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Growth in ophiuroids is highly variable, and with increasing size and age of an
ophiuroid specimen more and more of the innermost growth rings on the vertebral
ossicles become overgrown and hence invisible. Two approaches to estimate individual
age of slow growing brittle stars using the high Antarctic species Ophionotus victoriae are
compared. One method interprets natural growth ring readings as size-increment data,
whereas the second method compensates for growth ring overgrowth by means of an
iterative corrective approach. Preconditions as well as advantages and disadvantages of
both methods are discussed.

INTRODUCTION

Ophiuroids contribute significantly to species diversity, abundance and biomass in
many benthic communities (e.g. Hyman, 1955; Fell et al., 1969; Tyler, 1980; Barnes,
1987; VoB, 1988; Gerdes et al., 1992; Dahm, 1996). Individual growth and age are key
parameters of population dynamics and are required to determine the significance of
populations in the energy flow through an ecosystem.

Benthic organisms with calcareous shells or skeletal parts (e.g. corals, bryozoans,
molluscs, echinoderms) can be aged either by mark-recapture techniques (for
echinoderms e.g. Brey et al., 1995; Ebert, 1988; Steward, 1995; Medeiros-Bergen &
Ebert, 1995; Wilding & Gage, 1995), or by interpreting natural growth bands patterns
reflecting seasonal variations in skeletal growth. Until now, only a few attempts have
been made to age ophiuroids by either technique (Gorzula, 1977; Gage, 1990a,b;
Morison, 1979; Dahm, 1993, 1996; Medeiros-Bergen & Ebert, 1995). Artificial mark—
recapture experiments have the advantage that growth can be directly related to time,
whereas studies of natural growth band always imply that these bands are formed at
regular (e.g. annual) intervals.

Growth bands of ophiuroids are produced by deposition of calcareous skeletal
material with different density and/or structure. Environmental and internal
factors such as temperature, food supply or reproduction can trigger changes in
skeletal growth (Deutler, 1926; Ebert, 1968, 1988; Pearse & Pearse, 1975; Smith,
1980; Gage & Tyler, 1985; Gage, 1987, Dahm, 1993, 1996), but differences in food
supply seem to be the most significant factor (Pearse & Pearse, 1975; Jensen,
1969b). There is evidence that the rings observed in ophiuroid ossicles are laid
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down at regular, most likely annual, intervals in time, but there is still no direct
proof for this assumption (Gorzula, 1977; Gage, 1990a,b; Morison, 1979; Dahm,
1993, 1996, Wilding & Gage, 1995).

This study assumes that in the Antarctic species Ophionotus victoriae Bell, 1902
natural growth rings are formed annually and hence focuses on the question of how
growth and age can be inferred from the number of growth rings visible on the
vertebral ossicles.

MATERIALS AND METHODS

Two approaches to estimate growth and age of ophiuroids were compared. Method
A interprets natural growth ring readings as size-increment data, whereas method B
compensates for growth ring overgrowth by means of an iterative corrective
approach. Both methods will be exemplified by the long living high Antarctic species
Ophionotus victoriae which was collected during several expeditions to the south-
eastern Weddell Sea shelf (Dahm, 1996).

Growth ring analysis

Vertebral ossicles of ophiuroid arms consist of four wing-shaped fossae and a
central articulating area (Figure 1). The ossicles are made up of a three-dimensional
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Figure 1. Ophionotus victorige: SEM photograph of a vertebral ossicle with growth bands on the
fossae (x26-4). Disc diameter of the specimen: 22.2mm. 1, articulating area; 2, upper fossa; 3, lower
fossa. Scale bars: 1 mm.
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trabecular meshwork (stereom). The faces of the fossae exhibit a fine-textured
labyrinthic stereom with a ring-like pattern in many species (e.g. Ubaghs, 1969; Smith,
1980; Bray, 1985) which is used for ageing (Gorzula, 1977; Morison, 1979; Gage,
1990a,b; Dahm, 1993, 1996). The stereom of the central articulating area is constructed
of dense, high magnesium calcite and shows no banding patterns (see also Macurda,
1976; Gage, 1990a). For further details of skeletal anatomy and stereom micro
structure see Wilkie (1978), Emson & Wilkie (1980), Smith (1980), Wilkie & Emson
(1987), Gage (1990a), Dahm (1993).

Based on a method described by Gage (1990a,b) the ossicles of 63 specimens were
prepared and analysed by scanning electron microscopy (SEM). Ring measurements
were made directly on SEM photographs. Growth rings on the ossicles were counted
and measured on the aboral (upper) right fossa. For further details see Dahm (1993,
1996).

Growth determination

In echinoderms, individual growth is often found to follow a sigmoid pattern (e.g.
Ebert & Russell, 1992, 1993; Dahm, 1993, 1996; Brey et al., 1995). Therefore the
Richards function to model individual growth was used:

S, = S (1-D x e KtoyS @)

where S, is asymptotic size, K (y!) is the growth constant, D is a shaping parameter
and tp (y) determines the inflexion point of the curve.

Method A — size-increment data (SID)

The growth ring radius data Ry of each individual are treated as size-increment
data pairs (SID), i.e. radius R, at time t and the next larger radius Ry,; at time t+1. A
rearranged form of the Richards function:

Ry = (RG(1-e°) + RP(e'Kdt))(%) @)

is fitted to the pooled data from all specimens using the SIMPLEX algorithm (see Press
et al., 1986). The parameter t; cannot be determined from SID, hence we use those
small individuals in which the first and second growth ring are visible (see below) to
estimate t; by:

D
ty = t—ln% <% <1%—> > (©)]

Method B — corrected size-at-age data (SAD)

The massive articulating area and the fossae of the vertebral ossicles grow
allometrically in diameter, i.e. with increasing size of the ossicle the articulating area
will overgrow an increasing part of the fossae, thus hiding more and more of the
innermost growth rings (Dahm, 1993). Only in very small juveniles are all growth
rings visible. Cutting and grinding of the articulating area proved to be unsuitable to
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Figure 2. Schematic drawing of upper right fossae of vertebral ossicles of three different sized
ophiuroid specimens: (A), small, 2-y old specimen, all rings visible; (B) 3-y old specimen, first ring
overgrown by the articulating area; (C) 5y old specimen, first two rings overgrown by the
articulating area. Stippled area, articulating area; V1, V2, V3, number of visible growth rings.
Correction: number of each visible growth ring is increased by one (see text).

expose the hidden growth rings because it destroyed the delicate stereom structure.
Hence, counts of visible growth rings underestimate the age of Jarger individuals
(Gage, 1990a,b; Dahm, 1993, 1996) especially in slow growing and long living species,
e.g. from the deep sea (Gage, 1990b) or from polar regions (Dahm, 1996).

Compensation for growth ring overgrowth was imposed by a refined and extended
version of Dahm’s (1993) method which has been applied previously to fast growing
species only. The growth ring data are treated by an iterative corrective procedure
according to the following protocol:

(1) on each ossicle all visible rings Vx are sequentially numbered beginning with the
innermost ring (Figure 2), and the radius Ry is determined.

(2) Assumption that in the smallest specimens (disc diameter <2mm) no growth
rings are overgrown by the articulating area and hence the innermost visible ring
corresponds to age 1y (Figure 2A). These specimens are used to determine the
maximum radius Ry max Of the first ring.

(3) All remaining ossicles are checked to determine whether the radius of the
innermost growth ring is above Ry max- If 50, the number of each growth ring is
increased by one (Figure 2B,C). If not, the number of each growth ring
corresponds to ‘true’ age (y) and no further correction is necessary (Figure 2A).
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Figure 3. Radius frequency distribution of the innermost visible rings of those specimens used to
determine Ry ax. Dark bars: small specimens with all rings visible. The trough between 0-37 and
0-39 mm is interpreted as the border between the second and third ring and hence is used as Ropax-

(4) Those ossicles where growth ring numbers have been increased are then used to
determine Ry .. A radius frequency distribution of the innermost visible rings is
checked for a trough, which should be equal to or above the largest already
known R, and which is assumed to correspond to R; .« (Figure 3).

(5) Steps (3) and (4) are iteratively repeated (Figure 2C) until no further ring number
corrections are necessary, i.e. all ring numbers correspond to ‘true’ age.

The corrected growth band readings are treated as size-at-age data (SAD). The
SIMPLEX algorithm (see Press et al., 1986) is used to fit the Richards function to the
SAD:

R, = Ry (1-D x e Xt"0)b (4)

RESULTS

Growth bands were counted in 63 specimens of Ophionotus victoriae. The
distinctness of the growth marks in the ossicles varied little and ring readings of all
specimens were included in the further analysis.

Figure 4 shows the relation between growth ring radius Ry and number of visible
growth rings Vy, i.e. prior to correction. This relation is described best by a linear
regression:

Rx=0-8934-0-195Vx(N =415 (63 specimens); 1 =0-401; P< 0-001).



946 C. DAHM AND T. BREY

3.5
Py *
E 3.0 4 o : ; z L]
s . ..
o 25 i | g
£ i ‘ ) $
g 204 g °
: ! 1
% 1.5 - ! ! H i

[ ]
" l ' s $ .
2 1.0 4
b
€ 054 i
]
0 ] 1 1 ¥ 1 1 1 1) T ¥ 1
0 2 4 6 8 10 12

Visible ring number Vy

Figure 4. Relation between ring radius Ry and the number of visible growth rings Vx. N=415 (63
specimens).

Method A — size-increment data (SID)

The best fitting Richards function had the parameter values:
Re =342 mm; D=-1.143; K=0-168 (N =351 (63 specimens); 1*= 0-955).

From the two individuals with first and second growth ring visible the computed
age at inflexion point was t;=18-86. The corresponding growth curve is shown in
Figure SA.

Method B — corrected size-at-age data (SAD)

The correction procedure consisted of 12 iteratives (see Materials and Methods,
-steps 3 and 4), i.e. in larger specimens up to 12 rings were overgrown by the
articulating area. The best fitting Richards model had the parameter values:

Roo =314 mm; D=-1-004; K=0-248; t,=11-35 (N =415 (63 specimens); r*=0-955).
Figure 5A shows this growth curve compared to the one derived from SID. The disc
diameter D is linearly related to ossicle size R (ring radius at the outer edge of the fossa)

therefore R,,=3-13mm corresponds to D,=322mm (Figure 5B). Based on this
technique, the oldest specimen examined was 22-y old with a disc diameter of 32:5 mm.

DISCUSSION
Preconditions

The applicability of both methods depends on several preconditions. As mentioned
before, the basic question is whether changes in the stereom microstructure represent
annual variability of growth or not. Compared to molluscs, there are relatively few
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Figure 5. Richards growth curves fitted to size-increment data (SID) and to corrected size-at-age
data (SAD). (A) Curves based on SID (stippled line) and SAD (solid line). (B) Curve based on SAD
superimposed on SAD (dots). SID: N=351 (63 specimens); Rn=3-42mm; D=-1.143; K=0-168;
?=0-955. ty=18-86 computed from the two individuals with first and second growth ring visible.
SAD: N=415 (63 specimens); Ry.=3-14mm; D=-1.004; K=0-248; t;=11.35; 12==0-955.

studies dealing with growth bands in echinoderms (e.g. Deutler, 1926; Jensen, 1969a,b;
Heatfield, 1971; Miller & Mann, 1973; Pearse & Pearse, 1975; Smith, 1980; Gage &
Tyler, 1985; Ebert, 1988; Dahm, 1993, 1996; Brey et al., 1995; Wilding & Gage, 1995).
For echinoids an annual rhythm of growth band formation could be demonstrated by
controlled experiments in aquaria (Miller & Mann, 1973) and by labelling experiments
(Gage, 1992; Brey et al., 1995). For ophiuroids there is no proof available but several
investigations suggest annual patterns in stereom growth to be due to seasonal
environmental differences (Gage, 1990a,b; Dahm, 1993, 1996; Wilding & Gage, 1995).
Hence, it was assumed that growth rings formed annually in the high Antarctic
species Ophionotus victorige as found in the echinoid Sterechinus neumayeri from
McMurdo Sound, Antarctica (Brey et al., 1995).

In order to infer age from SID (method A), at least one reliable estimate of size-at-
age is required, which is, in the case of the Richards model, used to compute t;. The
large difference between t, derived from the small individuals (18-86y) and ft,
computed from SAD (11:35 y) leads to very different growth curves (Figure 5A)
and hence age estimates. We believe the latter value of tyto be more reliable, because it
is based on more data.

With regard to the corrective approach (method B), the starting point, i.e. the radius
of the first (better the first and second) ring has to be known for a proper correction
procedure. Therefore a sufficient number of juvenile specimens has to be available,
which may be not the case here (N=2), because a trawl with 10-mm mesh size was
used for sampling.
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Subjective interpretation of data

All ring readings on ophiuroid ossicles such as described by Gage (1990a,b) and
Dahm (1993, 1996) suffer to a certain extent from subjective interpretation of ring
patterns. Subjectivity could be reduced either by repeated analysis carried out by
several independent investigators or by computerized analysis of digitized fossae
pictures, similar to techniques applied to fish otolith reading (e.g. Troadec, 1991).

The iterative correction for overgrowth (method B) includes one more subjective
step. In each iterative cycle, the maximum radius R, max (see Materials and Methods,
step 4, Figure 3) is determined by the investigator. This is clearly the weak point of
this approach, depending heavily on the number of specimens involved and the
variability in ring diameter. A statistical analysis of the radius-frequency distribution
would be a more objective procedure, but would require much more data (e.g.
MacDonald & Pitcher, 1979).

Individual variability of growth

Potentially high individual variability of growth, either genetically or envir-
onmentally induced, may be a common feature of echinoderm populations (Miller
& Mann, 1973; Gage, 1992; Ebert, 1988). This variability potentially affects the
accuracy of any statistical analysis of growth data pooled from several species. Our
experience with growth curve fitting, however, suggests that individual variability
may introduce serious statistical artefacts in growth parameter estimates based on
SID (method A). This topic has not yet been addressed systematically, but Figure 6
presents one example based on artificial data. The fit of the Richards model to
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Figure 6. Parameters of Richards growth function fitted to artificial data with increasing individual
growth parameter variability. Basic growth parameter values: S,=100; D=-0-50; K=0-25; t4=10-00.
Variability function: basic parameter value #x% of parameter value, where x = random number
from interval [-X, +X]. For each value of X ten individual parameter sets were randomly selected and
the corresponding size-at-age (0-24 y) determined. Richards functions were fitted to the data
arranged as SAD and SID, respectively. The graphs show the deviation of the parameter estimates
from the basic values. Circles, curve fit to SID; dots, curve fit to SAD.
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identical SAD and SID with an increasing level of growth variability among the
individuals forming the population was compared. It is obvious from Figure 6 that
increasing variability in growth leads to overestimation of the parameters Sy, and
D, and to underestimation of the parameter K when SID are used, whereas the
picture is less obvious with respect to SAD. Hence the higher value of S, and the
lower value of K derived with SID for O. wvictorize (Figure 5) may be due to
methodical bias.

The corrective procedure of method B will be affected by individual variability
insofar as the maximum radius Ry, max (see Materials and Methods, step 4) is used to
determine the upper limit of the radius of a certain growth ring. Hence, the resulting
age estimates are biased towards the fast growing specimens. However, the
alternative but more complicated application of a mean radius did not change our
results distinctly.

Figure 5 indicates not only high individual variability of growth in Ophionotus
victoriae, but also the possible existence of a subset of the population with slower
growth between 5 and 15 years of age. We have no explanation for this phenomenon,
but diseases or parasitism could be potential reasons for distinctly below-average
growth in echinoderms (Jangoux, 1987a,b).

Comparison of methods

As discussed above, both approaches have some shortcomings. Estimating growth
parameters from size-increment data (method A), however, has two major
disadvantages: (i) the relation of the growth curve to the time axis is unknown as
long as there is no reliable estimate of tg available. (ii) Depending on individual
variability of growth, the growth parameter estimates may be biased seriously. The
corrective approach to size-at-age data (method B) (i) requires more effort in data
treatment and (ii) includes one more subjective step of analysis. Nevertheless, method
B is thought to be the more reliable way to estimate age and growth of slow growing
ophiuroid species, especially when the natural growth rings have been proven to be
formed annually by mark-recapture experiments. The corrective approach may used
as a stand-alone method or in combination with advanced statistical procedures of
size-frequency analysis such as described by Gage (1995).

C.D. was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG). This is Alfred
Wegener Institute Publication no. 1246.
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