Skip to main content
Log in

A note on the eigenvalues of \(g\)-circulants (and of \(g\)-Toeplitz, \(g\)-Hankel matrices)

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

A matrix \(A\) of size \(n\) is called \(g\)-circulant if \(A=[a_{(r-g s)\text { mod } n}]_{r,s=0}^{n-1}\), while a matrix \(A\) is called \(g\)-Toeplitz if its entries obey the rule \(A=[a_{r-g s}]_{r,s=0}^{n-1}\). In this note we study the eigenvalues of \(g\)-circulants and we provide a preliminary asymptotic analysis of the eigenvalue distribution of \(g\)-Toeplitz sequences, in the case where the numbers \(\{a_k\}\) are the Fourier coefficients of an integrable function \(f\) over the domain \((-\pi ,\pi )\): while the singular value distribution of \(g\)-Toeplitz sequences is nontrivial for \(g>1\), as proved recently, the eigenvalue distribution seems to be clustered at zero and this completely different behaviour is explained by the high nonnormal character of \(g\)-Toeplitz sequences when the size is large, \(g>1\), and \(f\) is not identically zero. On the other hand, for negative \(g\) the clustering at zero is proven for essentially bounded \(f\). Some numerical evidences are given and critically discussed, in connection with a conjecture concerning the zero eigenvalue distribution of \(g\)-Toeplitz sequences with \(g>1\) and Wiener symbol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablow, C.M., Brenner, J.L.: Roots and canonical forms for circulant matrices. Trans. AMS 107, 360–376 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  2. Al-Fhaid, A.S., Serra-Capizzano, S., Sesana, D., Zaka Ullah, M.: Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators. Numer. Linear Algebra Appl. (to appear)

  3. Aricò, A., Donatelli, M., Serra-Capizzano, S.: V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl. 26–1, 186–214 (2004)

    Article  Google Scholar 

  4. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  5. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York (1999)

    Book  MATH  Google Scholar 

  6. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conf. Ser. in Appl. Math., Vol. 61, SIAM, Philadelphia (1992)

  7. Donatelli, M., Serra-Capizzano, S., Sesana, D.: Multigrid methods for Toeplitz linear systems with different size reduction. BIT 52–2, 305–327 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fasino, D., Tilli, P.: Spectral clustering properties of block multilevel Hankel matrices. Linear Algebra Appl. 306, 155163 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hackbush, W.: Multi-grid Methods and Applications. Springer, New York (1979)

    Google Scholar 

  11. Ngondiep, E., Serra-Capizzano, S., Sesana, D.: Spectral features and asymptotic properties for \(\alpha \)-circulants and \(\alpha \)-Toeplitz sequences: theoretical results and examples. http://arxiv.org/abs/0906.2104 (2009)

  12. Ngondiep, E., Serra-Capizzano, S., Sesana, D.: Spectral features and asymptotic properties for \(g\)-circulants and \(g\)-Toeplitz sequences. SIAM J. Matrix Anal. Appl. 31–4, 1663–1687 (2010)

    Article  MathSciNet  Google Scholar 

  13. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  14. Serra-Capizzano, S.: Spectral behavior of matrix sequences and discretized boundary value problems. Linear Algebra Appl. 337, 37–78 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Serra-Capizzano, S., Bertaccini, D., Golub, G.: How to deduce a proper eigenvalue cluster from a proper singular value cluster in the non-normal case. SIAM J. Matrix Anal. Appl. 27–1, 82–86 (2005)

    Article  MathSciNet  Google Scholar 

  16. Serra-Capizzano, S., Tilli, P.: On unitarily invariant norms of matrix valued linear positive operators. J. Inequal. Appl. 7–3, 309–330 (2002)

    Article  MathSciNet  Google Scholar 

  17. Strang, G.: Wavelets and dilation equations: a brief introduction. SIAM Rev. 31–4, 614–627 (1989)

    Article  MathSciNet  Google Scholar 

  18. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  19. Wilkinson, J.H.: Algebraic Eigenvalue Problem. Oxford University Press, New York (1965)

    MATH  Google Scholar 

  20. Zygmund, A.: Trigonometric Series. Cambridge University Press, London (1959)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable suggestions that helped us to improve the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Serra-Capizzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra-Capizzano, S., Sesana, D. A note on the eigenvalues of \(g\)-circulants (and of \(g\)-Toeplitz, \(g\)-Hankel matrices). Calcolo 51, 639–659 (2014). https://doi.org/10.1007/s10092-013-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-013-0104-6

Keywords

Mathematics Subject Classification (2000)

Navigation