
GLMs of the jackknifed values overestimate the observed values, while WaSiM ETH 
underestimates for Rehefeld and Ammelsdorf. For the Becherbach the values are underestimated 
for that period. 
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4.3 Discussion, Outlook and Recommendations 

4.3.1 Simulated saturation deficits and observed soil moisture data 

Figure 31 presents the simulated saturation deficit SD of the grid cells that correspond to the 
locations of the TDR clusters for the summer periods 2007-2010. Even though there is a general 
trend for C2 that SD decreases with increasing observed average soil moisture WC the relation is 
highly variable and hysteretic. For the grassland site C1 no relationship is observable. The highest 
uncertainty occurs at an observed relative average soil moisture of approximately 0.3 where the 
corresponding saturation deficit ranges from 220 to 330 mm at C1 and 240 to 340 mm at C2. 
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Figure 31: Saturation deficit simulated with WaSiM ETH (model calibrated to the Ammelsdorf gauge using 
scheme B ) at the TDR locations C1 grassland (A) and C2 forest (B) plotted against the observed average 
soil moisture at these locations for the of the summer periods 2007-2010. The Spearman correlation 
coefficient ρ is given above the plots. 

 
By comparing the antecedent soil moisture prior to the observed events to a) the simulated 
antecedent saturation deficit at the corresponding grid cell and b) the catchment average 
antecedent saturation deficit, the correlation shows better results (Figure 32). The Spearman rank 
correlations are -0.65/-0.70 for the model calibrated at Rehefeld and -0.47/-0.59 for the model 
calibrated at Ammelsdorf for case a) and b) respectively. 
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Figure 32: Comparison between the pre-event saturation deficit (SD0) at position C2 and the mean SD0 for 
the entire catchment of the calibration scheme B) to the WC0 at C2 for the events of Rehefeld (A and B) 
and Ammelsdorf (C and D). The Spearman correlation coefficient ρ is given above the plots. 
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Figure 33: Observed Cr at Rehefeld (A) and Ammelsdorf (C) plotted against the observed average soil 
moisture WC0 at the forest cluster (C1) as well as Cr from WaSiM ETH simulation at Rehefeld (B) and 
Ammelsdorf (D) plotted against the simulated saturation deficit SD0. Please note that the wettest state of 
SD is to the left and the driest to the right. 



 

 87

The relation between observed runoff coefficients and observed average soil moisture at the 
forested site as well as the corresponding relation of runoff coefficients from the modelled time 
series and the simulated saturation deficit at the forested site WaSiM ETH is shown in Figure 33. 
While a strong relationship was found for the observed data there is almost a lower relation 
between saturation deficit in the model and the runoff coefficients from the simulated flood 
events especially for Ammelsdorf. For the catchment Rehefeld the value of ρ = -0.51 between the 
simulated SD0 and Cr is comparable to the observed result of WC0 to Cr (ρ = 0.59). The negative 
correlation is because of opposite reaction of SD and WC. The drawback of the WaSiM 
simulations is that Cr is always underestimated. 
 
 

4.4 Conclusions 

4.4.1 Soil moisture at representative site outperforms large scale average wetness  

In this study, it was found that the GLMs based on average soil moisture observed at the forested 
cluster outperformed the GLM based on pre-event discharge with respect to explaining and 
predicting runoff coefficients within the three nested catchments. This is remarkable as the total 
extent of the TDR cluster is four to five orders of magnitude smaller than the catchment area. 
Although predictive performance of the soil moisture based GLM decreases with increasing 
catchment size, it still represents still 56% of the variability of the observed runoff coefficients 
without a clear bias at gauge Ammelsdorf. NSE values during cross validation of the GLM data 
at gauges Becherbach and Rehefeld are remain high (> 0.64), while at Ammelsdorf at 0.56 is 
acceptable. Soil moisture data collected at a nearby grassland site were of less importance for 
explaining runoff coefficients. The most important meteorological predictor was the total rainfall 
amount. 
 
It appears that the wetness state of the lower hillslope sector in the forested site is of greater 
importance for event runoff production than average catchment wetness represented by pre-
event discharge. Thus it can be concluded that in the Rehefeld, Becherbach and parts of the 
Ammelsdorf catchment, forested sites likely contribute much more to event scale runoff 
production than grassland and that subsurface storm flow is the dominating process. It can be 
stated that spatiotemporally highly resolved sampling of representative soil moisture data in key 
landscape units can yield very valuable information for explaining and predicting runoff 
production. The forested site close to the Becherbach is obviously such a key site - not to 
determine the average catchment wetness as suggested by Grayson and Western (1998) or Brocca 
et al. (2007)  - but maybe to indicate whether upslope forested areas are connected to the stream 
network and thus contributing to flood formation, as suggested by Spence et al. (2010). 
 
It can be concluded furthermore that the derived GLMs might yield valuable data-based 
predictions of runoff coefficients and thus runoff volumes, which is of great importance for 
operating reservoirs. Installation of additional TDR clusters further downstream in the 
Ammelsdorf catchment and possibly of additional rain gauges could yield additional valuable 
predictors to improve the model performance at the Ammelsdorf gauge. 
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4.4.2 GLM performance versus performance of the distributed rainfall runoff model 

An acceptable calibration of the distributed rainfall runoff model WaSIM ETH to the Rehefeld 
gauge with a NSE of 0.71, while for the Ammelsdorf gauge a NSE of 0.53 only is achieved. The 
calibrated model matched the water balance well, but runoff volumes and peak discharge are 
systematically underestimated. Runoff coefficients derived from the model calibration period are 
in less good accordance with the observed ones as runoff coefficients predicted within the cross 
validation test. It can be stated that the data driven GLM in the cross validation mode 
outperformed the rainfall runoff model in the calibration mode with respect to the 
prediction/explanation of observed runoff coefficients.  
 
A clear relationship when comparing soil moisture observed at the two field sites was not found 
with the simulated saturation deficit from the corresponding grid cells, especially for the higher 
water contents. Thus, the locally observed relative soil moisture data is unlikely to be useful either 
for local corrections of the SD at these grid cells or as additional objective of the calibration 
efforts. Also the relation between antecedent soil moisture prior to the observed events to a) the 
simulated antecedent saturation deficit at the corresponding grid cell, and b) the catchment 
average antecedent saturation deficit were not strong for the largest catchment Ammelsdorf. 
Most importantly, it was found that there was almost no relation between saturation deficit in the 
model and the runoff coefficients derived from the simulated flood events for Ammelsdorf, 
while the relation in the real data was detectable. For Rehefeld, the correlation of saturation 
deficit and runoff coefficient was at an acceptable value, but most of the events were 
underestimated. Thus it can be concluded that a calibrated complex rainfall runoff model which 
matches rainfall-runoff behaviour of a catchment reasonable does not necessarily reproduce the 
interplay between average soil moisture of representative sites and runoff coefficients that has 
been observed in the target catchment. This has two important implications. The first one is that 
the here used conceptualisation of runoff production and runoff concentration is possibly not 
consistent with the functioning of this catchment, similar to the findings of Thapa (2009). The 
second one is that an update of the local saturation deficit using observed soil moisture data 
would not necessarily yield a better model performance. 
 
The reason for the bad representation of runoff could be that the model structure, especially of 
the subsurface, is neither consistent with the real spatial architecture of the hydrological system 
nor with the topology of the subsurface flow paths. Runoff generation is conceptualised by 
means of linear reservoirs that all act in parallel and surface runoff that is once generated in the 
model cannot re-infiltrate even though this is quite likely in reality. This structural incompatibility 
of model structures and catchment architecture can be deemed as one major reason for 
predictive model uncertainty (Beven, 2006a, b). Obviously the catchments are still too small that 
errors due to the crucial simplification in WaSiM ETH I average out as Dooge (1986) has 
postulated. 
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CHAPTER 5 DISCUSSION, OUTLOOK AND 
RECOMMENDATIONS  

5.1 Limited applicability of STDR in heterogeneous soils  

The objective is to investigate the applicability of Spatial TDR (Becker, 2004; Schlaeger, 2005) in 
complex soils under field conditions. Spatial TDR is a combination of spatially distributed TDR 
probes with long wave guides and an inversion technique of the signal along the rods to get 
three-dimensional information of soil moisture at a fine resolution in time. Therefore the 
influence of rod deformations, the presence of objects in the sampling volume and the character 
of field soils were tested.  
 
The different experiments showed that probe geometry has a massive effect on the shape of the 
reflected TDR signal, the reflectogram. This may lead to a complete misinterpretation of the soil 
moisture profile along the rods of the probe since the conceptual model of Schlaeger (2005) 
assumes constant width between the rods. A violation of this assumption will lead to misleading 
results.  
 
The inversion method is ill-suited for complex soils with large amounts of gravel and high bulk 
density. These circumstances will not guarantee an accurate installation of 0.6 m rods, even by 
using templates and drilling with a 0.60 m long auger. The various tests under three different soil 
moisture conditions show, that because of the usage of coated rods the average soil moisture is 
almost unchanged which is consistent with results obtained by Ferré et al. (1998). Finally, it can 
be assumed that the mean values can be used even with geometrically complex rod deformation. 
Objects in the sampling volume have only little effect as long they are not electrical conductors 
(iron block). Finally, the algorithm was also tested, with accurate geometry as obtained within 
glass beads and with natural soils from the field site. In comparison with FDR probes, the 
profiles obtained are in good accordance. However, it must be noted that during infiltration or 
withdrawal, the accuracy of the inverted profile decreases. It is demonstrated furthermore that 
Spatial TDR is capable of monitoring fast infiltration and redistribution of irrigation water in soil.  
The Spatial TDR method is limited to applications in media with homogeneous conditions like 
disposal sites and dykes. For the later case, Scheuermann et al. (2009) obtained good results. 
Probes installed in a soil pit to guarantee exact probe geometry as a strongly invasive method can 
be an alternative to the use of inversion in the field. 
 
The use of clustered TDR probes with long waveguides to observe a more representative soil 
volume is not affected by complex soils and is a promising alternative. 
 
 

5.2 TDR clusters at a representative areas: key information in key landscape units 

In this study it is clearly shown that the clustering of TDR probes gives important information 
about temporal and spatial distribution of soil moisture. Two clusters were installed, one at a 
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grassland site and one at a forest site. Both are located in the headwater catchments of the Wilde 
Weißeritz. Each cluster covers an area of 400 m² with 39 (grassland) and 32 probes (forest). A 
strong heterogeneity in the soils and their effect on the spatial development of patterns is shown 
in the study. The high spatial variability in soil moisture, with a range of 0.07 m3m-3 (grassland) 
and 0.08 m3m-3 (forest), is large compared to other studies (Bárdossy and Lehmann, 1998; Brocca 
et al., 2007; Blume et al., 2009) despite a smaller areal extent. From the findings of the temporal 
stability plots, it can be inferred that the use of single TDR measurements is not useful to assess a 
representative average soil moisture at that type of heterogeneous soil. This is different to results 
cited by Grayson and Western (1998), Brocca et al. (2007, 2009a, 2010) and Joshi et al. (2011) 
which report the existence of such a representative monitoring site. Also, a poor relationship 
between topographic factors and points close to the spatial mean were identified, contrary to 
Joshi et al. (2011).  
 
Furthermore, clear evidence is found that clustering of TDR probes in combination with long-
term monitoring allows identification of average spatial covariance structures at the small field 
scale at different wetness states. Compared to other studies (Brocca et al., 2007), the short range 
of covariance can be explained by the heterogeneity of soils. Small-scale heterogeneity of soil 
properties at the forested site is similar to that found at the grassland site. But the soil moisture 
patterns are different. Therefore it can be concluded that the correlation structure at the forested 
site is dominated by the pattern controlled by vegetation (throughfall and interception) and at the 
grassland site the soil moisture is dominated by small-scale variability of soil properties.  
 
 

5.3 CATFLOW –soil and vegetation control on soil moisture at the hillslope scale 

To understand the dynamics of the interaction of vegetation on the soil for both cluster sites, the 
hillslope model CATFLOW was used to estimate the specific phenological parameters. A 
combination of observed ks and porosity values with van Genuchten parameters estimated from 
the pedo transfer function of Carsel and Parrish (1998) gives sufficient results of simulated soil 
moisture for both study sites. At the forest site, a best model set up can be presented (soil profile 
A, LAI = 13.5, plant cover = 0.85) with a correlation coefficient of 0.89 and a RMSE of 4.7×10-4 
which is a good representation of the key areas in the headwater catchment of the Wilde 
Weißeritz. It can be concluded that the extent of the modelling grid used is large enough to asses 
the dynamics of average spatial soil moisture in an almost unbiased fashion. Simulated averaged 
soil moisture is within the confidence interval of the observed spatial average soil moisture for 
almost the whole period. At the grassland site, this shows that the vegetation is not sufficiently 
well represented (correlation coefficient of 0.753 and RMSE of 6.9×10-4) and further work on 
surveying the annual vegetation cycle of plant morphological parameters must be resolved.  
 
Outlook maybe stress that it would be interested to run similar simulations for heterogeneous 
hillslopes. Soil moisture distributions could be estimated based on available variograms. Most 
interesting part is whether best plant parameters allow still a good reproduction of both average 
soil moisture dynamics and dynamics spatial soil moisture variability. 
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5.4 Understanding flow and runoff processes with irrigation experiment 

To understand the dominating hydrological processes, an irrigation experiment was carried out. 
Vertical preferential flow was identified as the main process, with overland flow and shallow 
lateral flow playing minor roles. 
Fast responses to a depth of 2.7 m in less than 1.5 hours were observed. Deep lateral fluxes were 
observed with a lag of 6 hours. This led to the assumption that water and solute transport can 
reach velocities of approximately 10-4 m s-1. The different response under changed initial 
conditions is similar to the observation of bimodal events in the Becherbach which only can be 
observed above 0.33 m3m-3. Above the threshold mobilisation of groundwater leads to much 
higher runoff coefficients. 
 
 

5.5 Soil moisture controls on runoff 

Statistical analysis between different predictor variables describing the catchment state shows that 
soil moisture at the forest site is an important factor of estimated runoff coefficients. The 
Spearman rank correlation between runoff coefficients and pre-event soil moisture is high for all 
three subcatchments (Becherbach = 0.63, Rehefeld = 0.67 and Ammelsdorf = 0.54). Duration of 
rainfall and precipitation sum have similar values. API30

0.95, AP60, CV and rainfall intensity have 
lower correlation values.  
 
Pre-event runoff also shows high correlation to average soil moisture at both sites. It can be 
concluded that subsurface storm flow or fast groundwater flow is the dominating runoff 
generating process, at least in the snow-free period. Saturation excess overland flow plays a key 
role due to the high permeability of the top soil (more than 10-4m s-1), while the large amount of 
gravel has a minor role, which is consistent with the findings of the irrigation experiment and 
time series analysis. Subsurface storm flow is reported to be the dominant runoff process in many 
other studies in forested areas (Blume et al., 2008a, b; Tromp-van Meerveld et al., 2006a; 
Uhlenbrook et al., 2002). The wetness state of the lower hillslope sector in forested sites seems to 
be of greater importance for event runoff generation than average catchment wetness 
represented by pre-event runoff. It thus can be concluded that in the Ammelsdorf and Rehefeld 
catchments forested sites are likely to contribute more strongly to event scale runoff production 
than does grassland. Spatiotemporal highly resolved sampling of representative soil moisture data 
in key landscape units resolution yields very valuable information for explaining and predicting 
runoff production. The forested site close to the Becherbach can be identified as such a key site - 
not to determine the average catchment wetness (Brocca et al., 2007; Grayson and Western, 
1998) but to determine the average wetness of landscape areas that contribute to flood formation.  
 
In the Becherbach catchment a threshold process can be observed. Before a certain soil moisture 
is reached, runoff coefficients of the small tributary Becherbach are below 0.05. By exceeding 
0.33 m3m-3 as absolute values, runoff coefficients above 0.10 are observed. A closer look reveals 
complete different runoff response for dry and wet conditions, even if the catchment received 
the same amount of precipitation. A hysteretic relation between the average spatial soil moisture 
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and runoff was observed which switches from clockwise to anticlockwise response. This means 
that under dry conditions the soil storage has a longer recession time compared to the runoff and 
in the wet case it is reversed. Soil moisture returns to the starting value whereas runoff still 
increases.  
 
The relation to groundwater to runoff is in both cases clockwise. However, while during dry 
conditions there is virtually no response observed in groundwater during the event, during wet 
conditions a fast response is observed which may last up to 4 to 5 days. This hysteretic behaviour 
of streamflow/subsurface flow and water content was found by several other authors (Graham et 
al. 2010, Hrnčíŕ et al. 2010, Penna et al. 2010). Spence et al. (2009) also found hysteretic patterns 
between discharge and storage. However, discovering hysteretic behaviour between storage and 
discharge is an indicator of system controls and time-variant dominant processes. Under dry 
conditions the unsaturated zone dominates the runoff response and groundwater has a minor 
effect. If the catchment wetness reaches a threshold value of WC0, the upslope areas are 
connected to the main catchment which results in a fast response in groundwater level whereas 
the WC decreases to the starting level. This hypothesis should be validated through additional 
instrumentation and/or tracer techniques.  
 
 

5.6 Cr and WaSiM ETH simulations 

Statistical generalised linear models and the dynamical distributed hydrological model WasiM 
ETH  I are tested to see how accurately they can predict the runoff coefficients of three 
headwater catchments of the Wilde Weißeritz. Statistical analysis of runoff coefficients with 
different a priori catchment states describing variables and meteorological variables is conducted 
to get a better understanding of which are the forcing predictor variables in flood events. Here, 
the mean pre-event soil moisture of the forest site important predictor of significant explanatory 
power compared to other catchment state variables such as pre-event runoff, antecedent 
precipitation index, antecedent precipitation, coefficient of variation.  
 
The simulations with the hydrological model WaSiM ETH have shown that the model can 
represent the discharge adequately (NSE for the best setup B of 0.74 for Rehefeld and 0.53 for 
Ammelsdorf) but it was unable to predict the runoff coefficients accurately. It can be stated that 
the data driven GLM in the cross validation mode outperformed the rainfall runoff model in 
the calibration mode with respect to the prediction/explanation of observed runoff coefficients. 
A comparison of observed soil moisture and simulated saturation revealed a clear limitation of to 
represent the local state at the observed grid cell. At an observed average soil moisture of 
approximately 0.33 m3m-3, the range of the corresponding saturation deficit is between 240 to 
340 mm at the forest site and the relationship is strongly hysteretic. The simulated soil storage at 
the grassland site was unable to reproduce the observed dynamics.  
The relationships between antecedent soil moisture prior to the observed events to the simulated 
antecedent saturation deficit at the corresponding grid cell and to the average in the catchment 
are therefore better. For Ammelsdorf, there was almost no relation between saturation deficit in 
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the model and the runoff coefficients derived from the simulated flood events, although in the 
relation in the real data was detectable. A strategy for updating that storage with observed values 
will not be promising with unrealistically responding storage. 
For Rehelfeld the correlation of saturation deficit and runoff coefficient is at an acceptable value 
and for the events the relation between soil storage and soil moisture is high, but most of the 
events are underestimated. Here an updating could be promising. 
 
Finally, the operational use TDR clusters in head water catchments can be seen as a useful 
method to observe the catchment state and to predict the volumes of flood events. This issue is 
important for the management of the three storage reservoirs in the Weißeritz catchment and 
also for adjacent catchments in the Ore Mountains.  
 
 

5.7 Overall conclusion 

The determination of soil moisture with clustered probes is a promising method to assess 
important information about the spatial and temporal variability of soil moisture. A single soil 
moisture probe is not sufficient to estimate the spatial and temporal mean soil moisture since soil 
moisture variability is not dominated by topographic effects but reflects heterogeneity of the pore 
space.  
The idia to get a nearly 3D image of soil moisture patterns will be in the study area not realisable. 
The use of the inversion of soil moisture profiles along the rods of a probe has the disadvantage 
that it requires parallel rod distance. This is not achievable in a non-invasive installation 
application. Thus the usage is strongly limited. 
 
It is interesting and important to note that the soil moisture time series at the individual sampling 
locations do not intersect and the ranks of soil moisture in a cluster remain temporally stable. 
These findings suggest that the spatial variability in soil moisture measurements reflects spatial 
heterogeneity of stationary soil properties as well as of the micro topography rather than small 
scale variability of the matrix potential. Soil moisture time series within each cluster are 
furthermore highly correlated (0.90). It can be stated that a single probe at both clusters is a good 
estimator for the average soil moisture dynamics at the observed sites. This is good news as 
matrix potential – which is the driver for soil moisture dynamics – is much less variable in space 
than soil moisture. A distributed sensor network (Bogena et al., 2009) of soil moisture probes and 
tensiometers can thus yield representative data for soil moisture dynamics and matrix potential at 
headwater catchments and be used in flood forecasting (Anctil et al. 2008). These points look 
towards new, less expensive strategies to collect information about soil state variables at the head 
water scale. 
 
The clustering of TDRs at relevant functional units in a catchment is a useful tool for 
understanding the important runoff processes. The heterogeneous study area would be not 
sufficiently observed by the use of only one probe as a representative sample. With the help of 
the hydrological Model CATFLOW, the ET parameters of forest sites can be estimated which is 
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important for further investigations of the long term water balance and to represent the typical 
landscape units in larger scale models. 
 
The importance of pre-event soil moisture on the runoff formation is clearly shown for all three 
catchments. Small scale measured soil moisture is able to predict medium scale runoff 
coefficients. The observed small scale soil moisture can explain runoff formation even in 4-5 
magnitudes larger Ammelsdorf catchment. A clear threshold process can be observed in the small 
catchment of the Becherbach. The degree of saturation of the soil moisture plays here an 
important part in the runoff generation. The comparison between GLM and the complex 
hydrological model WaSiM ETH I shows that the GLM can deliver much better results and the 
hydrological model always underestimates the observed runoff volumes, despite the  
Good performance measure values. 
The forecast of runoff coefficients are a relevant issue for the management of storage reservoirs. 
The importance of the prediction of runoff coefficients with soil moisture from a representative 
land surface unit is shown. The study sites of the head catchments of the Weißeritz demonstrate 
that groundwater is an important part of the runoff generation, as the threshold response of 
runoff coefficients and the hysteretic response of dry and wet events have shown. 
The study area is located in the headwater catchment of the Wilde Weißeritz catchment upstream 
of two reservoirs (Lehnmühle and Klingenberg). They were built to store fresh water and for 
prevention of flood events. This work can help to establish a new pre-warning system, by the 
estimation of runoff coefficients through meteorological forecasts and observed pre-event soil 
moisture. A possible combination with a flood forecasting system for the prediction of peak 
runoff (Kneis et al., 2010) is conceivable.  
Other techniques to estimate soil moisture as discussed in Chapter 1 can be of interest: in 
particular, how well they can represent the catchment state and especially the pre-event soil 
moisture. Sensor networks with low cost probes should be of great importance. Remote sensing 
methods and cosmic ray techniques are not useful because of the large amount of forest 
coverage, which do not allow penetration of electromagnetic waves through it to the surface. 
Gravity applications have to be well sited to observe a representative area and have the drawback 
of high costs. Geophysical methods have the drawback of being bound to airborne campaigns 
and the need for complex analysis. Further works should take into account the dynamics of 
groundwater. 
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Appendix: 
 
Table 1: Event data set of the Becherbach, with accumulated event precipitation (P), 2 hours sum 
precipitation (P2h), duration of precipitation (DP), mean intensity of rainfall (I), antecedent 
precipitation index of the past 30 days with an α of 0.95 (API30

0.95), antecedent precipitation of the 
past 60 days (AP60), runoff coefficient (Cr), pre-event soil moisture at the two clusters (WC0), pre-
event runoff (q0), and coefficient of variation of soil moisture at cluster C2 (CV).  

Date P [mm] 
P2h 
[mm] 

DP [h]
I 
[mm/h] 

API30
0.95

[mm] 
AP60 
[mm] 

Cr [-] 
WC0 
C1  
[m3m-3] 

WC0 
C2  
[m3m-3] 

q0  
[l s-1km-2]

CV  
[-] 

05.05.2007 01:00 29.88 0.26 1.38 6.65 0.03 45.28 0.00 0.23 0.25 1.15 0.24 
14.05.2007 21:00 11.55 1.15 0.54 6.65 0.46 79.35 0.00 0.26 0.28 1.11 0.25 
22.05.2007 17:00 30.97 9.40 0.58 9.25 0.02 84.79 0.01 0.26 0.30 0.96 0.24 
28.05.2007 18:00 21.05 1.10 0.75 9.74 7.52 113.36 0.01 0.31 0.31 1.39 0.26 
16.06.2007 01:00 28.70 0.01 0.67 10.64 1.21 161.13 0.00 0.29 0.25 1.45 0.22 
21.06.2007 09:00 16.55 8.90 0.54 8.89 0.25 195.29 0.00 0.30 0.27 1.45 0.22 
05.07.2007 23:00 9.30 0.19 0.71 3.33 5.39 252.36 0.00 0.32 0.29 1.88 0.28 
21.08.2007 02:00 26.64 0.27 0.88 4.99 0.63 216.09 0.01 0.31 0.28 4.66 0.27 
22.08.2007 03:00 12.24 5.41 0.58 3.49 10.22 240.49 0.01 0.33 0.31 5.61 0.27 
05.09.2007 00:00 14.13 1.10 0.88 2.37 2.22 233.22 0.00 0.33 0.30 4.33 0.27 
11.09.2007 01:00 27.12 2.39 3.00 2.11 3.25 255.88 0.10 0.34 0.33 8.15 0.26 
27.09.2007 15:00 17.91 0.74 0.96 3.68 1.08 241.39 0.01 - 0.32 5.58 0.25 
28.09.2007 11:00 30.08 0.00 2.92 4.32 9.50 248.70 0.16 0.34 0.34 6.20 0.25 
06.11.2007 04:00 15.51 0.41 1.04 2.09 1.14 165.70 0.02 - 0.35 9.01 0.25 
07.11.2007 21:00 58.17 1.96 3.00 4.87 6.67 177.32 0.43 - 0.36 38.81 0.25 
11.04.2008 22:00 56.43 0.03 6.33 4.25 1.72 176.95 0.64 - 0.35 27.41 0.27 
07.06.2008 08:00 5.23 4.13 0.75 3.27 0.24 120.75 0.01 - 0.26 4.01 0.25 
25.06.2008 12:00 21.10 0.83 0.75 5.00 0.00 72.84 0.00 - 0.23 3.19 0.25 
04.07.2008 02:00 23.90 3.19 0.88 3.02 0.00 86.99 0.01 - 0.20 2.59 0.26 
13.07.2008 06:00 10.60 0.07 0.75 8.19 1.66 125.65 0.00 - 0.22 2.84 0.27 
22.07.2008 06:00 10.56 0.15 0.71 5.05 1.49 143.72 0.00 0.30 0.23 2.72 0.26 
07.08.2008 22:00 26.04 5.51 0.92 2.40 0.09 140.29 0.00 0.25 0.16 1.80 0.28 
15.08.2008 06:00 26.11 1.98 0.96 2.52 0.62 163.94 0.01 0.30 0.19 2.31 0.30 
24.08.2008 05:00 8.48 1.17 0.71 10.60 1.31 200.64 0.00 0.31 0.20 2.41 0.28 
21.09.2008 06:00 12.47 0.60 0.71 3.31 0.14 135.46 0.00 0.32 0.17 1.86 0.22 
16.10.2008 08:00 12.30 1.00 1.08 2.69 0.29 101.10 0.00 0.32 0.21 2.62 0.27 
22.10.2008 03:00 17.65 0.27 1.21 6.67 0.07 109.92 0.00 0.33 0.22 2.95 0.27 
29.10.2008 05:00 13.42 0.10 0.79 2.68 3.78 124.13 0.01 0.34 0.25 4.17 0.28 
30.10.2008 04:00 25.77 0.67 1.04 2.45 9.58 136.71 0.03 0.35 0.28 6.88 0.28 
29.04.2009 18:00 12.70 0.33 0.71 1.42 0.05 145.67 0.01 - 0.29 7.37 0.25 
22.05.2009 10:00 14.03 11.71 0.67 1.40 4.80 117.46 0.01 0.32 0.28 4.66 0.25 
26.05.2009 21:00 38.48 13.26 0.92 1.92 0.11 94.95 0.01 - 0.27 4.01 0.25 
16.06.2009 13:00 11.47 2.00 0.92 4.89 8.26 199.79 0.01 - 0.30 7.88 0.25 
21.06.2009 14:00 18.70 17.13 0.71 8.58 0.23 204.62 0.00 - 0.30 5.99 0.25 
17.07.2009 16:00 21.32 5.75 1.38 13.17 0.34 290.02 0.02 0.32 0.27 6.42 0.25 
23.07.2009 16:00 8.76 8.61 0.63 8.04 0.12 297.27 0.01 0.33 0.29 7.68 0.26 
02.08.2009 16:00 15.53 0.25 1.00 8.62 0.00 238.79 0.01 0.30 0.27 5.38 0.25 
17.08.2009 16:00 20.95 2.45 0.71 5.12 0.19 234.69 0.00 0.31 0.25 3.87 0.24 
04.09.2009 19:00 9.04 3.22 0.63 5.95 0.03 158.29 0.01 0.29 0.22 2.95 0.26 
29.09.2009 11:00 13.32 0.30 0.96 15.13 0.04 94.73 0.00 - 0.19 3.19 0.27 
02.11.2009 12:00 19.03 0.36 0.83 3.92 0.03 179.30 0.02 - 0.30 13.21 0.23 
02.05.2010 07:00 10.63 0.07 0.88 1.92 2.20 94.24 0.00 - 0.30 5.78 0.26 
06.05.2010 06:00 19.23 1.19 0.79 2.22 1.24 112.25 0.00 - 0.30 5.99 0.22 
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24.05.2010 04:00 12.29 1.40 1.04 0.11 0.23 142.59 0.00 - 0.31 3.70 0.22 
28.05.2010 13:00 7.55 0.81 0.58 4.48 0.78 138.77 0.00 - 0.31 3.84 0.26 
02.06.2010 19:00 23.13 0.07 2.25 2.57 2.01 155.13 0.12 - 0.32 7.21 0.25 
17.07.2010 07:00 14.11 3.00 0.67 2.89 0.31 139.45 0.00 - 0.19 1.05 0.26 
12.08.2010 14:00 22.90 22.50 1.21 6.34 1.13 262.94 0.01 - 0.30 6.01 0.29 
15.08.2010 23:00 15.70 0.70 0.54 18.50 1.60 290.74 0.00 - 0.30 2.29 0.26 
27.08.2010 01:00 12.90 1.50 0.92 8.90 0.51 321.53 0.00 - 0.28 1.69 0.27 
28.08.2010 02:00 15.60 0.30 0.67 8.10 5.52 334.40 0.00 - 0.29 1.94 0.26 
02.09.2010 08:00 7.60 3.20 1.42 16.00 7.00 391.85 0.02 - 0.33 6.69 0.26 
27.09.2010 04:00 64.60 1.20 6.08 6.30 21.97 241.80 0.39 - 0.33 6.14 0.22 
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Table 2: Event data set of Rehefeld (abbreviations cf. Table 1).  

Date 
P 
[mm] 

P2h 
[mm] 

DP 
[h] 

I 
[mm/h] 

API30
0.95 

[mm] 
AP60 
[mm] 

Cr [-] 
WC0 
C1  
[m3m-3] 

WC0 
C2  
[m3m-3] 

q0  
[l s-1km-2]

CV  
[-] 

08.05.2007 00:00 30.32 0.04 1.54 6.06 0.01 44.88 0.02 0.23 0.25 3.58 0.26
14.05.2007 18:00 14.59 3.82 1.08 5.15 0.53 79.74 0.04 0.27 0.27 3.58 0.24
17.05.2007 02:00 9.86 0.15 0.58 2.54 2.56 95.99 0.01 0.28 0.28 6.99 0.24
22.05.2007 15:00 33.76 21.77 0.67 21.18 0.02 87.69 0.04 0.27 0.27 4.33 0.25
27.05.2007 16:00 35.97 2.11 2.50 7.99 1.70 105.79 0.07 0.29 0.30 5.14 0.24
15.06.2007 23:00 25.27 0.02 1.04 8.93 1.10 171.47 0.03 0.29 0.25 5.14 0.22
21.06.2007 07:00 19.23 2.44 0.96 8.65 0.30 202.70 0.08 0.30 0.26 5.14 0.22
02.07.2007 11:00 9.70 0.00 0.63 2.55 0.19 238.15 0.01 0.30 0.27 5.14 0.28
05.07.2007 21:00 10.17 0.16 1.00 3.85 6.39 259.06 0.03 0.32 0.29 8.43 0.28
21.08.2007 00:00 18.74 0.03 0.75 6.27 0.21 221.11 0.01 0.31 0.28 6.99 0.27
22.08.2007 03:00 14.70 2.56 1.21 4.24 8.53 239.88 0.03 0.33 0.31 13.58 0.27
23.08.2007 22:00 6.85 0.23 0.67 3.40 4.75 253.94 0.01 0.33 0.32 9.99 0.27
31.08.2007 23:00 12.36 0.05 0.58 3.44 0.97 244.23 0.00 0.31 0.29 6.99 0.27
04.09.2007 14:00 18.97 0.11 1.33 3.68 1.32 232.57 0.04 0.33 0.31 6.99 0.27
08.09.2007 04:00 21.44 0.00 1.92 2.83 0.94 247.17 0.10 0.33 0.31 8.43 0.26
10.09.2007 15:00 30.46 1.27 1.67 3.17 3.07 264.17 0.14 0.34 0.33 15.66 0.26
27.09.2007 14:00 18.74 0.59 0.92 4.17 0.64 254.53 0.03 - 0.32 8.43 0.25
28.09.2007 10:00 32.57 0.00 1.46 5.25 10.37 261.85 0.17 0.34 0.34 17.79 0.26
18.10.2007 11:00 18.99 0.60 1.67 1.30 0.03 205.70 0.03 0.33 0.32 8.43 0.22
02.11.2007 19:00 15.11 0.87 2.13 1.20 0.98 189.92 0.09 - 0.34 11.73 0.22
06.11.2007 09:00 14.60 0.34 0.96 2.30 1.13 184.73 0.05 - 0.35 17.79 0.26
07.11.2007 13:00 38.23 0.18 1.67 4.39 6.78 196.41 0.25 - 0.36 25.30 0.25
11.11.2007 10:00 19.72 0.28 0.96 5.34 5.95 205.74 0.07 - 0.38 48.47 0.26
01.04.2008 11:00 12.93 2.26 1.83 2.47 0.04 147.31 0.14 - 0.35 34.26 0.25
11.04.2008 21:00 19.80 0.01 1.17 4.51 1.90 173.88 0.11 - 0.35 34.26 0.27
14.04.2008 20:00 27.23 0.02 1.33 5.10 1.08 193.88 0.09 - 0.36 34.26 0.27
03.06.2008 22:00 9.14 7.59 0.50 5.78 0.32 115.21 0.01 - 0.26 5.14 0.24
13.06.2008 03:00 18.12 5.03 2.88 3.77 0.18 93.81 0.02 - 0.25 2.31 0.25
25.06.2008 14:00 23.38 0.84 0.83 7.07 0.00 71.82 0.03 - 0.23 2.31 0.25
04.07.2008 02:00 23.71 3.09 0.63 5.59 0.00 84.96 0.00 - 0.20 2.31 0.26
13.07.2008 10:00 10.65 0.06 0.63 2.45 1.36 123.86 0.00 - 0.22 2.31 0.27
19.07.2008 21:00 10.90 0.22 0.63 5.62 1.48 130.95 0.01 0.28 0.22 2.31 0.26
22.07.2008 05:00 10.80 0.18 0.75 2.48 1.54 142.67 0.01 0.30 0.23 2.31 0.26
08.08.2008 02:00 25.40 5.61 0.63 9.75 0.07 141.39 0.01 0.26 0.16 1.33 0.28
15.08.2008 10:00 26.31 2.07 0.71 3.41 0.48 163.36 0.01 0.30 0.19 2.31 0.30
24.08.2008 09:00 8.17 1.11 0.88 2.48 1.06 200.06 0.01 0.31 0.20 2.31 0.23
04.09.2008 01:00 7.40 2.00 0.42 3.65 0.15 164.34 0.00 0.29 0.17 2.31 0.27
07.09.2008 04:00 8.59 1.15 0.46 2.98 1.02 173.28 0.00 0.31 0.18 2.31 0.29
21.09.2008 07:00 11.90 0.60 0.67 6.50 0.15 133.88 0.00 0.32 0.17 1.33 0.22
06.10.2008 16:00 8.90 1.24 0.54 1.10 0.30 162.68 0.00 0.33 0.20 2.31 0.27
16.10.2008 17:00 9.44 1.18 1.21 2.72 2.26 102.52 0.03 0.33 0.21 0.58 0.27
22.10.2008 13:00 17.36 1.22 1.00 2.42 0.26 104.60 0.02 0.33 0.22 3.58 0.27
28.10.2008 08:00 17.13 0.06 1.54 1.96 2.20 117.49 0.05 0.34 0.24 5.14 0.28
30.10.2008 04:00 25.15 0.95 0.92 6.27 9.67 135.56 0.06 0.35 0.28 22.65 0.28
29.04.2009 18:00 12.58 0.34 0.54 5.14 0.07 146.06 0.01 - 0.29 15.66 0.25
06.05.2009 07:00 15.20 1.05 1.00 1.51 0.47 146.77 0.02 0.31 0.29 13.58 0.26
11.05.2009 09:00 15.50 0.26 1.13 4.82 0.15 142.24 0.05 0.32 0.29 8.43 0.25
21.05.2009 21:00 20.33 5.87 1.79 8.73 0.20 113.58 0.04 0.30 0.28 5.14 0.25
26.05.2009 19:00 38.06 13.04 1.54 8.46 0.12 94.92 0.12 - 0.28 5.14 0.25
29.05.2009 09:00 31.00 2.97 2.54 3.35 4.97 132.15 0.16 - 0.31 13.58 0.25
15.06.2009 18:00 22.30 0.88 1.63 6.13 0.52 188.23 0.05 - 0.29 8.43 0.25
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21.06.2009 13:00 16.43 14.98 0.67 11.34 0.23 204.07 0.02 - 0.30 8.43 0.25
17.08.2009 18:00 20.52 2.37 0.71 14.85 0.19 233.12 0.02 0.31 0.25 5.14 0.25
29.09.2009 17:00 15.27 0.30 1.04 1.88 0.03 94.74 0.01 - 0.19 0.58 0.27
01.10.2009 20:00 6.65 3.02 0.42 2.95 2.88 111.39 0.00 - 0.22 2.31 0.26
06.10.2009 04:00 15.00 1.18 1.42 2.62 0.33 104.70 0.01 - 0.22 1.33 0.26
11.10.2009 07:00 39.56 2.10 2.46 3.49 1.16 106.49 0.08 - 0.24 2.31 0.26
16.10.2009 18:00 9.16 0.50 0.63 1.43 5.80 155.33 0.02 - 0.29 9.99 0.26
02.11.2009 14:00 19.87 0.54 0.79 2.18 0.03 181.06 0.03 - 0.30 20.16 0.23
04.11.2009 16:00 13.01 0.74 1.00 2.02 6.98 200.03 0.12 - 0.32 25.30 0.22
10.04.2010 19:00 30.15 2.09 2.50 1.93 0.10 91.34 0.11 - 0.30 20.16 0.23
02.05.2010 19:00 14.95 1.02 0.67 2.75 1.32 104.37 0.02 - 0.29 9.99 0.22
06.05.2010 02:00 21.20 1.22 1.50 4.24 1.38 121.25 0.13 - 0.30 11.73 0.22
14.05.2010 13:00 12.87 0.14 0.96 1.08 0.13 136.06 0.02 - 0.30 9.99 0.22
24.05.2010 04:00 13.49 4.44 1.08 4.14 0.26 144.48 0.01 - 0.31 8.43 0.22
30.05.2010 12:00 12.58 1.31 1.17 3.67 1.02 145.89 0.02 - 0.31 9.99 0.25
02.06.2010 12:00 24.74 0.25 1.38 3.72 3.46 163.66 0.11 - 0.32 15.66 0.26
17.07.2010 06:00 14.14 10.31 0.50 6.97 0.44 152.75 0.01 - 0.19 2.31 0.26
12.08.2010 15:00 22.90 22.50 1.04 16.00 1.08 171.92 0.17 - 0.30 22.65 0.29
15.08.2010 23:00 16.10 0.70 0.96 9.80 1.60 171.45 0.18 - 0.30 25.30 0.26
27.08.2010 03:00 11.20 0.40 0.63 6.30 1.75 170.07 0.02 - 0.27 11.73 0.26
28.08.2010 06:00 15.70 0.20 0.88 3.40 4.74 170.03 0.06 - 0.29 15.66 0.26
30.08.2010 01:00 12.70 0.80 1.08 2.20 5.18 170.02 0.09 - 0.30 15.66 0.25
31.08.2010 06:00 18.80 0.50 1.08 2.60 7.64 169.06 0.08 - 0.31 34.26 0.25
02.09.2010 07:00 6.60 0.10 0.71 2.70 2.90 168.92 0.09 - 0.33 41.02 0.25
25.09.2010 16:00 61.80 1.20 1.25 8.40 0.00 6.80 0.15 - 0.27 6.99 0.22
27.09.2010 04:00 55.60 1.20 1.83 3.40 0.00 4.40 0.29 - 0.33 65.28 0.22
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Table 3: Event data set of Ammelsdorf (abbreviations cf. Table 1). 

Date P [mm] 
P2h 
[mm] 

DP [h]
I 
[mm/h] 

API30
0.95

[mm] 
AP60 
[mm] 

Cr [-] 
WC0 
C1  
[m3m-3] 

WC0 
C2  
[m3m-3] 

q0  
[l s-1km-2]

CV  
[-] 

08.05.2007 00:00 29.95 0.07 1.46 6.16 0.02 45.19 0.01 0.23 0.25 3.26 0.26 
14.05.2007 23:00 13.54 1.92 1.17 5.98 0.44 79.01 0.03 0.26 0.27 1.62 0.25 
17.05.2007 04:00 9.12 0.17 0.79 2.58 2.24 93.15 0.01 0.28 0.28 4.41 0.24 
22.05.2007 16:00 30.74 11.33 1.33 11.04 0.02 83.46 0.06 0.26 0.27 1.25 0.25 
28.05.2007 02:00 33.36 2.93 2.08 8.43 4.09 105.23 0.07 0.29 0.28 4.41 0.25 
08.06.2007 19:00 6.36 0.47 2.25 3.13 0.61 149.77 0.06 0.29 0.28 3.55 0.22 
15.06.2007 23:00 28.85 0.03 1.50 11.28 1.50 164.49 0.03 0.29 0.25 4.41 0.22 
21.06.2007 10:00 16.14 4.35 1.17 6.03 0.24 198.72 0.05 0.30 0.27 4.41 0.22 
26.06.2007 02:00 9.34 0.40 0.71 2.25 0.30 217.79 0.01 0.30 0.27 4.41 0.28 
03.07.2007 10:00 21.11 0.04 3.29 2.84 4.92 242.41 0.03 0.31 0.28 3.55 0.28 
20.08.2007 15:00 28.37 0.03 1.29 4.70 0.65 221.19 0.06 0.31 0.29 7.10 0.27 
01.09.2007 00:00 13.27 0.12 1.04 2.94 0.78 234.01 0.02 0.31 0.29 8.64 0.27 
04.09.2007 13:00 16.63 0.13 1.25 2.63 1.51 228.39 0.03 0.33 0.31 7.10 0.27 
08.09.2007 05:00 18.52 0.00 2.13 1.74 0.88 241.51 0.10 0.33 0.31 8.64 0.26 
10.09.2007 13:00 28.18 1.35 1.92 2.11 2.96 255.04 0.13 0.34 0.33 17.09 0.26 
25.09.2007 07:00 52.81 0.31 4.33 4.49 0.04 247.01 0.10 0.32 0.31 9.07 0.22 
18.10.2007 13:00 16.66 2.18 1.50 1.23 1.03 205.83 0.02 0.33 0.32 8.64 0.22 
05.11.2007 11:00 15.24 0.03 1.88 1.91 2.77 172.92 0.07 - 0.35 17.64 0.25 
07.11.2007 10:00 35.44 0.02 1.29 4.32 7.41 185.73 0.13 - 0.36 29.01 0.25 
11.11.2007 09:00 16.52 0.23 0.71 3.87 8.90 204.44 0.05 - 0.38 69.29 0.26 
14.04.2008 11:00 31.81 0.03 1.88 3.60 1.75 196.89 0.10 - 0.37 43.77 0.26 
16.05.2008 17:00 5.90 0.21 0.46 5.58 0.14 173.77 0.01 - 0.31 5.70 0.24 
04.06.2008 00:00 9.72 7.71 1.00 5.87 0.30 119.32 0.02 - 0.26 3.26 0.24 
14.06.2008 07:00 10.36 3.05 2.00 2.97 2.89 93.13 0.02 - 0.25 2.52 0.21 
24.06.2008 11:00 23.46 0.85 2.54 7.19 0.02 78.95 0.03 - 0.24 1.40 0.25 
04.07.2008 03:00 23.82 3.08 1.29 5.52 0.00 85.03 0.01 - 0.20 0.74 0.26 
13.07.2008 10:00 10.63 0.06 0.71 2.44 1.39 124.05 0.00 - 0.22 2.26 0.27 
19.07.2008 23:00 10.86 0.21 0.75 5.59 1.39 131.00 0.01 0.28 0.22 2.26 0.26 
22.07.2008 06:00 10.78 0.17 0.92 2.48 1.46 142.69 0.01 0.30 0.23 2.26 0.26 
08.08.2008 04:00 25.55 5.60 0.96 9.87 0.06 141.14 0.01 0.26 0.16 1.40 0.28 
14.08.2008 07:00 26.29 2.05 1.88 3.39 1.94 170.70 0.02 0.30 0.19 1.07 0.30 
06.10.2008 13:00 8.96 1.23 0.92 1.09 0.30 162.84 0.01 0.33 0.20 1.40 0.27 
16.10.2008 20:00 9.42 1.18 1.17 2.71 2.14 102.54 0.01 0.33 0.21 2.26 0.27 
22.10.2008 14:00 17.39 0.59 1.83 2.43 0.28 104.60 0.04 0.33 0.22 2.26 0.27 
28.10.2008 15:00 20.02 0.89 1.63 1.96 1.84 117.57 0.03 0.34 0.24 4.41 0.28 
30.10.2008 03:00 26.01 1.19 2.17 6.27 9.55 134.95 0.11 0.35 0.27 16.02 0.28 
28.04.2009 06:00 12.67 0.07 2.21 5.07 0.01 152.08 0.03 - 0.29 7.10 0.25 
06.05.2009 09:00 14.80 1.05 0.79 1.51 0.47 146.24 0.01 0.31 0.29 7.10 0.26 
11.05.2009 09:00 15.35 0.26 0.79 4.80 0.15 141.70 0.01 0.32 0.29 5.70 0.25 
21.06.2009 17:00 16.65 15.19 0.71 11.53 0.19 203.73 0.02 - 0.30 7.10 0.25 
17.07.2009 14:00 23.23 6.31 1.54 5.02 0.36 286.97 0.06 0.32 0.28 8.64 0.25 
02.08.2009 17:00 11.49 0.23 0.71 6.30 0.00 237.09 0.02 0.30 0.26 4.47 0.25 
10.08.2009 21:00 27.98 9.77 3.04 8.35 0.00 241.17 0.02 0.29 0.25 5.70 0.25 
17.08.2009 23:00 20.61 2.36 0.46 14.87 0.15 232.97 0.00 0.31 0.24 6.18 0.24 
29.09.2009 21:00 14.48 0.66 1.38 1.90 0.93 95.92 0.01 - 0.19 1.40 0.28 
01.10.2009 09:00 7.70 0.50 0.83 2.94 3.85 110.40 0.00 - 0.23 2.26 0.26 
05.10.2009 19:00 55.07 1.19 7.46 3.50 0.45 104.73 0.04 - 0.22 1.40 0.26 
16.10.2009 16:00 12.21 0.37 1.25 1.41 7.18 153.85 0.05 - 0.29 10.32 0.26 
02.11.2009 11:00 42.79 0.51 3.63 2.18 0.03 180.44 0.15 - 0.30 18.14 0.23 
02.05.2010 20:00 15.22 0.04 1.04 2.27 1.09 97.29 0.04 - 0.29 10.32 0.22 
06.05.2010 05:00 18.86 0.02 1.04 3.52 1.35 114.26 0.03 - 0.31 10.32 0.25 
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13.05.2010 19:00 12.89 0.04 1.67 1.10 0.19 132.55 0.02 - 0.30 9.48 0.22 
02.06.2010 14:00 26.86 0.17 1.58 4.00 2.77 152.95 0.16 - 0.32 18.14 0.25 
17.07.2010 08:00 12.94 4.91 0.63 4.32 0.28 141.64 0.01 - 0.19 1.83 0.26 
12.08.2010 17:00 22.90 22.50 1.25 16.00 0.97 157.38 0.06 - 0.30 30.24 0.29 
16.08.2010 01:00 15.40 0.50 0.58 9.80 1.88 157.03 0.05 - 0.30 27.12 0.26 
28.08.2010 05:00 48.90 0.20 4.08 3.40 4.99 156.00 0.13 - 0.29 16.02 0.26 
25.09.2010 03:00 62.60 1.20 1.83 8.40 0.00 6.80 0.08 - 0.28 6.75 0.25 
27.09.2010 03:00 56.60 0.40 2.08 3.40 0.00 4.80 0.27 - 0.33 55.79 0.21 
 
Table 4: Correlation matrix of predictors and response variable for the Becherbach (abbreviations 
cf. Table 1). 

 P P2h DP I API30
0.95 AP60 Cr WC0 C1 WC0 C2 q0 CV 

P 1.00 -0.01 0.46 0.19 -0.01 -0.03 0.36 -0.13 0.19 0.12 -0.16
P2h -0.01 1.00 -0.18 0.49 -0.19 0.11 0.07 -0.12 -0.05 -0.01 -0.15
DP 0.46 -0.18 1.00 -0.48 0.18 0.12 0.56 0.33 0.29 0.50 0.11 

I 0.19 0.49 -0.48 1.00 -0.29 0.01 -0.10 -0.47 -0.12 -0.24 -0.24
API30

0.95 -0.01 -0.19 0.18 -0.29 1.00 0.38 0.26 0.58 0.54 0.30 0.26 
AP60 -0.03 0.11 0.12 0.01 0.38 1.00 0.25 0.41 0.40 0.35 0.15 

Cr 0.36 0.07 0.56 -0.10 0.26 0.25 1.00 0.49 0.54 0.75 -0.08
WC0 C1 -0.13 -0.12 0.33 -0.47 0.58 0.41 0.49 1.00 0.38 0.74 0.33 
WC0 C2 0.19 -0.05 0.29 -0.12 0.54 0.40 0.54 0.38 1.00 0.60 -0.21

q0 0.12 -0.01 0.50 -0.24 0.30 0.35 0.75 0.74 0.60 1.00 -0.06
CV -0.16 -0.15 0.11 -0.24 0.26 0.15 -0.08 0.33 -0.21 -0.06 1.00 

 
Table 5: Correlation matrix of predictors and response variable for the Rehefeld (abbreviations 
cf. Table 1). 

 P P2h DP I API30
0.95 AP60 Cr WC0 C1 WC0 C2 q0 CV 

P 1.00 0.15 0.60 0.29 -0.18 -0.14 0.60 -0.10 0.23 0.20 -0.19 
P2h 0.15 1.00 0.03 0.31 -0.30 -0.36 -0.01 -0.22 -0.27 -0.24 -0.21 
DP 0.60 0.03 1.00 -0.25 0.05 -0.08 0.72 0.28 0.47 0.30 -0.26 

I 0.29 0.31 -0.25 1.00 -0.19 -0.04 -0.05 -0.53 -0.21 -0.15 -0.05 
API30

0.95 -0.18 -0.30 0.05 -0.19 1.00 0.39 0.28 0.46 0.35 0.37 0.27 
AP60 -0.14 -0.36 -0.08 -0.04 0.39 1.00 0.09 0.47 0.46 0.38 0.24 

Cr 0.60 -0.01 0.72 -0.05 0.28 0.09 1.00 0.30 0.67 0.67 -0.27 
WC0 C1 -0.10 -0.22 0.28 -0.53 0.46 0.47 0.30 1.00 0.34 0.45 0.28 
WC0 C2 0.23 -0.27 0.47 -0.21 0.35 0.46 0.67 0.34 1.00 0.88 -0.22 

q0 0.20 -0.24 0.30 -0.15 0.37 0.38 0.67 0.45 0.88 1.00 -0.16 
CV -0.19 -0.21 -0.26 -0.05 0.27 0.24 -0.27 0.28 -0.22 -0.16 1.00 
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Table 6: Correlation matrix of predictors and response variable for the Ammelsdorf 
(abbreviations cf. Table 1). 

 P P2h DP I API30
0.95 AP60 Cr WC0 C1 WC0 C2 q0 CV 

P 1.00 0.05 0.58 0.14 -0.11 0.06 0.63 -0.05 0.24 0.28 -0.04
P2h 0.05 1.00 -0.04 0.37 -0.29 -0.13 -0.16 -0.06 -0.42 -0.36 -0.03
DP 0.58 -0.04 1.00 -0.29 0.02 -0.02 0.63 0.26 0.16 0.12 -0.14

I 0.14 0.37 -0.29 1.00 -0.40 -0.04 -0.10 -0.65 -0.19 -0.14 -0.20
API30

0.95 -0.11 -0.29 0.02 -0.40 1.00 0.12 0.18 0.32 0.21 0.26 0.35 
AP60 0.06 -0.13 -0.02 -0.04 0.12 1.00 0.18 0.39 0.41 0.43 0.10 

Cr 0.63 -0.16 0.63 -0.10 0.18 0.18 1.00 0.30 0.63 0.62 -0.17
WC0 C1 -0.05 -0.06 0.26 -0.65 0.32 0.39 0.30 1.00 0.30 0.51 0.33 
WC0 C2 0.24 -0.42 0.16 -0.19 0.21 0.41 0.63 0.30 1.00 0.88 -0.28

q0 0.28 -0.36 0.12 -0.14 0.26 0.43 0.62 0.51 0.88 1.00 -0.16
CV -0.04 -0.03 -0.14 -0.20 0.35 0.10 -0.17 0.33 -0.28 -0.16 1.00 

 
Table 8: WaSiM ETH parameters calibrated with the Dynamically Dimensioned Search 
algorithm. 

Parameter 
Process / 
Module 

Spatial 
Scope 

Recession coefficient of saturation deficit Soil sub-basin 
Correction factor of transmissivity Soil Sub-basin 
Correction factor of hydrological conductivity Soil Sub-basin 
Recession coefficient of direct runoff Overland flow Sub-basin 

Capacity of interflow storage 
Soil and 
Interflow Sub-basin 

Recession coefficient of interflow Interflow Sub-basin 
Threshold value of activity of macroporosity Soil Sub-basin 
Decreasing factor of capillary rising into plant available 
soil storage Soil Sub-basin 
Surface/Canopy resistance factor ET Global 

Effective Leave area index factor 
Interception and 
ET Global 

Effective root depth factor ET Global 
Soil water of usable field capacity factor Infiltration Global 
Effective porosity factor Infiltration Global 

Hydraulic conductivity factor 
Infiltration and 
Soil Global 

Suction at the wetting front factor Infiltration Global 
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Figure 1: Absolute values soil moisture profiles measured with TRIME probe for the five access 
tubes. The red boxes mark the irrigation period. 
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