Skip to main content
Log in

The Effect of Monovalent Electrolytes on the Deprotonation of MAl12 Keggin Ions

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 19 August 2015

Abstract

We study the deprotonation of MAl12 Keggin ions in monovalent electrolyte solutions of varying composition and concentration by potentiometric titration. The structures exhibit very steep deprotonation, where the singly coordinated aquo groups lose protons within a narrow pH range. Once the deprotonation is substantial, the Keggin ions start to aggregate by dehydration and linkage of terminal functional groups into hydroxo-bridges. In the present study, we address three aspects with our experiments. We test the cation-specificity, the anion-specificity and the overall effect of electrolyte concentration with respect to the deprotonation behavior. Our results show that the cation series in chloride systems does not show any ion-specificity and all the curves coincide for the 100 mM solutions, whereas the anion series in sodium systems does. The most structure-making anion (bromate) used in this study causes aggregation of the Keggins prior to the onset of aggregation in the presence of border-line and structure-breaking anions (chloride, nitrate and perchlorate). For the latter, no significant difference is observed. The fluoride ion causes a completely different behavior. No significant deprotonation pH effect is observed where deprotonation occurs in the absence of fluoride. At even higher pH, massive consumption of hydroxide occurs. Some possible scenarios for the behavior of the fluoride-containing systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adekola F et al (2011) Characterization of acid–base properties of two gibbsite samples in the context of literature results. J Colloid Interface Sci 354:306–317. doi:10.1016/j.jcis.2010.10.014

    Article  Google Scholar 

  • Allouche L, Taulelle F (2003) Fluorination of the epsilon-Keggin Al-13 polycation. Chem Commun 16:2084–2085. doi:10.1039/B303585a

    Article  Google Scholar 

  • Amirbahman A, Gfeller M, Furrer G (2000) Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al13 polymer. Geochim Cosmochim Ac 64:91–919

    Article  Google Scholar 

  • Bino A, Ardon M, Lee D, Spingler B, Lippard SJ (2002) Synthesis and structure of [Fe13O4F24(OMe)(12)](5-): the first open-shelf Keggin ion. J Am Chem Soc 124:4578–4579. doi:10.1021/Ja025590a

    Article  Google Scholar 

  • Buerge-Weirich D, Hari R, Xue HB, Behra P, Sigg L (2002) Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environ Sci Technol 36:328–336. doi:10.1021/Es010892i

    Article  Google Scholar 

  • Casey WH (2006) Large aqueous aluminum hydroxide molecules. Chem Rev 106:1–16. doi:10.1021/Cr040095d

    Article  Google Scholar 

  • Casey WH, Phillips BL (2001) Kinetics of oxygen exchange between sites in the GaO4Al12(OH)24(H2O) 7+12 (aq) molecule and aqueous solution. Geochim Cosmochim Acta 65:705–714. doi:10.1016/S0016-7037(00)00611-6

    Article  Google Scholar 

  • Casey WH, Swaddle TW (2003) Why small? The use of small inorganic clusters to understand mineral surface and dissolution reactions in geochemistry. Rev Geophys 41 Artn:1008. doi:10.1029/2002rg000118

  • Casey WH, Phillips BL, Karlsson M, Nordin S, Nordin JP, Sullivan DJ, Neugebauer-Crawford S (2000) Rates and mechanisms of oxygen exchanges between sites in the AlO4Al12(OH)24(H2O) 7+12 (aq) complex and water: implications for mineral surface chemistry. Geochim Cosmochim Acta 64:2951–2964. doi:10.1016/S0016-7037(00)00395-1

    Article  Google Scholar 

  • Casey WH, Rustad JR, Banerjee D, Furrer G (2005) Large molecules as models for small particles in aqueous geochemistry research. J Nanopart Res 7:377–387. doi:10.1007/s11051-005-4718-8

    Article  Google Scholar 

  • Czap A, Neuman NI, Swaddle TW (2006) Electrochemistry and homogeneous self-exchange kinetics of the aqueous 12-tungstoaluminate(5-/6-) couple. Inorg Chem 45:9518–9530. doi:10.1021/Ic060527y

    Article  Google Scholar 

  • Dumont F, Watillon A (1971) Stability of ferric oxide hydrosols. Discuss Faraday Soc 52:352–360

    Article  Google Scholar 

  • Forde S, Hynes MJ (2002) Kinetics and mechanism of the reactions of the Al13 Keggin oligomer, [AlO4Al12(OH)24(H2O)12]7+, with a series of phenolic ligands. New J Chem 26:1029–1034

    Article  Google Scholar 

  • Franks GV, Johnson SB, Scales PJ, Boger DV, Healy TW (1999) Ion-specific strength of attractive particle networks. Langmuir 15:4411–4420. doi:10.1021/la9815345

    Article  Google Scholar 

  • Furrer G, Ludwig C, Schindler PW (1992) On the chemistry of the Keggin Al13 polymer: 1. Acid–base properties. J Colloid Interface Sci 149:56–67. doi:10.1016/0021-9797(92)90391-X

    Article  Google Scholar 

  • Furrer G, Gfeller M, Wehrli B (1999) On the chemistry of the Keggin Al13 polymer: kinetics of proton-promoted decomposition. Geochim Cosmochim Acta 63:3069–3076

    Article  Google Scholar 

  • Furrer G, Phillips BL, Ulrich KU, Pothig R, Casey WH (2002a) The origin of aluminum flocs in polluted streams. Science 297:2245–2247. doi:10.1126/science.1076505

    Article  Google Scholar 

  • Furrer G, Casey WH, Phillips BL (2002b) The continuous growth of aqueous aluminum nanoclusters. Geochim Cosmochim Acta 66:A250

    Google Scholar 

  • Hernandez J (1998) Synthèse de nanoparticules d'oxydes de fer et d'aluminium pour l'étude de l'adsorption d'entités inorganiques polycondensées. Conséquences sur la stabilité des dispersion. Ph.D. thesis, Universite Pierre et Marie Curie, Paris, France

  • Hiemstra T, Van Riemsdijk WH (2006) On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J Colloid Interface Sci 301:1–18. doi:10.1016/j.jcis.2006.05.008

    Article  Google Scholar 

  • Hiemstra T, Rietra RPJJ, Van Riemsdijk WH (2007) Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution. Croat Chem Acta 80:313–324

    Google Scholar 

  • Hill CL (1998) Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problem. Chem Rev 98:1–2

    Article  Google Scholar 

  • Jin X, Wu H, Jiang X, Zhang H (2014) Effect of fluorine substitution on structures and reactivity of Keggin-Al13 in aqueous solution: an exploration of the fluorine substitution mechanism. Phys Chem Chem Phys 16:10566–10572. doi:10.1039/c3cp55290j

    Article  Google Scholar 

  • Johnson SB, Franks GV, Scales PJ, Healy TW (1999) The binding of monovalent electrolyte ions on α-alumina. II. The shear yield stress of concentrated suspensions. Langmuir 15:2844–2853. doi:10.1021/la9808768

    Article  Google Scholar 

  • Johnson RL, Ohlin CA, Pellegrini K, Burns PC, Casey WH (2013) Dynamics of a nanometer-sized uranyl cluster in solution. Angew Chem Int Edit 52:7464–7467. doi:10.1002/anie.201301973

    Article  Google Scholar 

  • Karamalidis AK, Dzombak DA (2011) Surface complexation modeling: gibbsite. Wiley, Hoboken

    Google Scholar 

  • Keizer MG, van Riemdijk WH (1994) ECOSAT: equilibrium calculation of speciation and transport. Agricultural University of Wageningen, Wageningen

    Google Scholar 

  • Lee AP, Furrer G, Casey WH (2002) On the acid–base chemistry of the Keggin polymers: GaAl12 and GeAl12. J Colloid Interface Sci 250:269–270. doi:10.1006/jcis.2002.8296

    Article  Google Scholar 

  • Lützenkirchen J (2013) Specific ion effects at two single-crystal planes of sapphire. Langmuir 29:7726–7734. doi:10.1021/la401509y

    Article  Google Scholar 

  • Lützenkirchen J, Kupcik T, Fuss M, Walther C, Sarpola A, Sundman O (2010a) Adsorption of Al-13-Keggin clusters to sapphire c-plane single crystals: kinetic observations by streaming current measurements. Appl Surf Sci 256:5406–5411. doi:10.1016/j.apsusc.2009.12.095

    Article  Google Scholar 

  • Lützenkirchen J et al (2010b) An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv Colloid Interface 157:61–74. doi:10.1016/j.cis.2010.03.003

    Article  Google Scholar 

  • Muller B, Sigg L (1990) Interaction of trace-metals with natural particle surfaces—comparison between adsorption experiments and field-measurements. Aquat Sci 52:75–92. doi:10.1007/Bf00878242

    Article  Google Scholar 

  • Nordin JP, Sullivan DJ, Phillips BL, Casey WH (1999) Mechanisms for fluoride-promoted dissolution of bayerite [beta-Al(OH)(3)(s)] and boehmite [gamma-AlOOH]: F-19-NMR spectroscopy and aqueous surface chemistry. Geochim Cosmochim Acta 63:3513–3524. doi:10.1016/S0016-7037(99)00185-4

    Article  Google Scholar 

  • Öhman LO, Lövgren L, Hedlung T, Sjöberg S (2006) The ionic strength dependency of mineral solubility and chemical speciation in solution. In: Lützenkirchen J (ed) Surface complexation modelling. Elsevier, Amsterdam

    Google Scholar 

  • Parker DR, Kinraide TB, Zelazny LW (1989) On the phytotoxicity of polynuclear hydroxy-aluminum complexes. Soil Sci Soc Am J 53:789–796

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Inv Rep 99-4259, p 312

  • Pavlova V, Sigg L (1988) Adsorption of trace-metals on aluminum-oxide—a simulation of processes in fresh-water systems by close approximation to natural conditions. Water Res 22:1571–1575. doi:10.1016/0043-1354(88)90170-4

    Article  Google Scholar 

  • Phillips BL, Casey WH, Crawford SN (1997) Solvent exchange in AlFx(H2O)(6−x)(3−x) (aq) complexes: ligand-directed labilization of water as an analogue for ligand-induced dissolution of oxide minerals. Geochim Cosmochim Acta 61:3041–3049. doi:10.1016/S0016-7037(97)00149-X

    Article  Google Scholar 

  • Phillips BL, Casey WH, Karlsson M (2000) Bonding and reactivity at oxide mineral surfaces from model aqueous complexes. Nature 404:379–382

    Article  Google Scholar 

  • Pigga JM, Teprovich JA Jr, Flowers RA, Antonio MR, Liu T (2010) Selective monovalent cation association and exchange around keplerate polyoxometalate macroanions in dilute aqueous solutions. Langmuir 26:9449–9456

    Article  Google Scholar 

  • Rosenqvist J, Persson P, Sjoberg S (2002) Protonation and charging of nanosized gibbsite (alpha-Al(OH)(3)) particles in aqueous suspension. Langmuir 18:4598–4604. doi:10.1021/La015753t

    Article  Google Scholar 

  • Rustad JR (2005) Molecular dynamics simulation of the titration of polyoxocations in aqueous solution. Geochim Cosmochim Acta 69:4397–4441

    Article  Google Scholar 

  • Selmani A, Lützenkirchen J, Kallay N, Preocanin T (2014) Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems. J Phys Condens Matter 26:244104. doi:10.1088/0953-8984/26/24/244104

    Article  Google Scholar 

  • Sigg LM (1980) Die Wechselwirkung von Anionen und schwachen Säuren mit a-FeOOH(Goethit) in wässriger Lösung. doi:10.3929/ethz-a-000191823

  • Sigg L, Stumm W (1981) The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface. Colloid Surface 2:101–117. doi:10.1016/0166-6622(81)80001-7

    Article  Google Scholar 

  • Sprycha R (1984) Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface. J Colloid Interface Sci 102:173–185

    Article  Google Scholar 

  • Stumm W, Kummert R, Sigg L (1980) A ligand-exchange model for the adsorption of inorganic and organic-ligands at hydrous oxide interfaces. Croat Chem Acta 53:291–312

    Google Scholar 

  • Venema P, Hiemstra T, Weidler PG, van Riemsdijk WH (1998) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: application to iron (hydr)oxides. J Colloid Interf Sci 198:282–295. doi:10.1006/jcis.1997.5245

    Article  Google Scholar 

  • Waychunas G et al (2005) Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate an hematite (0001) and (10–12). Anal Bioanal Chem 383:12–27. doi:10.1007/s00216-005-3393-z

    Article  Google Scholar 

  • Waychunas G et al (2006) Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: arsenate on hematite (0001) and (10–12). Anal Bioanal Chem 386:2255. doi:10.1007/s00216-006-0922-3

    Article  Google Scholar 

  • Wehrli B, Wieland E, Furrer G (1990) Chemical mechanisms in the dissolution kinetics of minerals; the aspect of active sites. Aquat Sci 52:3–31

    Article  Google Scholar 

  • Westall JC (1982) FITEQL2.0—a program for the determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University, Corvallis, OR

  • Yamaguchi N, Hiradate S, Mizoguchi M, Miyazaki T (2004) Disappearance of aluminum tridecamer from hydroxyaluminum solution in the presence of humic acid. Soil Sci Soc Am J 68:1838–1843

    Article  Google Scholar 

  • Yu P, Lee AP, Phillips BL, Casey WH (2003) Potentiometric and F-19 nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: implications for aluminum (hydr)oxide mineral surfaces. Geochim Cosmochim Acta 67:1065–1080

    Article  Google Scholar 

Download references

Acknowledgments

WHC thank the US Department of Energy for support via Grant DE-FG02-05ER15693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lützenkirchen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lützenkirchen, J., Marsac, R., Casey, W.H. et al. The Effect of Monovalent Electrolytes on the Deprotonation of MAl12 Keggin Ions. Aquat Geochem 21, 81–97 (2015). https://doi.org/10.1007/s10498-014-9250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9250-y

Keywords

Navigation