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a b s t r a c t 

We study the economic management of a renewable resource, the stock of which is spa- 

tially distributed and moves over a discrete or continuous spatial domain. In contrast to 

standard harvesting models where the agent can control the take-out from the stock, we 

consider the case of optimal stock enhancement. In other words, we model an agent who 

is, either because of ecological concerns or because of economic incentives, interested in 

the conservation and enhancement of the abundance of the resource, and who may fos- 

ter its growth by some costly stock–enhancement activity ( e.g. , cultivation, breeding, fer- 

tilizing, or nourishment). By investigating the optimal control problem with infinite time 

horizon in both spatially discrete and spatially continuous (1D and 2D) domains, we show 

that the optimal stock–enhancement policy may feature spatially heterogeneous (or pat- 

terned) steady states. We numerically compute the global bifurcation structure and op- 

timal time-dependent paths to govern the system from some initial state to a patterned 

optimal steady state. Our findings extend the previous results on patterned optimal con- 

trol to a class of ecological systems with important ecological applications, such as the 

optimal design of restoration areas. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

The ongoing decline of natural resources means that the problem of the optimal management of ecological systems is 

of ever increasing importance. The identification of optimal control measures is a challenging task because any intervention 

in the system will usually have immediate and intertemporal non-linear effects on the states of the ecosystem, and thus 

on the set of policies available in the future. This issue becomes even more intricate for ecological systems that extend in
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space, with state variables distributed either over a set of discrete habitat patches or over a continuous spatial domain. The

economic management of such spatially extended systems poses a particular challenge because the time path of control 

measures has to be chosen at every point in space. This raises the question of how management activities should be opti-

mally distributed in space in the course of time. Specifically, is it beneficial to spread control measures as much as possible,

while allocating an equal share of management effort to every location? Or, could there be situations where it is best to

focus control measures to particular locations, at the cost of neglecting other areas? The answer to these questions is not

only of theoretical interest but also has immediate practical consequences ( e.g. , for the optimal design of nature reserves

and restoration areas). 

To find optimal spatio-temporal management strategies, optimal control theory has been applied to different ecological 

fields, such as the management of invasive species ( Blackwood et al., 2010; Albers et al., 2018 ), epidemic spread ( Tildesley

et al., 2006; Rowthorn et al., 2009 ), spatial pollution in shallow lakes ( Brock and Xepapadeas, 2008; Grass and Uecker, 2017 ),

semiarid vegetation systems ( Brock and Xepapadeas, 2010; Uecker, 2016 ), and travelling-and-harvesting problems ( Behringer 

and Upmann, 2014; Belyakov et al., 2015; Upmann and Behringer, 2020 ). However, to date, most ecological applications 

of optimal control theory focus on the case of optimal fisheries ( e.g. Herrera et al., 2016; Kelly et al., 2019; Grass et al.,

2019 ). In particular, Neubert (2003) , Neubert and Herrera (2008) and Ding and Lenhart (2009a) find spatially heterogeneous

distributions of the fishing effort to be optimal, and show that no-take regions ( i.e. , the concentration of fishing activities

outside those localized regions) are typically part of an optimal fishery management strategy. 1 

Yet, these authors assume that the stocks equal zero at the boundary (Dirichlet boundary conditions), postulating that 

the fish are instantly killed as soon as they touch the shore ( i.e. , totally hostile boundary), which is a questionable as-

sumption from an ecological perspective. From a theoretical point of view, spatially heterogeneous solutions do not come 

as a surprise because they do not correspond to a true pattern formation but are rather enforced by the choice of Dirich-

let boundary conditions; for, this type of boundary conditions negates the homogeneity of the spatial domain and implies 

an inhomogeneous steady state distribution of the fish stocks (unless they become extinct in the whole domain). So, with 

Dirichlet boundary conditions, the spatial heterogeneity of the optimal solution is directly imposed by the model. Moreover, 

in these models, the advantage of heterogeneous control measures is only gained in the vicinity of the boundary, so that

with increasing size of the habitat the relative merit of heterogeneous control vanishes (see Moeller and Neubert, 2013 ).

To avoid those ecologically and theoretically unsatisfactory effects, other authors dispense with the assumption of a hos- 

tile boundary and instead propose no-flux at the boundary of the domain (Neumann boundary conditions). This models a 

situation where stocks can live at, but cannot transgress, the boundary of the habitat, and thus captures situations where 

natural ( e.g. , shores) or man-made barriers ( e.g. , highways) constitute boundaries of the habitat. In this case, spatially ho-

mogeneous solutions are compatible with the model—and the question of whether or not spatially patterned solutions are 

optimal becomes meaningful and significant. 

The possibility of spatially patterned solutions evokes much interest because their emergence contrasts with the intu- 

ition suggesting that diffusion contributes to spatially homogeneity, and thus to the stability of the homogeneous solution. 

Notably, Brock and Xepapadeas (2008, 2010) systematically investigate the emergence of heterogeneous solutions in spa- 

tial optimal control problems with an infinite time horizon. These authors show that heterogeneity may arise in a Turing 

like bifurcation where a spatially homogeneous steady state becomes unstable in the presence of diffusion. This version of 

diffusion-induced instability differs from the classical Turing mechanism ( Turing, 1952 ) because here the instability results 

from optimizing behaviour. (For an excellent presentation of the Turing mechanism, see Murray, 2003 , Ch. 2.) Brock and

Xepapadeas (2008) term this type of local instability of an optimally controlled system with diffusion, that is, the instabil-

ity of the optimal steady states, optimal diffusion-induced instability . Consequently, this type of instability in spatial optimal 

control models is a true pattern formation: while in the absence of diffusion the optimal steady state is necessarily homo-

geneous, or flat, a spatially homogeneous steady state may no longer be optimal in the presence of diffusion. If diffusion

becomes sufficiently strong, the homogeneous solution becomes unstable and converges to a patterned steady state; such 

a steady state could be optimal, and is then called a patterned optimal steady state (POSS). In a POSS, the agent finds it

optimal to concentrate the (fishing, harvesting) activity on some spots, and to curtail it on the rest of the region. Intuitively,

the observation that spatially heterogeneous, and thus spatially focused fishing efforts may be optimal, can be explained by 

the fact that locally reduced fishing rates generate source–sink dynamics, which helps fish stocks to recover when they are 

overexploited: a high diffusion rate makes the high abundances in no-take zones quickly available in the catching zones. 

While most studies of optimal diffusion–induced instabilities are concerned with describing the possible existence of a 

POSS, there has been far less work to address the problem of how to dynamically control the system towards an optimal

steady state given some initial spatial configuration. As shown by Uecker (2016) and Grass and Uecker (2017) , this is further

complicated by the fact that typically multiple steady states exist, many of which are not stable; while even in systems

that exhibit locally stable patterned control states, these are not necessarily optimal. Another open question concerns the 

generality of this effect ( i.e. , of the emergence of POSSs). As shown in Brock and Xepapadeas (2008 , Theorem 1), optimal

diffusion–induced instabilities occur only under specific features of the model. Namely, the literature finds a POSS only 

when the control actions generate an externality ( e.g. , Moeller and Neubert, 2013 , explore the case when fishing damages the
1 These findings have subsequently been confirmed and further extended in both spatially continuous ( Ding and Lenhart, 2009b ) and spatially discrete 

(two-patch or multi-patch) models ( Moberg et al., 2015; Sanchirico et al., 2006; Sanchirico and Wilen, 1999; 2001 ). 
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habitat), or in multidimensional models where the control reduces the stock ( e.g. , the harvesting model of Brock et al., 2014 ).

In contrast, little is known about whether or not optimal diffusion–induced instability, and subsequently the emergence of a 

POSS, extends to other classes of models in resource and environmental economics—let alone in other areas of economics. 2 

In this paper, we investigate the management of a spatially distributed renewable natural resource where an agent or 

a policy maker is directly interested in the abundance of a resource, rather than in its yield or depletion, and is able to

contribute to its growth and prosperity by means of some spatially targeted stock–enhancement policy ( e.g. , cultivation, 

breeding, fertilizing, or nourishment). This management problem is complimentary to the familiar optimal harvesting prob- 

lem, which has largely been analysed in the economics literature, where the resource is reaped to maximize the discounted 

profit or the utility stream of an agent. 3 Here, we model a situation where an agent has an immediate interest in ecological

conservation and resource preservation, but has little or no interest in consuming the stock. Think of a population of pen-

guins, which are hardly edible and have, once killed, little economic value, yet people protect and support their stocks.—

We have in mind a policy maker (or an environmental agency) who is concerned about low abundances of species, such as

species that are threatened and endangered with extinction, 4 and thus aims at protecting and rebuilding those stocks. 

To derive and characterize the spatial and intertemporal characteristics of the optimal stock–enhancement policy, we 

apply Pontryagin’s maximum principle. In addition, we explore the sensitivity of this policy with respect to system pa- 

rameters. We show that although the interest of the agent is different from the familiar harvesting model, the presence

of spatial couplings may induce an optimal diffusion–induced instability, which leads to spatially heterogeneous optimal 

stock–enhancement policies ( i.e. , leading to a POSS. While a POSS in a harvesting model means the simultaneous presence

of regions with high fishing activities and of protected areas with low take-out levels to safeguard sustainable natural re- 

sources, a POSS in a stock–enhancement model means the simultaneous presence of regions with high effort s of breeding 

and ecological restoration and of those with low effort s where the ecosystem basically remains in its natural conditions. 

After introducing the model in a non–spatial setting ( Section 2 ), we demonstrate the emergence of a POSS in two alter-

native spatial geometries, namely a system of two coupled discrete habitat patches ( Section 3 ) and a spatially continuous,

diffusive system in one- or two-dimensional bounded domains ( Sections 4 and 5 ). The reasons for the different settings are

as follows: in the non–spatial setting, we introduce the basic dynamics and objective; moreover, we can apply the ODE the-

ory from Tauchnitz (2015) to rigorously derive the canonical system as the necessary first order optimality condition. This 

theory also applies to the two–patch ODE model, which is the simplest spatial case. For the PDE cases, the derivation of the

canonical systems proceeds somewhat formally (see Appendix); the 1D case is numerically less expensive than 2D, and the 

results are easier to visualize, yet, as we show, they naturally extend to the 2D case. For all three spatial geometries, we

use the numerical continuation and bifurcation tool pde2path ( Uecker et al., 2014 ) to compute an overview of the steady

states of the canonical systems, their stability, their spatial structure and the corresponding objective values. Importantly, in 

the interesting parameter range, our spatial models have multiple, homogeneous and heterogeneous, steady states. Then, we 

use the algorithms from Uecker and de Witt (2019) to compute paths from some initial spatial distributions of the resource

to a specified target steady state. These paths are economically fundamental because they describe how to govern the sys- 

tem optimally to the specified steady state. They thus model the policies to be followed during a transition period, a period

that may last for quite a long time and may thus, from a political perspective, be quite important. While our main result is

that in a large parameter domain the optimal policy is to govern the system to a POSS, we also show how this steady state

can be reached in an optimal way when we start at some historically given non-optimal situation. 

2. The basic model of stock–enhancement 

To begin with, and to introduce the terminology, we consider the non-spatial version of our model. We model the dy-

namics of a renewable resource of stock size x which is growing according to the logistic growth function g(x ) = ux 
(
1 − x 

K 

)
with carrying capacity K > 0 and time-dependent growth rate u (t) > 0 that can be controlled externally by the agent. We

assume that the stock is additionally reduced by some constant exogenous loss process with rate δ ≥ 0 , describing mortality 

effects that are not already captured in the logistic growth term ( e.g. , environmental stressors or constant harvesting efforts).

Without loss of generality, we can set K = 1 , which means that we measure the stock in units of its carrying capacity, yield-

ing the ordinary differential equation (ODE) 

˙ x (t) = f (x (t ) , u (t )) ≡ u (t ) x (t ) ( 1 − x (t) ) − δx (t ) , (1a)

with x (0) = x 0 > 0 representing the stock at the beginning of the planning period T ≡ [0 , ∞ ) . For any constant u > δ, the

stock equilibrates to the steady–state level x ∞ 

= (u − δ) /u < 1 , while for u < δ the stock goes extinct, x ∞ 

= 0 . Thus, we

model a resource under strong loss processes or environmental stress that needs external support u > δ to survive. 

The agent derives utility from the presence of higher stocks, and is thus interested in the stocks in situ . More precisely,

utility is logarithmic in x, which represents the idea that utility is increasing and concave. The agent is able to enhance the
2 Similar issues arise, for example, in economic geography ( e.g. , Boucekkine et al., 2013; 2019b ) or in (spatial) environmental economics ( e.g. , Boucekkine 

et al., 2019a; Desmet and Rossi-Hansberg, 2015 ). 
3 Sanchirico et al. (2010) applying a familiar harvesting model with three patches, and Segura et al. (2019) using a combined restocking–harvesting model 

for a single stock, are also interested in how to optimally protect and rebuild a population. 
4 As of September 30, 2020 the International Union for Conservation of Nature (IUCN) reports 32,441 species threatened with extinction ( https://www. 

iucn.org/theme/species ). 
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living conditions of the resource by some stock–enhancement activity, such as cultivation, breeding, fertilizing, or nourish- 

ment. The cost of this activity is increasing and convex, namely quadratic, in u . Then, the instantaneous utility of the agent

is 

J c (x (t) , u (t)) ≡ log (x (t)) − γ

2 

u 

2 (t) , (1b) 

with γ the marginal cost of the stock–enhancing activity, and the optimization problem of the agent reads as 

max 
u ∈U 

J(x (·) , u (·)) , where J(x (·) , u (·)) ≡
∫ ∞ 

0 

e −ρt J c (x (t) , u (t )) d t , (1c)

subject to (1a) , where ρ > 0 denotes the discount rate of the agent. (The technical details about the class U of admissible

controls are given in Appendix A . Moreover, in Appendix B we comment on the minor changes if log (x ) in (1b) is replaced

by e η(x ) with e η from the the isoelastic family e η(x ) = (x 1 −η − 1) / (1 − η) with η near 1.) 

To derive the optimal policy we define the Hamiltonian 

H(x, u, λ) ≡ J c (x, u ) + λ f (x, u ) = log (x ) − γ

2 

u 

2 + λ( ux (1 − x ) − δx ) , 

where λ denotes the costate (or shadow price) of x . The standard intertemporal transversality condition is (again see 

Appendix A for technical details) 

lim 

t→∞ 

e −ρt x (t) λ(t) = 0 . (2) 

The first order necessary conditions for an optimal control u ∗ and associated solution x ∗ are rebuilding those stocks. To

derive and characterize 

H(x ∗(t) , u 

∗(t) , λ(t)) = max 
u 

H(x ∗(t) , u, λ(t)) , (3a) 

˙ λ(t) = ρλ(t) − ∂ x H(x ∗(t) , u 

∗(t ) , λ(t )) , (3b) 

jointly with (1a) . Eq. (3a) says that u ∗ locally maximizes H, Eq. (3b) represents the costate (or adjoint) equation. Here,

because H is concave in u, the local maximization (3a) yields (dropping the superscript ∗ of x ) 

u 

∗(t) = 

λ(t) 

γ
x (t)(1 − x (t)) . (4) 

So, the optimal stock–enhancing activity is proportional to the instantaneous growth of the stock, x (t)(1 − x (t)) , with a

factor of proportionality given by the ratio of the value of the resource λ(t) and the marginal cost of enhancement γ . By

substituting u ∗ into the state Eq. 1a and the costate Eq. 3b , we obtain the canonical system for the state x and the costate

λ: 5 

˙ x = 

λ

γ
x 2 (1 − x ) 2 − δx, (5a) 

˙ λ = λ(δ + ρ) − λ2 x (1 − 2 x )(1 − x ) 

γ
− 1 

x 
, (5b) 

with the initial condition x (0) = x 0 for the state, and the transversality condition (2) for the costate. We have eliminated

the control from (5) , and thus henceforth use the notation X ≡ (x, λ) . Finally, by substituting u ∗ = u (X ) into the objective

function J = J(x, u ∗) = J ( x, u (X ) ) , we may write, with minor sloppiness, J(X ) . 

We call a steady state of the canonical system (5) , X ∞ 

≡ (x ∞ 

, λ∞ 

) , a canonical steady state (CSS); and a solution t �→
X(t) ≡ ( x (t ) , λ(t ) ) of (5) such that x (0) = x 0 and lim t→∞ 

X(t) = X ∞ 

a canonical path (CP) from the initial state x 0 to the

specified CSS X ∞ 

. For our numerical computations, we subsequently assume a moderate value of the discount rate, ρ = 

0 . 025 ; to make the enhancement activity costly, we set γ = 10 , which amounts to a marginal cost of u equal to 5; and

finally, since the growth rate can be controlled by the agent, it seems natural to set, for the moment, the death rate δ equal

to unity (but we will use δ as a bifurcation parameter later anyway). So, our parameter specification is: δ = 1 , ρ = 0 . 025 ,

and γ = 10 . Using this, the canonical system (5) has a unique CSS X ∞ 

, given by the stock x ∞ 

= 0 . 0596 , the shadow prize

λ∞ 

= 189 . 61 and the associated control u ∗∞ 

= 1 . 063 . As observed earlier, in the steady state the control must surmount the

death rate: u > δ. This CSS yields an instantaneous utility J c (X ∞ 

) = −8 . 47 and a total discounted profit J(X ∞ 

) = 

1 
ρ J c (X ∞ 

) =
−338 . 95 . 

The two-component ODE system (5) can also be conveniently discussed in the x –λ phase plane, see Fig. 1 (a). The organiz-

ing centre is the CSS X ∞ 

, which is a saddle point with stable manifold W s (X ∞ 

) (green line) and unstable manifold W u (X ∞ 

)

(orange line). We want to stress that the canonical system (5) is not an initial value problem because only the initial state
5 The (maximised) Hamiltonian (3a) is not concave in the state variable x, therefore we cannot apply standard sufficiency theorems. 
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of the stock value x 0 is given, while the initial costate λ0 ≡ λ(0) is free. Given x 0 , the transversality condition (2) implies

that optimal solutions of (5) must converge towards X ∞ 

, because all other solutions diverge super-exponentially. For general 

initial values (x 0 , λ0 ) that are not in the stable manifold W s (X ∞ 

) the associated solution of (5) will diverge to + ∞ , and thus,

given x 0 , the agent needs to find an intersection (which here is unique) of the line x = x 0 with W s (X ∞ 

) . 6 For these initial

values, the solution follows the CP along the stable manifold towards the CSS. 

More generally, given a 2 n dimensional canonical system with possibly several CSS, by the domain of attraction of a CSS

X ∞ 

∈ R 

2 n we mean the set 

A (X ∞ 

) := { x ∈ R 

n : there exists, by suitable choice of λ0 ∈ R 

n , a CP from x to X ∞ 

} . 
A CSS X ∞ 

is called globally stable if A (X ∞ 

) = R 

n (or if A (X ∞ 

) = B if the dynamics is restricted to some subset B ⊂ R 

n , such as

B = R 

n + ). These definitions do not involve the optimality of a CP and if several CSS exist (as in the spatial examples below),

then their domains of attraction may have non–empty intersections. Then, given an initial state x ∈ A (X (a ) 
∞ 

) ∩ A (X (b) 
∞ 

) , the

first step is to compare the value J(x ; X (a ) 
∞ 

) of the CPs to X (a ) 
∞ 

with the value J(x ; X (b) 
∞ 

) of the CP to X (b) 
∞ 

. If J(x ; X (a ) 
∞ 

) =
J(x ; X (b) 

∞ 

) , and if no better solution starting at x ( i.e. , a control u yielding a higher value) exist, then x is called a Skiba point

( Skiba, 1978 ), and the set of all Skiba points between X (a ) 
∞ 

and X (b) 
∞ 

yields a manifold, called Skiba manifold. 

Problem (1a) –(1c) has a unique CSS X ∞ 

, with A (X ∞ 

) = R + , cf. Fig. 1 (a). Moreover, Fig. 1 (b) shows the time–dependent

CP X(t) ≡ (x (t ) , λ(t )) starting at x 0 = 0 . 03 , and the path of the associated optimal control u ∗(t) . Here, the initial stock is

lower than its steady state; that is, x 0 = 0 . 03 < 0 . 0596 = x ∞ 

. This implies that at the beginning of the period, the agent has

to spend a rather high cultivation effort to increase the stock, while this effort may be reduced as the stock increases over

time. Likewise, the shadow price of the stock is initially quite high but monotonously decreases as the stock becomes more

abundant. 

3. Stock–enhancement in a two-patch model 

Let us now consider a system of two diffusively coupled patches with stocks x 1 and x 2 that disperse between the patches

with constant per-capita dispersal rate D . (Think of two penguin colonies at two distinct locations, where individual pen- 

guins can migrate from one patch to another, and net migration is towards the location of low biomass concentration.) The

population dynamics of the two patches are identical ( i.e. , they have the same carrying capacity K and exogenous loss rate δ)

and can be controlled in the same way by patch-specific stock-enhancement activities u 1 and u 2 . Assuming that the stocks

are again measured in units of the carrying capacity, the state equation (1a) generalises to (suppressing the time argument)

˙ x i = f i (x , u i ) ≡ u i x i (1 − x i ) − δx i + D (x 3 −i − x i ) , i = 1 , 2 (6a)

with x ≡ (x 1 , x 2 ) . Letting u ≡ (u 1 , u 2 ) , a straightforward extension of (1b) yields the instantaneous utility 

J c (x , u ) ≡
2 ∑ 

i =1 

J c,i (x i , u i ) , with J c,i (x i , u i ) ≡ log (x i ) −
γ

2 

u 

2 
i . 

The problem of the agent is 

max 
u ∈U 2 

J(x (·) , u (·)) , where J(x (·) , u (·)) ≡
∫ ∞ 

0 

e −ρt J c ( x (t) , u (t) ) d t, (6b) 

subject to the stock dynamics (6a) . Then, the Hamiltonian reads as 

H(x , u , λ) ≡ J c (x , u ) + λ · f (x , u ) , 

with the costate vector λ ≡ (λ1 , λ2 ) , stock dynamics f ≡ ( f 1 , f 2 ) , and the limiting intertemporal transversality condition

lim t→∞ 

e −ρt x (t) · λ(t) = 0 , where again we can apply Tauchnitz (2015) , cf. Appendix B . Maximising H with respect to u

yields the optimal controls u ∗
i 

= 

λi 
γ x i (1 − x i ) . As expected, we obtain the same rule for the optimal stock–enhancement

policy as in the one-patch case. However, this does not rule out (as we shall see) that we may find solutions that differ

from the optimal control in the one-patch case. 

Now, by substituting the optimal controls into the state equations (6a) and the costate equations ˙ λi = ρλi − ∂ H/∂ x i , we

obtain the canonical system 

˙ x i (t) = 

λi 

γ
x 2 i (1 − x i ) 

2 − δx i + D ( x 3 −i − x i ) , (7a) 
6 In a 2-component ODE (scalar state ODE), this can be done by (essentially) integrating backward in time from the stable eigenspace but in higher 

dimensions—for example, in case of two patches (see Section 3 ), or in case of high dimensional ODEs obtained from spatial discretizations of PDEs 

(see Sections 4 and 5 )—such computations of stable manifolds become infeasible. See Grass et al. (2008) and Uecker (2016) for comments on the nu- 

merical method for computing canonical paths by truncation to large T and suitable asymptotic boundary conditions, and how this relates to the saddle 

point property of CSSs. 
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Table 1 

Properties of the CSSs of system (7) with parameter values (8) . The system exhibits a flat CSS X f ∞ and a pair of POSSs, X p ∞ and ̃  X p ∞ , which are 

identical up to the exchange of patch indices. 

CSS x 1 , 2 λ1 , 2 u ∗1 , 2 J SPP Remarks 

0.0596 189.61 1.063 not optimal, dominated by the path to X p ∞ with value J CP = −602 . 6 

Flat: X f ∞ -677.9 no 

0.0596 189.61 1.063 

0.086 166.37 1.305 optimal, hence a POSS and “almost” globally stable 

Patterned: X p ∞ , ̃  X p ∞ -601.1 yes 

0.0196 82.5 0.158 

Fig. 1. Optimal solution of the non-spatial stock-enhancement system. (a) Phase portrait of the canonical system (5) , showing the saddle point X ∞ (black 

point), and its stable (green) and unstable manifold (orange). Selected orbits are shown in blue. The vertical-dashed line marks the initial stock value 

x 0 = 0 . 03 . In the optimal orbit, the initial costate λ0 is chosen to be located exactly on the intersection of that line with the stable manifold of X ∞ , yielding 

λ0 = 412 . 64 (grey point). (b) Time dependence of the optimal orbit (x, λ) and of the optimal control u ∗ for the initial value x 0 = 0 . 03 . The canonical path 

corresponds to the part of the stable manifold between the grey and the black point. (For the visibility of the colouring the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

˙ λi (t) = λi ( δ + ρ) − λ2 
i 
x i ( 1 − 2 x i ) ( 1 − x i ) 

γ
− 1 

x i 
− D ( λ3 −i − λi ) , (7b) 

with initial values x i (0) = x i, 0 . Remarkably, while the spatial coupling in the state equation (7a) is described by the ‘diffusion’

term D ( x 3 −i − x i ) , the coupling in the costate equation (7b) is described by the ‘anti-diffusion’ term −D ( λ3 −i − λi ) . Thus,

while the diffusion-driven resource flow is from high towards low concentrations ( i.e. , from the crowded to the less crowded

area), an optimal stock–enhancing policy makes the shadow price of the resource ‘move’ from low to high prices. 

Irrespective of the value of the dispersal rate D ≥ 0 , the canonical system (7) has the homogeneous (or flat) CSS: X 

f 
∞ 

=
(x ∞ 

, x ∞ 

, λ∞ 

, λ∞ 

) ( i.e. , twice the CSS X ∞ 

of the single patch model of Section 2 ). By setting D = 0 . 25 and using the same

parameter values as in the previous section: 

D = 0 . 25 , ρ = 0 . 025 , γ = 10 , δ = 1 , (8) 

we obtain x 1 ∞ 

= x 2 ∞ 

= 0 . 0596 , λ1 ∞ 

= λ2 ∞ 

= 189 . 61 , and u ∗1 ∞ 

= u ∗2 ∞ 

= 1 . 0634 , which exactly replicates the values from the

non-spatial model. Correspondingly, the instantaneous benefit and the total profit for this solution are simply doubled com- 

pared to the non-spatial model: J c (X 

f 
∞ 

) = 2 J c (X ∞ 

) = −16 . 95 and J(X 

f 
∞ 

) = 2 J(X ∞ 

) = −677 . 9 . In addition, we find a hetero-

geneous (or patterned) CSS X 

p 
∞ 

= (x 1 , x 2 , λ1 , λ2 ) for i = 1 , 2 , where the values of the stocks, x 1 = 0 . 086 , x 2 = 0 . 0196 , the

costates, λ1 = 166 . 37 , λ2 = 82 . 505 , and the optimal controls, u ∗
1 

= 1 . 305 , u ∗
2 

= 0 . 158 , differ in the two patches. The result-

ing instantaneous benefit is J c (X 

p 
∞ 

) = −15 . 03 , the discounted profit is J(X 

p 
∞ 

) = −601 . 1 , and hence the patterned CSS yields
6 
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Fig. 2. (a) Domain of attraction A (X p ∞ ) , and values of the CP from X (0) ∈ R 2 + to X p ∞ , marked by ◦ for the two patch model with parameter values (8) . Initial 

states for which no CP to X p ∞ could be found are left white. The mirrored ̃  X p ∞ is marked by ∗, and A ( ̃  X p ∞ ) and the values of CPs are naturally obtained by 

mirroring the plot at the diagonal. (b)–(d) CP from the stock of X f ∞ to X p ∞ ; time dependence of the state variables, the costates and the optimal controls 

for both patches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a higher utility compared to the flat CSS. Naturally, by exchanging the two patches, we find a second equivalent patterned

CSS ̃  X 

p 
∞ 

= (x 2 , x 1 , λ2 , λ1 ) . 
7 

Having found these three CSSs, the next question refers to their stability and domains of attraction. That is, given some

initial state x 0 , which of these three can be reached by a CP from x (0) = x 0 , and if we can reach more than one, which

of the CPs yields the highest profit. A simple visualization such as the phase plane plot in Fig. 1 is no longer possible

because the canonical system of the two-patch model is 4–dimensional. Locally, a CSS X ∞ 

of a 2 n –dimensional canonical

system has the saddle point property (SPP) if the dimension of its stable manifold dim W s (X ∞ 

) equals n ; correspondingly, the

number d ≡ n − dim W s (X ∞ 

) is called the defect of the CSS (see Grass et al., 2008 ), and these numbers can be computed by

linearization of (6a) around X ∞ 

. The dimension of the stable manifold, dim W s (X ∞ 

) , equals the number of eigenvalues of the

linearization with negative real parts. 

For our chosen parameter values, only the patterned CSS X 

p 
∞ 

(and naturally also ˜ X 

p 
∞ 

) has the SPP. In contrast, the flat

CSS X 

f 
∞ 

does not have the SPP: the dimension of its stable manifold equals dim W s (X 

f 
∞ 

) = n s = 1 , and thus its defect d =
2 − 1 > 0 . Consequently, canonical paths to the flat CSS X 

f 
∞ 

only exist for particular values of x 0 on a one-dimensional curve;

namely, those for which there exists a λ(0) such that (x (0) , λ(0)) is located in the stable manifold of X 

f 
∞ 

. Such a defective

CSS ( i.e. , when d > 0 ) may still be optimal if a canonical path to another CSS does not exist. 

Meanwhile, the patterned CSS X 

p 
∞ 

is “almost globally stable modulo symmetry”. By this we mean that for all x 0 ∈ R 

2 + ,
possibly except for a small set near (0,0) (see below), initial costates λ(0) can be found such that a canonical path to X 

p 
∞ 

or˜ X 

p 
∞ 

(or both) exist. In Fig. 2 (a), we show the values of the CPs from some arbitrary initial point x 0 to X 

p 
∞ 

, with the x –values

of X 

p 
∞ 

marked by a ◦, and the white part indicating the set of initial states for which a CP to X 

p 
∞ 

could not be found. This

includes, for instance, ˜ X 

p 
∞ 

, indicated by the ∗. However, A (X 

p 
∞ 

) contains at least the coloured set, and naturally A ( ̃  X 

p 
∞ 

) is

obtained from mirroring along the diagonal, such that by symmetry the diagonal is a Skiba manifold between X 

p 
∞ 

and 

˜ X 

p 
∞ 

.

For x 0 ∈ A (X 

p 
∞ 

) ∩ A ( ̃  X 

p 
∞ 

) , this Skiba manifold yields the (expected) result that below the diagonal it is optimal to go to X 

p 
∞ 

,

and above the diagonal to ˜ X 

p 
∞ 

. Together, A (X 

p 
∞ 

) ∪ A ( ̃  X 

p 
∞ 

) cover R 

2 + , except for a small set near x = 0 , but we believe that

this is due to our numerical method. We discretize the positive quadrant by a grid (x 1 , x 2 ) i j and for each initial state of that

grid aim to compute the CP to X 

p 
∞ 

with a fixed method, such as with a fixed truncation time T . This leaves open a region

near (x 1 , x 2 ) = (0 , 0) (where as in Fig. 1 the initial co–states go to ∞ ), but by tweaking the numerics ( e.g. , using a finer grid

of initial states, and adapting T ), we can shrink the non-existence region near (x 1 , x 2 ) = (0 , 0) . 

Suppose that in the past the two patches have been managed by two different agents (or firms), but that an integrated

management of both patches will be considered from now on. Then, the question is how can we best govern the integrated

system of the two patches to the optimal (which here means to the patterned, steady state)? However, this is a question

about the best policy during the transition time from the flat CSS to the patterned CSS—or about the canonical path. Fig. 2 (b)
7 The CSSs and the CPs discussed were subsequently found using the toolbox pde2path by first treating (7) as a bifurcation problem for steady states 

and then computing the CPs by a truncated continuation problem in the initial states, but we postpone these bifurcation and computation issues to the 

next Section. 

7 
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displays the CP from the initial stock x 0 = x 
f 
∞ 

= (x ∞ 

, x ∞ 

) of the flat CSS (on the diagonal) to the patterned CSS X 

p 
∞ 

. The

discounted profit of this CP is J CP = −602 . 6 , which is higher than the discounted profit J(X 

f 
∞ 

) = −677 . 9 of the starting CSS.

Thus, we may in fact characterize the patterned CSS X 

p 
∞ 

as a patterned optimal steady state (POSS), unique modulo the

symmetry of interchanging patch 1 and 2. 

These computations are based on the assumption of a perfectly homogeneous system. This symmetry is, of course, broken 

if any of the model parameters depends on the patch i, such as by assuming different exogenous loss rates δ1 
 = δ2 . If the

symmetry breaking is weak ( i.e. , δ1 ≈ δ2 ) then the flat CSS survives as an ‘almost flat’ CSS, and the two equivalent patterned

CSS X 

p 
∞ 

and 

˜ X 

p 
∞ 

become two different patterned CSS. 8 It then becomes an interesting task to characterize their domains 

of attractions, which are also no longer related by simple symmetry. However, our point here is to deliberately focus on

the symmetric ( i.e. , spatially homogeneous) case. Our results show that even though the model is spatially homogeneous, 

positive dispersal rates may give rise to a spatially non-homogeneous (or patterned) optimal solution. This result is quite 

surprising, because dispersal, with movement from the crowded to the less crowded patch, per se tends to flatten out the

stock over the spatial domain. Thus, a rather simple stock–enhancement model with two patches may bring about counter- 

intuitive optimal policies. The natural, though tentative, policy proposal calling for an equal distribution of the effort s (and 

thus of the cost) may be misled. 

4. Stock–enhancement in a one-dimensional continuous space 

We now extend our model to a continuous one–dimensional (1D) space, and assume that the resource is continuously 

distributed over a bounded interval � ⊂ R . The agent may then choose the stock–enhancing activity at any spatial location 

z ∈ �; that is, the agent can select (at each instant of time) a function u (·, t) on �, rather than a scalar u (t) , as in the

non-spatial model, or a 2D vector u (t) , as in the two-patch model. Accordingly, we generalise the stock dynamics (6a) to

the reaction–diffusion equation 

∂ t x (z, t) = u (z, t) x (z, t)(1 − x (z, t)) − δx (z, t) + D 	x (z, t) (9a)

with diffusion constant D and initial condition (initial distribution) x (z, 0) = x 0 (z) , ∀ z ∈ �. 9 In (9a) , we follow Fick’s first

law of diffusion, postulating that the flux of the biomass goes from regions of high to those of low concentration, where the

magnitude of the flux is proportional to the concentration gradient (spatial derivative). Moreover, we assume homogeneous 

Neumann boundary conditions (BCs), modelling the idea that the stock can live at, but cannot traverse the boundary of the

habitat, and thus implying the absence of any exterior in- or outflow (see Appendix A for generalization to Robin BCs): 

∂ n x (z, t) = 0 , ∀ z ∈ ∂�, (9b) 

where ∂ n is the outward normal derivative (the derivative taken in the direction orthogonal to the boundary of �). In 1D,

where the spatial domain is an interval, � = (a, b) , we have, suppressing the time argument, ∂ n x (a ) = −x ′ (a ) and ∂ n x (b) =
x ′ (b) , and 	x (z) = x ′′ (z) (see also fn. 9). 

Assuming again that the instantaneous pointwise utility is given by (1b) —that is, J c (x, u ) ≡ log (x ) − γ
2 u 

2 —, we write the

spatial average of J c over � as 

J ca (t) ≡ 1 

| �| 
∫ 
�

J c ( x (z, t) , u (z, t) ) d z, 

and the agent seeks to maximize the discounted average utility 

max 
u ∈U 

J(x (·) , u (·)) where J(x, u ) ≡
∫ ∞ 

0 

e −ρt J ca (x, u ) d t (9c) 

subject to (9a) and (9b) , and with the optimal control as given in (4) . The formal Hamiltonian for problem (9) is then given

by 

H ≡ J ca (t) + 

1 

| �| 
∫ 
�

λ(z, t) f (x (z, t) , u (z, t)) d z, (10) 

where f (x, u ) ≡ h (x, u ) + D 	x denotes the right-hand side of (9a) . 

To derive the canonical system for problem (9) , we need to take the variational derivative of H with respect to x . To

do so, we use integration by parts of the term λ	x occurring in H, and apply Pontryagin’s maximum principle (see the

Appendix for further comments) with the limiting intertemporal transversality condition 

lim 

t→∞ 

e −ρt 

∫ 
�

λ(z, t) x (z, t) d z = 0 . (11) 
8 In the Appendix, we illustrate this for the spatially continuous model by breaking symmetry via boundary conditions. 
9 The Laplace operator 	 ≡ ∇ · ∇ ≡ ∇ 

2 denotes the divergence of the gradient of a function f on Euclidean space. In Cartesian coordinates, it is the sum 

of second partial derivatives of f with respect to the independent variables, which here consist of the spatial coordinates: 	 f (z) = 

∑ n 
i =1 ∂ 

2 
z i 

f (z) . 

8 
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Table 2 

Properties of the CSSs of the system (9) from the 1D spatially continuous model for δ = 1 . The system exhibits a flat CSS 

and two spatially heterogeneous patterned CSS (compare Fig. 3 ). 

CSS J SPP Remarks 

flat f −338 . 95 no not optimal, dominated by the canonical path to p1 with value J CPf1 = −277 . 77 

patterned p2 −327 . 16 no not optimal, dominated by the canonical path to p1 with value J CP21 = −279 . 82 

patterned p1 −277 . 80 yes optimal, hence a POSS, with a large (probably global) domain of attraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This procedure yields the canonical system 

∂ t x = ux ( 1 − x ) − δx + D 	x, x (0) = x 0 , (12a) 

∂ t λ = λ(δ + ρ) − λu ( 1 − 2 x ) − 1 

x 
− D 	λ, (12b) 

with the optimal control u = 

λ
γ x (1 − x ) , and Neumann boundary conditions for x and λ. Thus, the canonical system (12) is

now a system of partial differential equations (PDEs), where similar to the ODE case (7) , the equation for the costate λ
contains an anti-diffusion term. Again, the canonical system is not an initial value problem because only the initial values 

x 0 for the stocks are given. Also, the anti-diffusion in the costate equation would make an initial value problem for (12b) ill

posed. 

To solve the canonical system numerically, we use a spatial discretization of the PDE (12) . If we take n spatial discretiza-

tion points (in our numerics, we typically use n between 10 2 and 10 3 in 1D and n ∼ 10 4 in 2D), then the canonical system

is transferred to an ODE with 2 n degrees of freedom. For small n (coarse meshes), the defect d = n − dim W s (X ∞ 

) may de-

pend on the discretization (on n ), but for large n (fine meshes) d becomes independent of n (see Grass and Uecker, 2017 ,

Appendix A). Using this asymptotic mesh–independence, we may also define the SPP by the criterion d = 0 for the PDE

solutions, which would otherwise be delicate to define as dim W s (X PDE ) = ∞ and dim W u (X PDE ) = ∞ for systems of type

(12) . 

We now can follow the same strategy as for the spatially discrete system, namely: first, we numerically compute the 

CSSs ( i.e. , steady state solutions to (12) ) and their instantaneous and discounted utilities; second, we check which of these

CSSs have the SPP; and finally, we determine the canonical path from some initial state to a CSS with the SPP, and in case of

multiple options of canonical paths compare their values. 10 Solutions to (12) are in general not unique, so that multiple CSSs

may result, similar to the two-patch model, but now typically with a larger variety of CSSs. Thus, the important questions

are again: which of the CSSs are optimal? And, in what sense? 

To address these questions, we use the continuation and bifurcation software pde2path ( Uecker et al., 2014 ) to compute

the CSSs of the canonical system (12) in dependence of the mortality rate δ as our main bifurcation parameter (see Fig. 3 ).

Subsequently, we use the algorithms of Uecker and de Witt (2019) to compute canonical paths. We characterize the CSSs 

by its spatially averaged profit J ca and the spatially integrated values ( L 1 –norm) of the stocks || x || 1 , the costates || λ|| 1 ,
and the controls || u || 1 . For all δ > 0 , the system has a flat CSS; which is shown as the black branch f in Fig. 3 . On this

line we find two branching points, for δ1 = 0 . 53 and δ2 = 0 . 76 , at which the new branches p1 and p2 of patterned CSSs

emerge. At δ3 = 1 . 1 , a secondary branch p2-1 of patterned CSSs branches off from p2 . In Fig. 3 (e)–(g), we show spatial

profiles of sample solutions at δ = 1 , starting with the trivial flat case in 3 (e). The CSSs in 3 (f) and 3 (g) from p1 and p2 are

heterogeneous. Stock levels from CSSs on p1 are spatially decaying from the left to the right of the spatial domain, while

stocks on p2 exhibit a spatially symmetric profile with elevated levels at the edges of the domain. We have described these

CSSs modulo their spatial symmetries. Given that we model a homogeneous system, every solution to (12) has the Z 2 –

symmetry z �→ −z. Moreover, given a patterned solution with wave number k = mπ/ | �| , m ∈ N (such as p2 in Fig. 3 with

m = 2 ), a spatial shift by π/k will generate another patterned solution, but henceforth we identify such states related by

symmetry. 

Our bifurcation analysis has shown that the canonical system (12) exhibits a flat CSS for all values of δ, and one, two or

three patterned CSSs for δ > δ1 . Among these steady states, the patterned CSSs on branch p1 are optimal when mortality

exceeds the threshold value δ > δ1 . These CSSs on p1 yield higher objective values than either the flat CSS on branch f
or the patterned CSSs on branches p2 (which exists for δ > δ2 ) and p2-1 (which exists for δ > δ3 ). The more economical

usage of the stock–enhancement activity on p1 is associated with a smaller (integrated) control || u || 1 , a larger (integrated)

stock abundance || x || 1 , and a lower (integrated) shadow price || λ|| 1 , see Fig. 3 . 

Our numerical analysis further shows that for δ > δ1 , only the patterned branch p1 has the SPP, while the CSSs on the

branches f and p2 are unstable (see Table 2 ). Now, let us assume (fixing the mortality rate at δ = 1 ) a situation where

for, say, historic reasons, the initial stocks are given by the spatially homogeneous distribution on branch f ; that is, by

x (·, 0) = 0 . 0596 , see Fig. 3 (e). (Think of a naïve policy maker who, up to now, followed (the best) “flat policy”.) Because the

branch p1 has not only the highest discounted profit among the computed CSSs but also the SPP, it is natural to select the
10 However, a numerical approximation of domains of attraction of CSS, or of the boundaries of such domains of attraction is no longer feasible, even for 

small n . 
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Fig. 3. Bifurcation analysis of the canonical system (12) in 1D. (a)–(d) Bifurcation diagrams of CSSs, showing (a) the spatially averaged utility J ca , (b) the 

integrated amount of the stocks || x || 1 , (c) the control || u || 1 , and (d) the costates || λ|| 1 in dependence of the mortality rate δ. Over the whole considered 

range δ ∈ [0 . 4 , 1 . 2] , the system exhibits a flat CSS (black branch f ). Open circles depict branching points at which branches of patterned CSS are created: 

p1 at δ1 = 0 . 53 , p2 at δ2 = 0 . 76 , and p2-1 at δ3 = 1 . 1 as a secondary bifurcation from p2 . (e)–(g) Spatial profiles of the CSSs on the branches f , p1 , and 

p2 for δ = 1 , showing the state variable (blue), the scaled control (dark green), the scaled co-state (light green) and the scaled utility (orange). Parameter 

values as in (8) and spatial domain � = (−1 . 5 , 1 . 5) . (For the visibility of the colouring the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

CSS on branch p1 in Fig. 3 (f) as the target state of a desired canonical path. Our numerical analysis shows that this canonical

path exists. This is illustrated in Fig. 4 : Starting from the flat initial state, to reach the higher stock levels at the left end

of the spatial domain, the agent invests more effort there than at the right-hand side of the domain, and the effort u is

a decreasing function of the spatial coordinate z at t = 0 , see Fig. 4 (c). The discounted profit of this canonical path yields

J CPf1 = −277 . 77 , which is greater that that of the flat initial CSS J 0 = −338 . 95 and of the patterned target CSS J 1 = −277 . 80 .

Thus, starting in the flat CSS and governing the system towards the patterned CSS yields an even slightly higher objective

value than starting directly in the patterned CSS. This can be explained by the fact that the average stock of the flat CSS

is slighter higher than that of the patterned target CSS. Meanwhile, the average control of the canonical path at t = 0 is

somewhat smaller than the average control of the target CSS. Given that the stock influences the discounted profit via the

term log (x ) (which increases strongly when x < 1 ) and the control via the term − γ
2 u 

2 (which does not decrease as strongly),

the difference in the average stock weighs more and leads to a higher yield of the canonical path. 

To check the robustness of these findings, we also conducted the same analysis for the cost parameter γ = 5 (instead of

γ = 10 as before), keeping all other parameters unchanged ( i.e. as given in (8) ). In this situation, the bifurcations from the

flat branch f happen at somewhat higher values ( δ = 0 . 811 and δ = 0 . 926 ) but the qualitative structure of the bifurcation
1 2 

10 



T. Upmann, H. Uecker, L. Hammann et al. Journal of Economic Dynamics & Control 123 (2021) 104060 

Fig. 4. Canonical path from the flat CSS on branch f to the patterned solution on branch p1 (see Fig. 3 ) for δ = 1 . (a) Temporal dependence of the 

distance between stocks x (t) , and control u (t) , to their starting values, x 0 and u 0 , respectively, targeting values, x 1 and u 1 , over time. (b)–(d) Temporal 

dependence of the corresponding spatial profiles of the stocks, x (z, t) , the control u (z, t) , and the costate λ(z, t) , showing the evolution towards a stationary 

heterogeneous solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diagrams, of the CSS, and of the canonical paths does not change. Moreover, we also systematically varied the discount rate

ρ and the cost parameter γ , increasing the former up to ρ = 0 . 1 and decreasing the latter down to γ = 1 —always finding

qualitatively the same results. Similarly, in the Appendix we briefly illustrate the robustness of our results with respect to 

further changes of the objective function, and of the BCs in the spatial setting. 

5. Stock–enhancement in a two-dimensional continuous space 

Extending the 1D model of the previous section to 2D increases both the realism of the model—most natural habitats

are better described as a two- than a one-dimensional space—and the numerical effort to solve it but the type of analysis

remains completely analogous to the 1D case, and thus need not be repeated here. We keep the parameters (8) and choose

the spatial domain � ⊂ R 

2 to be the rectangle � = (−1 . 5 , 1 . 5) × (−1 , 1) , such that all CSS from Section 4 extend to CSS in

the 2D domain by homogeneous extension in the second spatial direction. Additionally, we may expect the emergence of 

CSS that are heterogeneous in both directions; that is, genuine two-dimensional patterns. 

As in the 1D–case, for sufficiently strong mortality rates, δ > δ1 , patterned CSSs bring about a higher profit than their ho-

mogeneous counterparts, see Fig. 5 (a). In particular at δ = 1 , a true 2D pattern yields the highest profit of all CSSs in the 2D

domain found in our numerical bifurcation analysis. For the sake of simplicity, we do not show all bifurcating branches but

restrict our analysis to four different patterns, demonstrating the variety of emerging solutions. The solutions on branch p1 
homogeneously extend those from p1 in 1D from Fig. 3 e in the second direction, and thus also in 2D p1 branches off at

δ1 = 0 . 53 . The branch p1-1 , which yields the highest profit at δ = 1 , arises in a secondary bifurcation from p1 at δ = 0 . 68 ,

where the solutions on p1 loose the SPP. As shown in Fig. 5 a–b, the systems exhibit a series of other patterned branches

but in the range δ ∈ [0 . 4 , 1 . 2] they yield a lower profit than p1-1 . 
Of all of the branches that exist at δ = 1 , only the solutions on p1-1 and p3 , which are both heterogeneous in both

dimensions, possess the SPP and are hence possible target CSS of canonical paths. Assuming again that the initial stocks are

given by the spatially homogeneous distribution on branch f , we can reach both the solution on p1-1 and the solution on

p3 by a suitable choice of the canonical paths ( Fig. 6 ). While for both canonical states, the state variable x starts with the

same given values, the initial controls u (0) are chosen differently to govern the dynamics to the two different solutions.

This again demonstrates that we do not deal with an initial value problem and that the choice of u controls the system. The

path from f to p1-1 yields a higher objective value than does the path from f to p3 ( J CP1 = −261 . 92 vs. J CP3 = −283 . 74 ).

Consequently, an agent with the aim of optimizing the objective function would decide to govern the system to the state

on branch p1-1 . 
11 
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Fig. 5. Bifurcation analysis of the model in a 2D continuous space. (a)–(b) Bifurcation diagrams of CSSs, showing (a) the spatially averaged utility J ca and 

(b) the integrated amount of the stocks || x || 1 in dependence of the mortality rate δ. Over the whole considered range δ ∈ [0 . 4 , 1 . 2] , the system exhibits 

a flat CSS (black branch f ). Open circles depict branching points at which branches of patterned CSS are created (for simplicity only four patterned 

branches are shown): p1 , p1-1 (secondary bifurcation from p1 ), p2 , and p2-1 (secondary bifurcation from p2 ). (c) Spatial profiles of the solutions on the 

branches f , p1 , and p2 for δ = 1 , showing the stocks, the scaled control, and the costate in colour coding. Parameter values as in (8) and spatial domain 

� = (−1 . 5 , 1 . 5) × (−1 , 1) . 

 

 

 

 

6. Results and discussion 

Today, the need to understand the effect of space for the optimal management of ecological systems is more pressing

than ever. An augmented understanding could inform policy makers and stakeholder on where (and when) to best spend 

limited resources in their aim to conserve and to restore the biological diversity and ecosystem services. Hence, a thorough 

understanding of optimal spatio-temporal management of ecological systems has immediate practical consequences for the 

design of nature reserves, protected areas or restoration areas, for example. Modelling approaches can help in this quest, 

providing an important tool to illuminate the ecological and economic trade-offs involved. 

Brock and Xepapadeas (2008, 2010) have shown that even in spatially homogeneous domains, it may be optimal to have 

spatially inhomogeneous policy measures. The interaction of economic objectives with the dynamics of spatially extended 

natural resources that are subject to reaction–diffusion processes can lead to the existence of a patterned optimal steady 

state (POSS), where spatially heterogeneous management strategies are economically beneficial. Subsequently, other authors 

extended that work and showed that POSSs may emerge in various models with two species ( Brock et al., 2014; Uecker,

2016 ), or in models with strong externalities ( Moeller and Neubert, 2013 ). 

While many studies on the optimal control of spatially extended systems deal with optimal fisheries, harvesting and en- 

vironmental externalities, in this paper we have studied a model of a one species stock population where the agent is able to

increase the stock levels by means of stock–enhancement activities. Putting this model in a spatial framework, we compute 

optimal control policies and find that even though the model is spatially homogeneous, optimal stock–enhancement may be 

spatially inhomogeneous. These patterned optimal solutions emerge in both discretely coupled habitat patches and in spa- 

tially continuous one-dimensional and two-dimensional habitats when the stock mortality rate is above a critical threshold. 

Thus, spatially heterogeneous controls are optimal exactly in those situations in which the system is under strong stress. 

The computation of optimal paths from a given initial configuration towards a targeted steady state is as essential as the

identification of the steady states in a first step because practical policies require transitional control measures to govern 

the ecological system to the targeted steady state. 
12 



T. Upmann, H. Uecker, L. Hammann et al. Journal of Economic Dynamics & Control 123 (2021) 104060 

Fig. 6. (a)–(b) Canonical path from the CSS on branch f to branch p1-1 in a 2D spatial domain (see Fig. 5 ) for δ = 1 . (a) Temporal dependence of the 

distance between stocks x (t) and controls u (t) to their starting values, x 0 and u 0 , respectively to their targeting values, x 1 and u 1 , over time. (b) Evolution 

of spatial patterns along the optimal path, shown for stocks x (top row) and control u (bottom row), at selected time points. (c)–(d) Canonical path from 

the solution on branch f to the solution on branch p3 for δ = 1 . 

 

 

 

 

 

Our major result is the presence of patterned steady states in a simple two patch and in a simple PDE stock–enhancement

model, as well as the computation of the optimal paths to achieve the optimal steady states, viz. , the existence of POSSs.

These patterned solutions are by no means a pathological theoretical finding but they may emerge for reasonable param- 

eter settings. Specifically, increasing the realism of our model by extending the 1D model to a 2D spatial domain, brings

about the emergence of steady states that are heterogeneous in both directions ( i.e. , true two-dimensional patterns). In this

case, more than one locally stable patterned solutions exist. We thus believe that this work is an important step to further

understand the class of economic–ecological models exhibiting spatially patterned solutions. Even if the calculated optimal 

policy cannot be practically implemented because of a possible infeasibility of suitable spatio-temporally differentiated con- 
13 
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trol measures, the calculated POSSs should give policy makers at least good indications about the approximate target state 

and the approximate transitional policy measures necessary to achieve that target. 

Finally, we placed our model within the area of optimal management of renewable natural resources, but our model fea- 

tures great similarities with dynamic models of advertisement, market penetration and the spread of information. Namely, 

stock–enhancement policies appear in goodwill formation models, sales–advertising response models, models of adopters 

(and repeaters) of new products, models with word–of–mouth dynamics with information seeking, or in models of cus- 

tomer experience and information dissemination in social networks. In all these models, the agent (firm or policy maker) 

has an interest in enhancing the stock of informed “consumers”, differentiated either by their geographic location, their po- 

sition within a network or by their preferences, and where information or goodwill may spread in a diffusive way and may

be controlled by advertisement, information or education. In view of these similarities, we believe that our analysis might 

also be valuable for research in the fields of advertisement, information economics, and political campaigns. 
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Appendix A. Modifications: Other utility functions, and other BCs 

We briefly illustrate that our methods and results are also robust with respect to changes of the utility function J c , or

the boundary conditions for the spatially continuous case. 

A1. Iso-elastic utility function 

We start by generalizing J c from J c (x, u ) = log (x ) − γ
2 u 

2 to J c (x, u ) = e η(x ) − γ
2 u 

2 , with e η from the isoelastic family

e η(x ) = 

1 
1 −η (x 1 −η − 1) , and illustrate some results for the 2-patch case. 11 As e ′ η(x ) = x −η, the only change in the canoni-

cal system occurs in the costate (adjoint) equation(s); that is, we now have 

˙ x i (t) = 

λi 

γ
x 2 i (1 − x i ) 

2 − δx i + D ( x 3 −i − x i ) , (A.1a) 

˙ λi (t) = λi ( δ + ρ) − λ2 
i 
x i ( 1 − 2 x i ) ( 1 − x i ) 

γ
− 1 

x 
η
i 

− D ( λ3 −i − λi ) . (A.1b) 

Our strategy to study ( Appendix A.1 ) remains as before: first we find (via numerical continuation and bifurcation) the

CSSs, and then we compute CPs from some initial states to those CSSs with the SPP. It turns out that the behaviour of

( Appendix A.1 ) converges to that of (7) as η ↘ 1 or η ↗ 1 , as expected. Otherwise by applying the same parameters as in

Fig. 2 , and using η < 1 and η > 1 with | η − 1 | being small, we have a flat CSS, X 

f 
∞ 

≈ X 

f 
∞ 

(η) , and two patterned CSSs, X 

p 
∞ 

(η)

and 

˜ X 

p 
∞ 

(η) , with the SPP. Fig. 7 shows the analogues of Fig. 2 (a). Compared to the case log x, the main effect of setting

η < 1 is that the patterned CSSs move closer to the origin. For η > 1 , we have the opposite effect. The qualitative features

of our model remain the same, unless η substantially differs from 1 (with other parameters fixed) because we then lose the

patterned CSSs. 

A2. Robin boundary conditions 

For the PDE case, we may also discuss the robustness with respect to the BCs. As an example, we modify the Neumann

BCs (9b) and now use Robin BCs: 

D∂ n x (z, t) + qx = g, (A.2) 

with q, g : ∂� → R . In principle, pde2path also supports non-linear BCs, e.g. , when q, g also depend on x, u, but for sim-

plicity we stick to ( Appendix A.2 ). To derive the canonical system, we consider the Lagrangian 

L (x, λ, u ) := 

∫ ∞ 

0 

e −ρt 
{ 

1 

| �| 
∫ 
�

J c (x, u ) − λ(∂ t x − D 	x − f (x, u ))d z 

} 

d t. (A.3) 
11 Similar changes occur for the 1-patch model, and for the spatially continuous case; moreover, the dependence of J c on u can be modified similarly 

(including changes in the parameter γ ), as already indicated at the end of Section 4 . 
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Fig. 7. Values of CPs to X p ∞ (indicated by ◦) for ( Appendix A.1 ) with (a) η = 0 . 75 (at δ = 0 . 8 ) and (b) η = 1 . 25 (at δ = 1 ). The respective mirrored ̃  X p ∞ is 

marked by ∗. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration by parts in t yields 

−
∫ ∞ 

0 

e −ρt 

∫ 
�

λ∂ t v d z d t = 

∫ 
�

λ(z, 0) x (z, 0)d x + 

∫ ∞ 

0 

e −ρt 

∫ 
�
(∂ t λ − ρλ) x d z d t, (A.4) 

where we used the transversality condition (11) , namely lim t→∞ 

e −ρt 
∫ 
� λ(z, t) x (z, t)d z = 0 by which the boundary terms at

t = ∞ vanish. Next, using the boundary condition ( Appendix A.2 ) we obtain, by integration by parts in z, ∫ 
�

λD 	x d z = 

∫ 
�
(D 	λ) x d z + 

∫ 
∂�

λ(g − qx ) − x (D∂ n λ)d S, (A.5) 

where d S is the surface element (in 1D, 
∫ 
∂� h (z)d S = h (l) − h (−l) ). Hence 

L (x, λ, u ) = 

1 

| �| 
∫ 
�

x (z, 0) λ(z, 0)d z 

+ 

1 

| �| 
∫ ∞ 

0 

e −ρt 
{ 

∫ 
J c (x, u ) + (∂ t λ − ρλ + D 	λ) x + λ f (x, u )d z 

−
∫ 
∂�

λ(g − qx ) − xD∂ n λd S 

} 

d t. (A.6) 

The first variation of L with respect to x ( L in the form ( Appendix A.6 )), applied to a test function φ ∈ C ∞ (Q ) with φ(·, 0) =
0 , yields 

∂ x L φ = 

1 

| �| 
∫ ∞ 

0 

e −ρt 
{ 

∫ 
�

(
∂ x J c + ∂ t λ − ρλ + D 	λ + λ∂ x f 

)
φd z −

∫ 
∂�

(λq + D∂ n λ) φd S 

} 

d t. 

Therefore, by density of C ∞ (Q ) in L 2 (Q ) , Q = � × [0 , ∞ ) , and by density of ∂ n C ∞ (�) in L 2 (∂�) , the necessary first or-

der optimality condition ∂ x L φ = 0 yields the costate equation ∂ t λ − ρλ + D 	λ + ∂ x f (x, u ) λ + ∂ x J c = 0 , and the boundary

conditions D∂ n λ + qλ = 0 . Similarly, the condition ∂ λL = 0 ( L in the form ( Appendix A.3 )) yields the state equation. Thus,

altogether we have (formally, because we assumed the existence and sufficient smoothness of optimal controls, and used 

(11) , see also Appendix B ) generalized the canonical system (12) to Robin BCs for x and λ, namely 

D∂ n x + qx = g, D∂ n λ + qλ = 0 . (A.7) 

The Hamiltonian density H = e −ρt (J c + λ( f (x, u ) + D 	x )) is related to the Lagrangian density L = e −ρt (J c − λ( f (x, u ) +
D 	x − ∂ t x )) as H = L + e −ρt λ∂ t x, or after integration by parts in t, H = L − e −ρt (−ρλ + ∂ t λ) x, which yields the Hamilto-

nian form ∂ t λ = ρλ − ∂ x H of the adjoint equation. 

Naturally, for q 
 = 0 or g 
 = 0 we no longer have a homogeneous (or flat) CSS, so that finding a first “trivial” branch (like

the homogeneous branch for q = g = 0 ), and then detecting bifurcations of non-trivial branches, becomes much more dif-

ficult, as does the classification of branches as trivial or not. We limit ourselves to the 1D case with ‘mild’ Robin terms,

namely q (−l) = g(−l) = 0 (Neumann BC at the left boundary), q (l) = 0 . 01 and g(l) = 0 . More generally, g, q 
 = 0 can be con-

sidered as perturbations of the Neumann BCs, with g > 0 representing an inflow, and q > 0 representing a dampening of

this inflow, at the right boundary. Fig. 8 (a) shows a basic bifurcation diagram for this case. Using a homogeneous initial

guess, we first find a solution at small δ, which has the SPP. 12 Then we again continue in δ, call the branch (which is no
12 Of course, we could as well do continuation in, e.g. , first q then g from the flat solution with q = g = 0 to q = 0 . 01 , g = 0 ; this is the standard strategy, 

if initial solutions cannot be found otherwise. Simplify the problem by setting some terms to zero, then continuously go back to the original problem. 
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Fig. 8. (a) Bifurcation diagram and (b) sample solutions for (12) with the Robin BCs ( Appendix A.7 ), q = 0 . 01 , g = 0 , all other parameters as in Fig. 3 . (c) 

CP at δ = 1 from b1 ( J = −327 . 02 ) to b2 ( J = −227 . 75 ), with J = −279 . 87 for the CP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

longer “trivial”) b1 (black), and find a bifurcation point at δ ≈ 0 . 483 , where the solutions on b1 lose the SPP. Moreover,

the bifurcating branch b2 at higher values of δ has the SPP and larger J–values than the branch b1 . The sample plots in

Fig. 8 (b) inter alia show that solutions on b1 are still “flatter” than those on b2 . In Fig. 8 (c) we display the CP from b1 to
b2 at δ = 1 . and find that in this way we can increase the profit from −327 . 02 to −279 . 87 . In principle, a corresponding

analysis also works in 2D for small values of | q | , | g| (and everything else kept fixed). Yet, the distinctive feature of the POSSs

in a spatially homogeneous system is lost, or at least perturbed, because now all CSSs must have some spatial dependency

anyway. 

Appendix B. Functional analytic framework for the ODE case 

In problem (1c) we choose the admissible controls from the set U = L ∞ (R + , (0 , u )) , where u > 0 is some sufficiently large

constant. With this choice we can apply the infinite time horizon version of Pontryagin’s Maximum Principle from Tauchnitz 

(2015) . From the modelling point of view it can be justified as follows. Very large u cannot be optimal. A larger value of

u yields larger stock x, but the price is the quadratic decrease of the profit in (1b) , which cannot be compensated by the

logarithmic increase in x . Similarly, a very small value of u cannot be optimal because lim x → 0 log (x ) = −∞ . Thus, while the

choice U = L ∞ (R + , (0 , u )) formally gives control constraints, these never become active. Moreover, from the optimization

(3a) we find that u is actually smooth, not just L ∞ . The technical details for using the “natural” limiting intertemporal

transversality condition in (2) are as follows. Let L 2 (R + , R , e −ρt ) be the (exponentially) weighted L 2 space L 2 (R + , R , e −ρt ) =
{ x ∈ L 2 

loc 
(R + , R ) : 

∫ ∞ 

0 x 2 (t)e −ρt d t < ∞} . The set A adm 

consists of admissible pairs (x (·) , u (·)) ∈ H 

1 (R + , R , e −ρt ) × L ∞ (R + , U)

such that (1a) holds and the integral in (1c) is finite, where H 

1 (R + , R , e −ρt ) ≡ { x, ˙ x ∈ L 2 (R + , R , e −ρt ) } . Clearly, for any given

u ∈ L ∞ (R + , U) the solution x of (1a) is bounded and hence in H 

1 (R + , R , e −ρt ) , and since the right hand side f of (1a) is

locally Lipschitz the crucial assumptions (A1), (A2) from Tauchnitz (2015) are fulfilled. 

In the two-patch model (6) , choosing U = [ L ∞ (R + , (0 , u )] 2 , the theory from Tauchnitz (2015) applies with very minor

modifications. In the PDE model (9) , we have to assume that optimal solutions exist, are sufficiently smooth, and satisfy the

limiting transversality conditions (11) . This is reasonable, but a genuine assumption , as we do not have a general existence
16 
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theory for PDE constrained infinite time horizon optimal control problems. Alternatively, we may take the point of view 

that for computations we will use a spatial discretization of x, u in (9) , and thus may consider (9) as a symbolic notation

for the high dimensional ODE constrained optimal control problem that we obtain from this spatial discretization. We may 

then again apply the theory from Tauchnitz (2015) to this ODE–OC problem, and derive a (high-dimensional) ODE canon- 

ical system. This ODE canonical system is the spatial discretization of the PDE canonical, which we have formally derived. 

Although this does not allow us to lift the ODE theory to the PDE case because the necessary estimates are not uniform in

the fineness of the mesh, it at least shows the consistency of our approach. See Grass et al. (2019) for detailed discussion of

related problems, including hints to the literature for the rigorous treatment of PDE–OC problems over finite time horizons, 

and special infinite-horizon cases where rigorous justifications of PDE canonical systems and transversality conditions can 

be obtained. 
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