

Lipolytic enzymes in the gastric fluids of *Cancer pagurus* are capable of hydrolyzing bioplastics

Lukas Miksch, Reinhard Saborowski, Lars Gutow

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

Plastic in the environment

Plastic products are indispensable for daily life

Excessive use and poorly controlled discharge

Massive contamination of ecosystems

Sources, pathways and impacts of plastic in the ocean ^a

Bioplastics

Either bio-based, biodegradable or both

Bioplastic labels from different organisations c,d,e

Material coordinate system of bioplastics b

Promising alternative to conventional plastics

Enzymatic Degradation of Bioplastics

Degradation by hydrolytic enzymes

Hydrolytic cleavage of ester bonds

 \rightarrow Release of carboxylic end groups

(acidification)

pH Stat Titration

Maintaining a constant pH by adding NaOH

Hydrolysis can be measured by the added

volume of NaOH

PLA

Lactic acid

n

Titrator (TitroLine® 7000) with minichiller ^f

Extraction of gastric fluids with a PTFE-tube and syringe

Cancer pagurus

Highly active enzyme mixture in digestive fluids of decapod crustaceans

 \rightarrow Hydrolysis of bioplastics after ingestion?

chamber

 \rightarrow *In-vitro* degradability of bioplastics

with gastric fluids

Hydrolysis of (bio)-plastics

30 mg plastic particles (<200 µm) in 10 mL seawater 100µL gastric fluid

Seawater conditions

15 °C, pH 8.2 3.2% salinity

Hydrolysis rates of different plastics with gastric fluids of C. pagurus

AMF-PLA

Bioplastic blend of

- Polylactic acid (PLA)
- Polybutylene adipate-co-terephtalate (PBAT)

PBAT is hydrolyzed by Lipase (Herrera et al. 2002)

 \rightarrow Lipolytic enzymes in gastric fluids of *C. pagurus*?

Biodegradable mulch film h

Anion Exchange Chromatography

Separation of the proteins in the gastric fluids by charge

\rightarrow 65 fractions of 1 mL each

Lipolytic activity in the gastric fluid fractions?

Methylumbelliferyl (MUF)derivatives for esterase/lipase activity

Highest activities around fractions 30, 37, 41 and 45

Fractions with high lipolytic activity were pooled

→ Fraction 29-32, Fraction 36-38, Fraction

41-47

Concentration via ultrafiltration

Determining hydrolysis rates with pH Stat

→ All three pooled fraction hydrolyze AMF-PLA

Protein separation by molecular mass

Fraction 25 – Fraction 55

After separation:

 \rightarrow Soaking in fluorogenic substrate solution

 \rightarrow Protein staining with Coomassie brilliant blue

SDS-Page setupⁱ

Lipolytic activity around 45 kDA

Proteome Center Tuebingen

Tryptic digestion of protein bands High resolution mass spectrometry

 \rightarrow Sequences of peptide bonds

Quantitative Proteomics

 \rightarrow Sequencing of *C. pagurus* midgut gland

Thank you for your attention!

S.B. Borrelle, J. Ringma, K.L. Law, C.C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G.H. Leonard, M.A: Hilleary, M. Eriksen, H.P. Possingham, H. De Frond, L.R. Gerber, B. Polidoro, A. Tahir, M. Bernard, N. Mallos, M. Barnes, C.M. Rochman. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 369 (2020)1515-1518. <u>https://doi.org/10.1126/science.aba3656.</u>

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352

L. Lebreton, B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, S. Cunsolo, A. Schwarz, A. Levivier, K. Noble, P. Debeljak, H. Maral, R. Schoeneich-Argent, R. Brambini, J. Reisser. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Scientific Reports 8 (2018) 4666. <u>https://doi.org/10.1038/s41598-018-22939-w.</u>

J.A. Ivar do Sul, M.F. Costa. The present and future of microplastic pollution in the marine environment." Environmental pollution 185 (2014) 352-364. https://doi.org/10.1016/j.envpol.2013.10.036.

S. Kühn, E.L. Bravo Rebolledo, J.A. Van Franeker. Deleterious effects of litter on marine life. In: M. Bergmann, L. Gutow, M. Klages. Marine Anthropogenic Litter (2015) 75-116. https://doi.org/10.1007/978-3-319-16510-3.

A.U.B. Queiroz, F.P. Collares-Queiroz. Innovation and industrial trends in bioplastics. Polymer Reviews 49 (2009) 65-78. https://doi.org/10.1080/15583720902834759.

B. Singh, N. Sharma. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 93 (2008): 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.

Saborowski, R., Sahling, G., Del Toro, M. N., Walter, I., & Garcia-Carreno, F. L. (2004). Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 109-118.

Hehemann, J. H., Redecke, L., Murugaiyan, J., von Bergen, M., Betzel, C., & Saborowski, R. (2008). Autoproteolytic stability of a trypsin from the marine crab Cancer pagurus. Biochemical and biophysical research communications, 370(4), 566-571.

Herrera, R., Franco, L., Rodríguez-Galán, A., & Puiggalí, J. (2002). Characterization and degradation behavior of poly (butylene adipate-co-terephthalate) s. Journal of Polymer Science Part A: Polymer Chemistry, 40(23), 4141-4157. https://doi.org/10.1002/pola.10501

L. Miksch, L. Gutow, R. Saborowski. pH-Stat titration: a rapid assay for enzymatic degradability of bio-based polymers. Polymers 13 (2021) 860. https://doi.org/10.3390/polym13060860.

Image Sources

- a. https://marinedebris.noaa.gov/images/plastics-ocean-infographic
- b. https://www.spexsampleprep.com/6775freezermill-for-cryogenic-grinding
- c. https://www.european-bioplastics.org/bioplastics/standards/labels/
- d. https://apnews.com/article/lifestyle-composting-9f421243df6343a89407f423d37087cb
- e. https://bio-fed.com/certifications/
- f. www.european-bioplastics.org
- g. <u>https://lizzieharper.co.uk/2013/04/pen-and-ink-techniques-colour/stippled-edible-crab-illustration-showing-pen-and-ink-techniques-with-colour-by-lizzie-harper/</u>
- h. https://www.indiamart.com/proddetail/biodegradable-mulch-film-16343454991.html
- i. https://experiment.com/u/2WbQ0Q

Effect of SDS on lipolytic activity

