
1.  Introduction
Warm periods in the Pliocene (5.3–2.6 Ma) are considered as analogs to present and near-future climate 
conditions with atmospheric carbon dioxide concentrations of 350–450  ppm, global mean temperatures 
2–3°C higher compared to pre-industrial levels, and a global mean sea level 10–30 m higher than present 
(e.g., Dutton et al., 2015; Gasson et al., 2016; Pagani et al., 2010; Westerhold et al., 2020). The behavior of 
Antarctic ice sheets during such warm phases is important, as the ice sheets modulate the intensity of 
global sea level changes. Ice sheet models indicate a partial to complete loss of marine-based sectors of both 
West and East Antarctic ice sheets during warm Plio- and Pleistocene super interglacials, when incursions 
of warm deep water into sub-ice shelf cavities near grounding zones caused melting of the buttressing ice 
shelves (de Boer et al., 2015; Golledge et al., 2017; Pollard & DeConto, 2020). The Amundsen Sea Embay-
ment (ASE) in West Antarctica (Figure 1) is a key region for monitoring ice-sheet stability, since ice on this 
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Holocene sediments from a sediment drift on the continental rise, allowing assessment of sedimentation 
processes in response to climate cycles and trends since the late Miocene. Via seismic correlation to the 
shelf, we interpret massive prograding sequences that extended the outer shelf by 80 km during the 
Pliocene through frequent advances of grounded ice. Buried grounding zone wedges indicate prolonged 
periods of ice-sheet retreat, or even collapse, during an extended mid-Pliocene warm period from ∼4.2–
3.2 Ma inferred from Expedition 379 records. These results indicate that the WAIS was highly dynamic 
during the Pliocene and major retreat events may have occurred along the Amundsen Sea margin.

Plain Language Summary  Collapses of the West Antarctic Ice Sheet (WAIS) during past 
warm times are suggested to begin in the Amundsen Sea sector. During a drilling expedition of the 
International Ocean Discovery Program (IODP), deep-sea sediments were retrieved from the Amundsen 
Sea. These sediment cores contain records of colder and warmer periods in the Pliocene (5.3–2.6 million 
years ago) which relate to the behavior of the WAIS. By analyzing seismic images that allow correlation 
of sediment layers from the drill sites to the continental shelf, we show that the shelf grew oceanward 
by 80 km due to the erosion of sediments below the WAIS and their deposition at the shelf break as the 
result of frequent Pliocene advances of grounded ice across the shelf. The shelf sediment layers contain 
grounding zone wedges predominantly formed during ice sheet retreat. The preservation of these 
grounding zone wedges testifies that they were not eroded by subsequent ice advances, with their burial 
requiring periods of prolonged WAIS retreat during warm intervals. This interpretation is consistent with 
our IODP drill core observations of a prominent decrease in terrigenous sedimentation between 4.2 and 
3.2 million years ago, which indicates a highly dynamic WAIS during the Pliocene.
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margin is currently being lost at an accelerated pace, leading to rapid retreat of Pine Island, Thwaites, and 
neighboring glaciers (e.g., Rignot et al., 2019; Scambos et al., 2017; Smith et al., 2020). The Amundsen Sea 
sector is hypothesized as a precursor for major West Antarctic Ice Sheet (WAIS) retreat or even collapse 
during most intense warm periods of the Plio-Pleistocene over the past 5 Myr (DeConto & Pollard, 2016).

In order to address past ice-sheet dynamic processes in the Amundsen Sea sector, we analyzed seismic 
lines across the ASE shelf with direct connection to the two drill sites of the International Ocean Discovery 
Program (IODP) Expedition 379 (Gohl et al., 2021) on the continental rise (Figure 1). The ASE shelf is char-
acterized by large cross-shelf paleo-ice stream troughs, such as Pine Island Trough (PIT) with its outer shelf 
western (PITW) and eastern (PITE) branches, Dotson-Getz Trough (DGT), and Abbot-Cosgrove Trough 
(ACT). The outer shelf shows sequences of prograding deposits, which have been identified at several loca-
tions around Antarctica and are characteristic for polar continental shelves (e.g., Anderson & Bartek, 1992; 
Bart & De Santis, 2012; Dowdeswell et al., 2006; Hochmuth & Gohl, 2019; Nitsche et al., 2000). Antarctic ice 
sheet advances across the shelves during glacial times added substantial volumes of glacially eroded sedi-
ments to the outer shelf, thereby expanding the continental shelf on average by about 7% since the onset of 
major glaciations (Hochmuth & Gohl, 2019). The amount of glacially induced shelf growth, however, varies 
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Figure 1.  Amundsen Sea sector with International Ocean Discovery Program (IODP) Expedition 379 drill sites on Resolution Drift (red dots) and seismic lines 
(black lines). Seismic lines used in this study are in orange and yellow. Thwaites (TG) and Pine Island glaciers (PIG) formed Pine Island Trough (PIT) which 
divides into Pine Island Trough West (PITW) and Pine Island Trough East (PITE) on the outer shelf. Other glacial troughs are Dotson-Getz Trough (DGT) and 
Abbot-Cosgrove Trough (ACT). White dot marks DSDP Leg 35 Site 324. Bathymetry is from Arndt et al. (2013). Present ice divides (black lines) and flow pattern 
(blue arrows) are simplified from Rignot et al. (2011). Abbreviations denote West Antarctica (WA), East Antarctica (EA), Amundsen Sea Embayment (ASE), 
Antarctic Peninsula (AP), Weddell Sea (WS), Ross Sea (RS), Prydz Bay (PB), and Transantarctic Mountains (TAM).
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strongly along the Antarctic continental margins as it relates to the location of major outlet glacier sectors 
and is affected by the regional tectonic architecture (Hochmuth & Gohl, 2019). Outer shelf progradation 
caused a ∼25% shelf growth in the ASE (Gohl et al., 2013; Hochmuth & Gohl, 2019).

IODP Expedition 379 drill sites U1532 and U1533 are located on an elongated sediment drift, informally 
named “Resolution Drift,” stretching ∼300  km northward from the base of the continental slope to the 
abyssal plain (Figure 1 and S1). This drift and neighboring parallel drifts are flanked by deep-sea channels 
(Figure S2) that, predominantly during glacial periods, acted as pathways for detritus transported from the 
shelf down to the slope and then further across the continental rise toward the deep sea. On the continental 
rise, particles still in suspension were captured by eastward flowing bottom currents before they accumu-
lated on the eastern channel flanks to form the drifts (Dowdeswell et al., 2006; Nitsche et al., 2000). Such 
sediment drifts are frequently observed along the Pacific margin of Antarctica (e.g., Rebesco et al., 2002; 
Uenzelmann-Neben & Gohl, 2012, 2014). In this type of depositional system, the highest supply of detritus 
occurred during glacial periods, when the grounded WAIS bulldozed large volumes of glacigenic debris to 
the outer shelf, from where it was redeposited down to the rise. In contrast, interglacial periods of ice-sheet 
retreat have a reduced time-integrated flux of downslope transported terrigenous material, which then al-
lows enrichment of biogenic components in the drift sediments. The sediments at sites U1532 and U1533 
contain unique records to study the cyclicity of WAIS advance and retreat. In particular, Site U1532 contains 
a sequence of Pliocene sediments with an almost complete paleomagnetic record for constraining very high 
resolution, suborbital scale climate variability, thus providing an opportunity to better develop climate re-
cords for the sparsely sampled pre-Pleistocene interval in the Amundsen Sea (Gohl et al., 2021).

2.  Drill Site Description and Seismic Data
Prior to investigation with scientific drilling, previous models of the stratigraphic architecture and ages 
of shelf and rise sedimentary sequences in the Amundsen Sea (Gohl et al., 2013; Uenzelmann-Neben & 
Gohl, 2012, 2014) were based only on long distance or jump correlation of regional seismic reflection pro-
files to the seismic stratigraphy of the Ross Sea tied to Deep Sea Drilling Project (DSDP) Leg 28 sites (e.g., 
De Santis et al., 1999) as well as to DSDP Leg 35 and Ocean Drilling Program (ODP) Leg 178 sites west of 
the Antarctic Peninsula (Barker et al., 2002; Tucholke et al., 1976). Recently, shelf sediments in the ASE 
were drilled with the MARUM-MeBo70 sea-bed drilling device in 2017, recovering sedimentary rocks of 
Cretaceous to Oligocene-Miocene age (Gohl et al., 2017; Klages et al., 2020). The almost continuous se-
quences at IODP Expedition 379 Sites U1532 and U1533 on the continental rise (Gohl et al., 2021; Wellner 
et al., 2021a, 2021b) span the latest Miocene to Holocene with high core recovery rates of 90% and 70%, 
respectively (Figure 1). Site U1532 is located near the crest of Resolution Drift (Figure S1) and penetrated 
down to 794 m depth below the seafloor, exhibiting sedimentation rates of up to 61 cm kyr−1 within the 
Pliocene. Site U1533 penetrated 383  m into the lowermost western flank of this drift, in proximity to a 
deep-sea channel (Figures S1 and S2), and shows a more condensed sequence with sedimentation rates 
up to 22 cm kyr−1 in the early Pliocene. Preliminary investigations suggest that sediments at both sites are 
predominantly terrigenous, but are intercalated by pelagic or hemipelagic deposits that, in some cases, 
contain microfossils. Chronological control was achieved by both high-resolution magnetostratigraphy and 
biostratigraphy (Wellner et al., 2021a, 2021b).

Site U1532 is located at the northwestern end of seismic profile AWI-20100130, while Site U1533 is situated 
on profile TH86003B (Figures 2a and 2b; Figures S1 and S2). We performed correlation of horizons and unit 
characteristics between the seismic records of the drill sites and the continental shelf through a series of 
multichannel seismic profiles (Figure 1) (TH86 lines; Scheuer et al., 2006; Yamaguchi et al., 1988; AWI lines: 
Gohl et al., 2013; Uenzelmann-Neben & Gohl, 2012, 2014). Data acquisition and processing methods for 
the AWI lines are described in Gohl et al. (2013) and Uenzelmann-Neben and Gohl (2012, 2014). The sin-
gle-channel seismic line NBP9902-11 on the shelf (Figure S3) displays high-quality data from the seafloor 
to its first multiple (Lowe & Anderson, 2002). Correlation of major reflectors from the drill sites across the 
continental rise to the lower slope was relatively straightforward, whereas correlation across the middle and 
upper slope was more challenging due to the thinning nature of seismic units with increasing slope angle 
and the presence of slumps and seafloor multiples (Figure S4). Careful reprocessing of line AWI-20100132, 
however, solved those issues, so that we were able to correlate within an uncertainty of 2–3 reflection wave-
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lets up or down resulting in a two-way travel-time uncertainty of ±100 ms. A further challenge was the 
extremely strong seafloor multiples in the seismic records from the outer shelf at water depths ≤550 m, 
in particular those of line AWI-20100132 (Figures 2b and 2c). Here, numerous iceberg scours carved into 
overcompacted seabed sediments (Graham et al., 2010; Lowe & Anderson, 2002). They generated high-am-
plitude diffractions, which remained present in the multiples despite the long 3000-m streamer, and thus, 
in conjunction with the relatively small airgun source, prevented a complete suppression of these multiples 
that are superposed on the lower part of the progradational reflector sequences, despite applying frequen-
cy-wavenumber (f-k) and Radon transform filtering.

3.  Shelf-to-Rise Sedimentation
The seismic transect for this study is located in the eastern ASE, along the main path of grounded ice 
advancing from the present termini of Pine Island and Thwaites glaciers toward the outer shelf (Fig. 1; 
Fig. 2b). The top-of-Pliocene and top-of-Miocene seismic horizons, as identified from drill sites U1532 and 
U1533 on Resolution Drift (Figures 2a and S1), can be traced across the continental rise, parallel to the 
elongated drift, and onto the slope and shelf (Figure 2b).

In our re-evaluation of the previous seismic stratigraphic model of the ASE shelf (Gohl et al., 2013), the vast 
amount of sediment volume deposited within a ∼80-km wide zone of prograding foresets was supplied by 
WAIS advances during the Pliocene (Figures 2b and 2c). Most of the sequences stratigraphically lying below 
the Plio-Pleistocene units and presumably being of Miocene age were aggradationally deposited, indicat-
ing that grounded ice rarely reach the shelf break, while Pleistocene contribution to progradational shelf 
growth was relatively small compared to that of the Pliocene (cf. Dowdeswell et al., 2006). It should be noted 
that magnitude of shelf growth varies in the Amundsen Sea (Gohl et al., 2013; Hochmuth & Gohl, 2013; 
Nitsche et al., 1997), suggesting that tectonic architecture beneath the outer shelf played a significant role 
for shelf growth (Hochmuth & Gohl, 2019). Seismic lines AWI-20100132 (Figure 2c) and NBP9902-11 (Fig-
ure S3) cross the outer shelf just west of the main PITE (Figure 1). Unlike the other glacial troughs (DGT, 
PITW, ACT), the outer PITE shows a subtle modern and paleo-bathymetric difference (<100  m) over a 
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Figure 2.  (a) Crossing seismic lines in area of International Ocean Discovery Program (IODP) Expedition 379 Sites U1532 and U1533 near the crest and at 
the lowermost flank of Resolution Drift, respectively. (b) Seismic transect from Site U1532 on the rise to the outer shelf with interpreted zones of stratigraphic 
ages and the basement. Shelf unconformities ASS-u2 to ASS-u5 are modified from Gohl et al. (2013). Lines AWI-20100130 and AWI-20100131 in (a) and AWI-
20100130 in (b) are rotated for pseudo-3D impression. (c) Section across prograding sequences of outer continental shelf. Circles mark identified shelf breaks 
in the Pliocene and Pleistocene. bGZW annotates buried grounding zone wedges. Enlarged seismic image shows middle to late Pliocene zone with bGZWs. 
Vertical black bars mark thicknesses converted from time. TWT is two-way travel-time.



Geophysical Research Letters

broad outer shelf area (Graham et al., 2010), which indicates that the ice stream widened on the outer shelf 
(Wellner et al., 2001).

The Pliocene and Pleistocene prograding wedge (Figures  2c and  S3) contains distinct paleo-shelf break 
features from seismic interpretation, indicating a minimum of 14 glacial advances across the outer shelf 
throughout this period. As grounded ice repeatedly eroded some of the shelf sediments and their depo-
sitional shelf-break signature, this is a minimum estimate (cf. Bart et al., 2007), and the realistic number 
of outer shelf growth events is likely higher. Notably, in the seismic record of the outer shelf, a number of 
buried grounding zone wedges (bGZWs) is observed at or near the upward doming part of the sequences 
(Figure 2c). Tracing the bottom and top reflections of the bGZW zone onto the middle shelf south of the 
oldest onset of progradation, where the aggradational Pliocene layer reaches its full thickness, places this 
zone approximately into the middle to late Pliocene range. Grounding zone wedges (GZWs) are glacimor-
phological depositional features interpreted to result from local accumulation of sediment during a tempo-
rary halt in grounding-line retreat of an ice stream (e.g., Batchelor & Dowdeswell, 2015; Klages et al., 2015). 
Such GZWs are frequently observed on the modern seafloor of polar continental shelves and mark the max-
imum advance of grounded ice during the last glacial period or phases of grounding-line stillstands during 
subsequent ice retreat usually within cross-shelf troughs formed by fast-flowing ice streams (e.g., Bart & 
Cone, 2012; Bart et al., 2017; O'Brien et al., 1999). A number of GZWs have been identified on the mid-
dle and outer shelf along the PITE, indicating retreat stillstands since the last glacial maximum (Graham 
et al., 2016; Jakobsson et al., 2012). The preservation of the Pliocene bGZWs on the ASE shelf indicates that 
their formations were followed by periods of hemi-pelagic deposition in a presumably glacimarine environ-
ment without erosive glacial advances (Figure 3). The observed bGZW-2, -3 and -4 are 3–4 km in along-flow 
direction with crests 40–50 m high (based on a seismic interval velocity of 2,100 m/s derived from stacking 
velocities) and have the typical asymmetric wedge shape with a steep seaward flank downstream of the 
paleo-ice flow direction (Figure 2c). The lowermost imaged wedge (bGZW-1) shows an atypical, slightly 
steeper upstream flank. However, it is possible that this feature (a) is imaged obliquely by the corresponding 
seismic line, or (b) represents a paleo-shelf break bGZW, or (c) a lateral shear moraine (Batchelor & Dowd-
eswell, 2015; Dowdeswell & Fugelli, 2012).

Undisturbed sequences between the bGZWs can be used to estimate time periods without ice grounding 
events occurring in this area. Such an undisturbed sedimentary layer is observed between bGZW-2/-3 and 
bGZW-4 with a thickness of 50–70 m (Figure 2c), which is substantially thicker than the ∼20-m vertical 
resolution limit of the seismic record. As drill core records from the outer ASE shelf do not exist to enable 
precise determination of age and duration of this sedimentary unit, we estimate an average sedimentation 
rate of 22 cm kyr−1 from the total Pliocene (2.75-myr timespan) layer thickness of 600 m south of the onset 
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Figure 3.  Conceptual model illustrating outer shelf sequences with buried grounding zone wedges (bGZW) that are 
preserved due to prolonged intervals of sedimentation unaffected by grounded ice advances. GL: grounding line; MSGL: 
mega-scale glacial lineation.
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of shelf progradation (Figure 2c). This is a minimum rate for the entire Pliocene, because sequences eroded 
by grounded ice cannot be accounted for. The Pliocene sedimentation rate is higher than at other Antarctic 
outer shelf drill sites, for example, 8.6 cm kyr−1 for the early Pliocene (5.12–4.25 Ma) on the western Ant-
arctic Peninsula (Bart & Iwai, 2012) and a minimum rate of 5.4 cm kyr−1 for the mid to late Pliocene in the 
Ross Sea (McKay et al., 2019). Our estimated sedimentation rate for the outer ASE shelf suggests that depo-
sition of the 50–70 m thick undisturbed layer between bGZW-2/-3 and bGZW-4 took about 227–318 kyr, an 
interval corresponding to 5–7 obliquity cycles in Earth's orbit. Ross Sea drill records indicate that during the 
Miocene and early Pliocene obliquity acted as the dominant orbital forcing of glacial/interglacial changes 
archived in sedimentary facies (Naish et al., 2009).

For comparing our seismic observations from the ASE outer shelf with IODP Expedition 379 drill records 
on the rise, we consider sedimentation rates and variations in the distribution of biogenic material in the 
drift sediments. We take into account that drift sedimentation is significantly controlled by ocean-bottom 
currents and not only by direct sediment supply from the nearby shelf and surface waters. Both drill sites 
(Figure 1) predominantly contain thinly laminated silty clay of variable biogenic content, with the occasion-
al presence of dispersed sands and gravel. For this study, we consider only the Site U1532 record because of 
its higher linear sedimentation rate and higher temporal resolution.

Most Site U1532 cores contain lithological facies dominated by terrigenous detritus, suggesting deposition 
mainly during phases of colder climate, when plankton productivity was suppressed due to (nearly) perma-
nent sea-ice cover (Hepp et al., 2006). Results show that terrigenous sedimentation dominated from the late 
Miocene to about 5.0 Ma in the early Pliocene. From 5.0 to 4.2 Ma, some sequences comprise a low to com-
mon diatom presence, potentially associated with more favorable climate conditions. With the exception of 
one interval, sedimentation rates were relatively high in the early Pliocene with a maximum of 61 cm kyr−1 
between 4.63 and 4.49 Ma. Some sediment intervals contain higher amounts of biosiliceous material, in-
dicating a more pelagic and hemipelagic sedimentation, likely associated with phases of lower supply of 
glacigenic debris from the shelf. These sediments often contain pebbles indicating increased concentration 
of iceberg-rafted debris (IRD). The drill depth interval from 90 to 240 m spans the stratigraphic age range 
from 4.2 to 3.2 Ma and exhibits a relatively high abundance of diatoms (Figure 4). The interval from 4.2 to 
3.2 Ma with the highest diatom abundance correlates with decreasing sedimentation rates to 18 cm kyr−1, 
continuing to decrease throughout the late Pliocene and Pleistocene.

4.  Discussion and Conclusions
Our integrated analysis of seismic stratigraphy, age constraints and general sedimentation characteristics 
from the Expedition 379 records links processes of major glacial progradation of the ASE shelf during 
the Pliocene to sediment deposition on a large drift on the continental rise about 280 km offshore from 
the shelf break. Bathymetric data show that the deep-sea channels starting at the slope base run seaward 
parallel to the elongated drift (Figure S2), suggesting that glacigenic detritus originating from the shelf pro-
vided most of the terrigenous drift sediments via gravity-driven transport running through the channels, 
with bottom-current capture and subsequent deposition of their suspended load on the drift. Although 
drift sediments can contain far-traveled components delivered by bottom currents (e.g., Hillenbrand & Ehr-
mann, 2002), initial shipboard analyses of the clay mineral provenance of the drift sediments showed that 
the assemblages at Sites U1532 and U1533 are characterized by the occurrence of the clay mineral kaolinite 
(Wellner et al., 2021a), indicating a predominant source on the ASE shelf (e.g., Ehrmann et al., 2011). While 
this rather rules out significant bottom-current delivery of far-traveled detritus, a clear separation of drift 
sediments into proximal components directly supplied from the nearby shelf and distal components sup-
plied from the wider ASE shelf cannot be made at this stage.

The prograded wedge with lateral shelf growth of up to 80 km (Figures 2c, S3 and S4) formed in the early 
Pliocene (before ∼4.2 Ma) and, to a smaller extent, in the late Pliocene (after ∼3.2 Ma) and Pleistocene. We 
identified a minimum of eight early Pliocene, three late Pliocene and three Pleistocene ice-sheet advanc-
es associated with the seaward migration of the shelf-break (Figure 2c). The actual number of ice-sheet 
advances to the outer shelf is probably higher as not all may have reached the shelf edge (e.g., Klages 
et al., 2017), and some shelf-break formations were possibly eroded by a later grounded ice advance. Our 
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observations are consistent with the hypothesis by Bart  (2001) on major expansion of the Antarctic ice 
sheets in the early Pliocene. The high sedimentation rates on Resolution Drift during the early Pliocene 
documented by the Expedition 379 records are presumably related to major shelf progradation during this 
period, which resulted in high sediment supply to the rise.
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Figure 4.  Lithology units, pebble abundance (visually counted number of clasts >4 mm per 10 cm core interval), relative diatom abundance, stratigraphic 
ages and sedimentation rates from shipboard analysis of drill cores from International Ocean Discovery Program (IODP) Expedition 379 Site U1532 (Gohl 
et al., 2021; Wellner et al., 2021a). Diatom abundance in smear slides is categorized as barren (B; 0%), trace (T; <2%), rare (R; 2%–5%), few (F; 5%–10%), common 
(C; 10%–20%), abundant (A; 20%–40%), and very abundant (V; 40%–60%). Gray shading of drill cores indicates core recovery. CSF-A is Core Depth Below Sea 
Floor-A.
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Several bGZWs are observed in the Pliocene sequences of the outer shelf (Figure 2c). Such glacimorpho-
logical features are only preserved when grounded ice does not override and erode them soon after their 
formation. The preservation of the bGZWs together with the thick sediment layer deposited during the time 
interval between formation of bGZW-2/-3 and bGZW-4 suggest deposition of this layer during a prolonged 
period, when the WAIS was receded and did not advance beyond the middle shelf. We infer from these data 
that no major WAIS advance occurred over many orbital cycles (∼5–7 obliquity cycles) in the mid-Pliocene. 
This interval may have been dominated by interglacial deposition of meltwater plumites and IRD in a pos-
sibly temperate glacimarine setting, where subglacial bedforms can be quickly buried (e.g., Dowdeswell & 
Vasquez, 2013; Dowdeswell et al., 1998). Alternatively, biogenic-rich material, as recorded in the early to 
mid-Pliocene diatomites in the AND-1B core from the Ross Sea and in ODP Leg 178 cores of Sites 1095 and 
1096 from the western Antarctic Peninsula, indicating warm climatic conditions and high sedimentation 
rates (Escutia et al., 2009; McKay et al., 2012), may have dominated sedimentation on the ASE shelf. Both 
scenarios are consistent with the higher abundances of diatoms and IRD in the mid-Pliocene section of Site 
U1532, especially from 4.2 to 3.2 Ma (Figure 4). This interval may have been an extended period of WAIS 
retreat with high sedimentation rates on the shelf, causing rapid burial of subglacial bedforms. Reduced 
downslope transport resulted in the accumulation of hemipelagic, microfossil and IRD-enriched deposits 
on Resolution Drift under sedimentation rates lower than before 4.2 Ma (Figure 4). Our hypothesis of a 
long-term WAIS retreat is based on the observation of the bGZW zone, but the determination of the exact 
time span of this interval can only be tested by future drilling into these shelf sequences.

Our study results for the Amundsen Sea are consistent with the global climate record of generally elevated 
global temperatures for the mid to late Pliocene (Lisiecki & Raymo, 2005; Westerhold et al., 2020) (Fig-
ure S5). The extended warm period inferred from our study falls into a period of Pliocene sea-level high-
stands from 4.39 to 3.27 Ma (e.g., Dumitru et al., 2019), but occurred earlier than the so-called mid-Pliocene 
or mid-Piacenzian Warm Period (e.g., Dowsett et al., 2016; Raymo et al., 2018). Our results also compare to 
an extended period of open-water deposition on the Ross Sea shelf (McKay et al., 2012; Naish et al., 2009). 
At least when considering processes on broad scales of several orbital cycles, the Amundsen and Ross Sea 
sectors of the WAIS appear to have behaved in phase. The enormous shelf growth in the ASE, interrupted 
by long periods of glacial retreat, indicates that this drainage sector of the WAIS was highly dynamic in the 
Pliocene, likely acting as precursor to phases of partial or complete WAIS collapse since the establishment 
of a continent-wide ice sheet.

Appendix A
IODP Expedition 379 Scientists: A. Klaus (IODP Texas A&M Univ., USA), D. Kulhanek (IODP Texas A&M 
Univ., USA), T. Bauersachs (Univ. Kiel, Germany), M. Courtillat (Univ. Perpignan, France), E. Cowan (Ap-
palachian State Univ., USA), M. De Lira Mota (Unisinos Univ., Brazil), M. Esteves (Univ. Tromsø, Norway), 
J. Fegyveresi (Northern Arizona Univ., USA), L. Gao (China Univ. Geosciences, China), A. Halberstadt 
(Univ. Massachusetts-Amherst, USA), K. Horikawa (Toyama Univ., Japan), M. Iwai (Kochi Univ., Japan), 
J. Kim (Korea Inst. Geoscience and Minerals, Rep. Korea), T. King (Univ. South Florida, USA), M. Penkrot 
(Texas A&M Univ., USA), J. Prebble (GNS Science, New Zealand), W. Rahaman (National Center for Polar 
and Ocean Res., India), B. Reinardy (Univ. Stockholm, Sweden), J. Renaudie (Museum f. Naturkunde Ber-
lin, Germany), D. Robinson (Univ. Houston, USA), R. Scherer (Northern Illinois Univ., USA), C. Siddoway 
(Colorado College, USA), L. Wu (Tonji Univ., China), M. Yamane (Nagoya Univ., Japan).

Data Availability Statement
Drill core data from IODP Expedition 379 are available from http://web.iodp.tamu.edu/LORE/. Seismic 
data files of profile TH86003B are available from https://sdls.ogs.trieste.it, and those of profiles AWI-
20100130, -0131, -0132 and -0134 are available from https://doi.pangaea.de/10.1594/PANGAEA.931266, 
https://doi.pangaea.de/10.1594/PANGAEA.931265, https://doi.pangaea.de/10.1594/PANGAEA.931268, 
and https://doi.pangaea.de/10.1594/PANGAEA.931263.
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