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Overview

We show how we can build a data-assimilative model
by augmenting a forecast model by data assimilation
functionality for efficient ensemble data assimilation.
The method uses a direct connection between the
coupled model and the ensemble data assimilation
framework PDAF [1, http://pdaf.awi.de]. Augmenting
the model allows us to set up a data assimilation
program with high flexibility and parallel scalability
with only small changes to the model.

The direct connection is obtained by

1. adapting the source codes of the coupled model so
that it is able to run an ensemble of model states

2. adding a filtering step to the source codes.

We discuss this connection for the ocean circulation
models NEMO and MITgcm. We insert subroutine calls
to the model code, adapt the parallelization, and add
routines for the handling of observations.
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Example of an ensemble integration with two
ensemble members using a 2-level parallelization. The

The data assimilation system has three components: models and the filter are parallelized. The ensemble
Model, filter algorithm, and observations. The filter adds one level of parallelization to integrate all
algorithms are model-agnostic, while the model and members at once. Combining model and assimilation in
subroutines to handle observations are provided by the one program avoids costly disk file operations. Further
user. The observation routines are called by PDAF as there is no need for a full model restart after the filter

call-back routines.

analysis step.

PDAF provides parallelization support and adding a few subroutine calls to the model
fully-implemented and parallelized filters code. The additions are nearly identical
& smoothers. Ensemble assimilation for NEMO and MITgcm. In NEMO one has
without model restarts is enabled by to account for the leap-frog time stepping.
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Implementing the Analysis Step

For the analysis step, we need to write back routines for this. They are
model fields into the state vectors and implemented like model routines and
back afterwards. Further, the analysis utilize model information from Fortran
step needs information on the modules. PDAF already provides model-
assimilated observations. PDAF uses call-  binding routines for MITgcm.
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Example: Sea-ice assimilation with MITgem

NEMO is used in a box configuration (double-gyre 2
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The MITgcm model is used with
PDAF to assimilate sea ice
concentration (SIC) from SSMIS
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examined for the year 2012 [3]. 605 sow‘f‘ | 6<>E
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