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A B S T R A C T

We present an analysis of annual and seasonal mean characteristics of the Indian Ocean circulation and water masses from 16 global ocean–sea-ice model
simulations that follow the Coordinated Ocean-ice Reference Experiments (CORE) interannual protocol (CORE-II). All simulations show a similar large-scale
tropical current system, but with differences in the Equatorial Undercurrent. Most CORE-II models simulate the structure of the Cross Equatorial Cell (CEC)
in the Indian Ocean. We uncover a previously unidentified secondary pathway of northward cross-equatorial transport along 75 ◦E, thus complementing the
pathway near the Somali Coast. This secondary pathway is most prominent in the models which represent topography realistically, thus suggesting a need for
realistic bathymetry in climate models. When probing the water mass structure in the upper ocean, we find that the salinity profiles are closer to observations in
geopotential (level) models than in isopycnal models. More generally, we find that biases are model dependent, thus suggesting a grouping into model lineage,
formulation of the surface boundary, vertical coordinate and surface salinity restoring. Refinement in model horizontal resolution (one degree versus 1

4
degree)

does not significantly improve simulations, though there are some marginal improvements in the salinity and barrier layer results. The results in turn suggest that
a focus on improving physical parameterizations (e.g. boundary layer processes) may offer more near-term advances in Indian Ocean simulations than refined
grid resolution.

1. Introduction

The tropical Indian Ocean covers the largest part of the warm pool
in the global ocean apart from the west Pacific. It is a key ingredient
in the Asian monsoons, which are a lifeline for billions of people in
the rim countries (Webster et al., 1998). The Indian Ocean has unique
features compared to the Pacific and Atlantic Oceans. Most notably,
it is bounded to the north by the Asian continent, thus preventing
the northward export of heat into the extratropical region (between
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30 and 60◦N). This geographical constraint leads to a basin-wide
meridional overturning circulation (MOC) (a full list of abbreviations
is presented in the Appendix) and a corresponding transport of heat
and mass that play a distinctive role in variability of the global climate
system (Chirokova and Webster, 2006). Schott and McCreary (2001)
and then Schott et al. (2009) provided systematic reviews of Indian
Ocean circulation. In particular, Schott et al. (2009) noted that much of
the literature pertaining to simulations of the Indian Ocean is focused
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on specific aspects rather than unifying across the range of features.
They also pointed out that one hindrance to progress is that existing
models are deficient in a number of ways, such as the existence of
spurious convective overturning, enhanced numerical mixing, and un-
realistic horizontal diffusion. If subsurface mixing is not adequately
parameterized, the simulated thermocline becomes too diffuse. This
error affects the temperature of the water that upwells and hence the
sea surface temperature (SST).

During recent years, increases in observational data have been avail-
able under the Indian Ocean observing system IndOOS program (http:
//www.clivar.org/clivar-panels/indian/IndOOS). This is a sustained
observing system operated and supported by various national agen-
cies and coordinated internationally through the Climate Variability
and Predictability (CLIVAR)/Intergovernmental Oceanographic Com-
mission (IOC)-Global Ocean Observing System (GOOS) Indian Ocean
Regional Panel. Unlike for the observations, a comprehensive anal-
ysis of the basin-scale oceanographic features from a suite of ocean
models for the Indian Ocean has not been documented. The historical
simulations using a suite of 16 global ocean-ice models forced by
the Coordinated Ocean Reference Experiments (CORE-II) provide an
opportunity to study the dynamics of Indian Ocean under a coor-
dinated modeling framework. This manuscript endeavors to describe
and evaluate the mean state and seasonal variations of important
oceanographic features such as the SST, Sea Surface Salinity (SSS),
currents, thermocline and barrier layer (BL). We do so with a suite
of 16 state-of-the-art global ocean/sea-ice model simulations with bulk
formula based boundary forcing generated from the same atmospheric
state. There are examples of a number of successful inter-comparison
activities for the Pacific, Atlantic, Arctic, and Southern Oceans (Tseng
et al., 2017; Danabasoglu et al., 2014, 2016; Farneti et al., 2015;
Ilicak et al., 2016). However, such coordinated modeling efforts have
generally been lacking for the Indian Ocean. We therefore aim here
at assessing the simulations from forced global ocean models for the
Indian Ocean.

SST is one of the most important parameters for the evolution
and prediction of the Indian Summer Monsoon Rainfall (ISMR) as it
represents the integrated ocean response to the atmosphere in terms
of various feedbacks (Sahai et al., 2007; Rajeevan et al., 2007, 2012;
Yang et al., 2007). Accurate simulations of Indian Ocean SST are
challenging given the wide variety of intraseasonal, seasonal and in-
terannual variability (Schott and McCreary, 2001; Schott et al., 2009).
In addition to variability intrinsic to the Indian Ocean, there are im-
pacts from El Niño Southern Oscillation (ENSO) that connect from the
Pacific Ocean (Annamalai et al., 2005). In the North Indian Ocean
(NIO hereafter), ENSO affects SST variability through an atmospheric
bridge that changes cloud cover and thus modifies surface heat fluxes
(e.g., Klein et al., 1999; Murtugudde and Busalacchi, 1999). Over the
southwestern Indian Ocean, ENSO forced SST variability arises from
oceanic Rossby waves generated by anomalous easterly winds that
propagate from the east (e.g. Xie et al., 2002; Huang and Kinter III,
2002). Errors in simulated Indian Ocean SST adversely affect the ability
of coupled prediction models to accurately forecast ISMR (Chowdary
et al., 2015, 2016; Chaudhari et al., 2013; Levine and Turner, 2012).
The CORE-II simulations do not use explicit relaxation to observed
SST. However, since air temperature is specified as part of the CORE-
II atmospheric state, there is an effective restoring flux (Haney, 1971;
Murtugudde and Busalacchi, 1999; Griffies et al., 2009). Hence, the
CORE-II simulations are more constrained than coupled climate models.
Our analysis of CORE-II SST biases thus offers a means to determine
that portion of the coupled climate model errors that can be attributed
to ocean components.

SSS and subsurface salinities strongly affect the surface buoyancy
and hence the surface and subsurface water mass structures (Weller
and Anderson, 1996; Murtugudde et al., 1998). Salinity can thus have
a strong influence on the thermodynamic structure of the mixed layer,
thermocline and their interactions (Mignot et al., 2007). Apart from

rainfall, salinity distributions in the Indian Ocean are driven by river
inflows, especially in the Bay of Bengal (BoB) which receives nearly
as much riverine input as rainfall (e.g., Shetye et al., 1996; Howden
and Murtugudde, 2001; Vinayachandran et al., 2002; Sengupta et al.,
2006). The influx of freshwater (FW) through the Indonesian through
flow (ITF), and the influx of saltier water from the Persian Gulf and Red
Sea also imprint clear signatures on the dynamics and thermodynamics
of the Indian Ocean (Murtugudde et al., 1998; Gordon et al., 2010;
Gordon and Fine, 1996; McCreary et al., 2001, 1993; Bray et al.,
1997). Many Indian Ocean modeling studies use regional configurations
with closed (sponge) boundaries at the east and south (Kurian and
Vinayachandran, 2007; Han et al., 2001; Han and McCreary, 2001),
often leading to unrealistic salinity properties. Similarly, better repre-
sentation of BoB freshwater influx is essential for studying the salinity
distribution (Sitz et al., 2017). The near surface salinity distribution
study by Zhang and Marotzke (1999) using a model configured with
open boundaries showed an unrealistic local minimum of salinity in the
north-western BoB due to the lack of inclusion of runoff from Ganges
and Brahmaputra. The freshwater forcing affects mixed layer depths
and surface currents which can advect the freshwater input away from
the rivers (Howden and Murtugudde, 2001; Sengupta et al., 2006; Han
et al., 2001). Rahaman et al. (2014) showed an improvement in SSS
simulations with a nested regional model with salinity bias less than
1 psu in the northern BoB. However, coupled models still show large
biases (∼1.5 psu) over the BoB as well as the NIO (Vinayachandran and
Nanjundiah, 2009; Fathrio et al., 2017b). In general, the subsurface
salinity bias in models is not documented for the Indian Ocean from
a suite of global model simulations. In this study apart from surface
salinity we also evaluated the subsurface salinity from the suite of 16
model simulations.

The Indian Ocean circulation is dominated by the dramatic sea-
sonally reversing monsoon winds (e.g. Webster et al., 1998). The
low-latitude landmass of the Indian subcontinent drives the strong
monsoon, thus causing ocean currents and winds to seasonally reverse
in the NIO (Gadgil et al., 2005; Gadgil, 2003; Schott et al., 2009).
Seasonally reversing monsoon winds (southwesterly during summer
and northeasterly during winter) give rise to seasonally reversing cur-
rent systems in the NIO. The semi-annual cycle in the Indian Ocean
is also related to the seasonally reversing monsoonal winds. Fig. 1a
provides a schematic of the horizontal circulation patterns in the Indian
Ocean, including the circulations forced by the Asian monsoon. The
major NIO current systems exhibiting a reversal in direction with the
monsoons (see Fig. 1a) include the Somali current (SC), Southwest
and Northeast Monsoon Currents (SMC and NMC), West India Coastal
current (WICC), and East India Coastal current (EICC). Though the
Indian Ocean does not possess an equatorial upwelling system similar
to the Pacific or Atlantic, major upwelling regions do occur off the
coast of Somalia and Sumatra in the north and southeastern equatorial
Indian Ocean, respectively (green shaded portions of Fig. 1a). Another
unique feature is the open ocean upwelling dome or Seychelles Dome
in the southwest of the Indian Ocean. Satellite color images clearly
reveal the existence of an open ocean upwelling zone between 5◦S to
12◦S over the southwest Indian Ocean (Xie et al., 2002). The north
and south current systems are separated around 10–12◦S by a nearly
zonal annually prevailing South Equatorial Current (SEC). The zonal
structure of the SEC is maintained by the zero-wind stress curl around
10◦S, which is a consequence of the annually prevailing southeasterly
winds to the south of 10◦S and the seasonally reversing monsoon winds
to the north. This SEC plays a fundamental role in transporting warm
and fresh western Pacific waters westward across the Indian Ocean
through ITF. The SEC after reaching the northern tip of Madagascar
bifurcates into the Northeast and Southeast Madagascar Current (SEMC
and NEMC) (e.g. Chen et al., 2014; Yamagami and Tozuka, 2015).
The SEMC feeds into the Agulhas Current (AC), which is part of the
anticyclonic subtropical gyre similar to those in other ocean basins.
However, unlike other basins, this western boundary current overshoots
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the southern extent of the African continent, with a portion extending
westward into the South Atlantic Ocean (a.k.a. Agulhas leakage), and
a portion retroflecting and flowing eastward along the equatorward
edge of the Antarctic Circumpolar Current (Lutjeharms, 2006). The
Leeuwin Current (Waite et al., 2007) is an eastern boundary current
along the west coast of Australia. Interestingly, its southward flow is
counter to what is expected from the predominant winds. Along the
eastern boundary at low latitudes, the Indian Ocean receives additional
heat and mass from the Pacific Ocean through the ITF (Godfrey, 1996;
Gordon and Fine, 1996; Murtugudde et al., 1998). The ITF allows
the water from the Pacific Ocean to reach the Indian Ocean. These
waters are then transported westward across the Indian Ocean by the
westward-flowing SEC. In the southern tip of Madagascar, the SEMC
breaks into a series of dipole eddies that propagate downstream into the
Agulhas Current system and enters the Atlantic Ocean south of South
Africa (Han et al., 2014; Durgadoo et al., 2017; Nauw et al., 2008;
Palastanga et al., 2006; Ponsoni et al., 2016; Ridderinkhof et al., 2013).
Some part of this water then retroflects eastward back into the Southern
Indian Ocean (SIO) to feed the South Indian Ocean Counter Current
(SICC) (Palastanga et al., 2007; Siedler et al., 2009). In this study, we
show how the CORE-II models are able to simulate these circulation
features with respect to observations.

In addition to the annual monsoonal cycle, the circulation varies
semiannually along the equator with a strong surface eastward current
named Wyrtki jet (WJ; Wyrtki, 1973). WJ appears as a narrow band
trapped within 2◦ –3◦ of the equator during the two transition periods
of monsoons (April–May and October– November) driven by the equa-
torial westerly winds. This WJ plays an important role in the large-scale
heat and freshwater transports in the tropical Indian Ocean (Wyrtki,
1973; Reverdin, 1985; Schott and McCreary, 2001; Schott et al., 2009).
The subsurface currents also show seasonal variations in the equatorial
Indian Ocean. Observations show the presence of subsurface Equatorial
Under Current (EUC), which is reported in various studies (e.g., Knox,
1976, 1981; Reppin et al., 1999; Schott and McCreary, 2001; Iskan-
dar et al., 2009). In the Pacific and Atlantic Oceans, the EUC is a
quasi-permanent feature because of the prevailing easterly trade winds
(Philander, 1973; Philander and Pacanowski, 1980; McPhaden, 1986;
Seidel and Giese, 1999). In the equatorial Indian Ocean, however, it
is transient and depends on winds and pressure gradient variations
associated with the distinct seasonal cycle due to the Asian monsoon.
It is most pronounced in Northern Hemisphere winter (Iskandar et al.,
2009), with its presence and absence mainly determined by the weaker
and stronger easterlies in late winter and early spring (Cane, 1980;
Reppin et al., 1999). The EUC is also present during the southwest
monsoon (Reppin et al., 1999). It is associated with equatorial waves
driven by the strong seasonally varying surface winds (Schott and
McCreary, 2001). The core of this eastward undercurrent is located in
the thermocline region above 300 m, beneath which a weak westward
counter-flow exists and can last for at least a month during winter
and spring. Observations show that the magnitude of the eastward
undercurrent can exceed 1.2 m/s during March–June and is comparable
to the Pacific Ocean undercurrent magnitude (Swallow, 1964, 1967).
Previous studies show that forced model simulations are able to capture
the undercurrent reasonably well (Iskandar et al., 2009; Chen et al.,
2015). A comprehensive evaluation of how WJ and EUC are repre-
sented in global models is still lacking. In this study, we also assessed
in detail about how the CORE-II models perform in simulating them.

Apart from the surface circulations and equatorial currents dis-
cussed in the previous paragraphs, two cells are active in the Indian
Ocean: the cross-equatorial cell (CEC) and the southern subtropical cell
(SSTC) (Lee, 2004; Schott et al., 2004). The CEC is a shallow (∼500 m)
meridional overturning circulation, consisting of the northward flow
of southern-hemisphere thermocline water, upwelling in the northern
hemisphere, and a return flow of surface water (Miyama et al., 2003).
A schematic of the meridional circulation of the Indian Ocean in the
upper ocean (0–500 m) is given in Fig. 1b (from Lee, 2004). The upper

Indian Ocean heat balance is achieved by CEC and SSTC (Miyama
et al., 2003; Schott et al., 2004). The CEC connects upwelling zones
in the NIO to subduction zones in the southeastern Indian Ocean via
a southward, cross-equatorial branch concentrated in the upper 50
m and a northward bulk-flow of cooler thermocline water. Miyama
et al. (2003) have shown that the sources of water for the subsurface
branch of the cross equatorial cell are the subduction zones in the
southeastern Indian Ocean, the ITF, and flow into the basin across
the southern boundary. This subduction seems to occur predominantly
in the southern subtropical Indian Ocean as shown in Fig. 1a (blue
shading). A small subduction site also exists in the AS. However, the
exact location of this northward thermocline flow is not yet known.
Both poor sampling of deeper layers and relatively coarse resolution
models used to study the dynamics of Indian Ocean have contributed
to poor understanding of the subsurface thermocline northward flow
in the Indian Ocean. The suite of global ocean circulation models
including relatively fine resolution models that participated in the
CORE-II simulations (Danabasoglu et al., 2014) used in this paper made
it possible to document simulated pathways of the thermocline water
into the NIO. The CEC variability accounts for a significant portion of
Indian Ocean cross-equatorial heat transport, which is hypothesized to
be associated with the Asian monsoon (Chirokova and Webster, 2006;
Swapna et al., 2017).

The Indian Ocean circulation is mainly driven by the seasonal
reversal of the monsoon wind. Thus, the mean and variability of
wind forcing has a large impact on Indian Ocean simulations (Parekh
et al., 2011). More generally, the heat, water, and momentum balances
are affected by uncertainties in turbulent and radiative heat fluxes.
These uncertainties in the forcing fields can have a major role in
the fidelity of OGCM simulations on intra-seasonal, seasonal, inter-
annual and longer time-scales (McWilliams, 1996). Hence, accurate
near-surface atmospheric fields are essential for realistic simulations
in a forced ocean model. Here, we offer a brief overview of how the
CORE-II atmospheric state compares to observational based measures.
However, a full assessment of these impacts requires comparisons to
simulations run with other atmospheric products such as Japanese 55-
year atmospheric reanalysis (JRA-55) based surface dataset for driving
ocean–sea-ice models (JRA55-do: Tsujino et al., 2018) and DRAKKAR
(Brodeau et al., 2010) forcing. The analysis presented in this paper
provides a necessary starting point for that assessment.

Our study is motivated by the important role of the Indian Ocean
in regional and global climate variability, especially in the tropics. This
role in turn prompts the need for improved understanding of Indian
Ocean circulation dynamics, including its mean state and variability,
in support of improved simulations of regional and global climate
(e.g., Swapna et al., 2014). We are motivated to perform systematic
assessments of Indian Ocean features found in global climate model
simulations. Increased awareness of the role of the Indian Ocean for
regional and global climate, including its importance for the billions of
humans living along its coasts and nearby regions, prompts the need to
systematically articulate the problems and prospects with global model
simulations for this region.

The paper is organized as follows. Section 2 describes the CORE-
II simulations and the main goal of the study. Section 3 describes
models and observational datasets. Section 4 contains main results and
discussions organized as: (i) the evaluation of CORE-II wind speed
with in-situ observation (Section 4.1); (ii) the time mean features of
SST and its seasonal cycle over the key regions of the Indian Ocean,
including the AS, BoB, Eastern Equatorial Indian Ocean (EEIO) and
Thermocline Ridge (TR) region (Section 4.2); (iii) surface salinity and
BL (Section 4.3); (iv) subsurface features of temperature and salinity
over AS, south eastern AS (SEAS), BoB, EEIO ( Section 4.4); (v) surface
and subsurface equatorial currents in CORE-II models and observations
(Section 4.5); (vi) Indian Ocean meridional overturning circulation
(Section 4.6). The impact of increased model resolutions is described in
Section 5. Major findings from our analysis and its future implications
are finally summarized in Section 6.
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Fig. 1a. Schematic representation of identified current branches over north Indian Ocean during summer (JJA:pink), winter (DJF:orange) and as annual mean (cyan). Current
branches are the South Equatorial Current (SEC), South Equatorial Counter Current (SECC), Northeast and Southeast Madagascar Current (NEMC and SEMC), East African Coastal
Current (EACC), Somali Current (SC), Ras-al-Hadd Jet (RHJ), East India Coastal Current (EICC), West India Coastal Current (WICC), Southwest and Northeast Monsoon Currents
(SMC and NMC), the Wyrtki Jet (WJ), Leeuwin Current (LC), Agulhas Current (AC), South Indian Ocean Counter Current (SICC), Eastern Gyral Current (EGC), South Java Current
(SJC) and Indonesian Through Flow (ITF). Upwelling and subduction zones are shown in green and blue shades, respectively. The buoy location at 94◦E and 10.5◦N is shown as
a red dot in the Bay of Bengal. The different sub-regions used for the time series comparison are evidenced as light-yellow color boxes, and they correspond to Arabian Sea (AS),
Bay of Bengal (BoB), South Eastern Arabian Sea (SEAS), Eastern Equatorial Indian Ocean (EEIO), Thermocline Ridge (TR) and Southern Indian Ocean (SIO).

Fig. 1b. Conceptual illustration of the time-mean meridional overturning circulation of the upper Indian Ocean (first 500 m) consisting of a southern and a cross-equatorial cell
(Based on Lee, 2004).

2. CORE-II simulations and the goals of this paper

The first phase of the Coordinated Ocean-ice Reference Experiments
(CORE) project (CORE-I) made use of a synthetically constructed nor-
mal year forcing (NYF; Large and Yeager, 2004) with seven modeling

groups participated in the study of Griffies et al. (2009). An underlying
question pursued with CORE is whether models using the same atmo-
spheric state (atmospheric state is prescribed over a fixed annual cycle)
will produce broadly similar simulation features. However, analyses
showed many differences in the simulated results. For example, models
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are unable to simulate the realistic MOC; also models are unable to
reach an equilibrium state after a transient phase that in turn prompted
further model development and improvement (see more details in
Griffies et al., 2009). The second phase (CORE-II) makes use of the
interannually varying atmospheric forcing (IAF) of Large and Yeager
(2009) over the 60-year period from 1948 to 2007. Details of the
CORE-II protocol are given by Danabasoglu et al. (2014). The CORE-II
project is the largest coordinated effort to assess the scientific integrity
of global ocean/sea-ice simulations. It is now included as Phase-I of
the Ocean Model Inter-comparison Project (OMIP), a part of the World
Climate Research Programme Coupled Model Inter-comparison Project-
phase 6 (CMIP6; Eyring et al., 2016), as documented by Griffies et al.
(2016).

CORE-II simulations are readily comparable to historical observa-
tions given their historical forcing. Hence, CORE-II experiments fa-
cilitate the assessment of global ocean/sea-ice simulations and allow
one to probe ocean processes active on sub-seasonal to decadal time
scales (e.g., Danabasoglu et al., 2014, 2016; Griffies et al., 2014). At
present, there are nine CORE-II assessment papers published in the
journal Ocean Modeling that provide detailed analyses over the Pacific,
Atlantic, Southern and Arctic Oceans. We here focus on the Indian
Ocean. Since the ISMR prediction is dependent on the mean oceanic
and atmospheric conditions, the central question addressed in this
paper is: how well do global ocean/sea-ice models capture the mean
state and seasonal cycle of the Indian Ocean? Most models employ one
to two degrees horizontal grid spacing, though there are two that use
finer spacing (∼0.25 degree), thus admitting mesoscale eddies in the
low latitudes and correspondingly fine scale currents.

3. Model and observational data used in this study

3.1. Models

We provide a summary of 16 global ocean/sea-ice model configu-
rations in Table 1, with further details provided in the CORE-II papers
of Danabasoglu et al. (2014) and Farneti et al. (2015). We focus on the
5th CORE-II forcing cycle and use model years corresponding to years
of available observations for 1982–2007. The surface fluxes of heat,
freshwater/salt, and momentum are determined using the CORE-II
inter-annual forcing (IAF) atmospheric datasets, the model’s prognostic
SST and surface currents, and the bulk formulae described in Large and
Yeager (2004, 2009). There is no restoring term applied to SST. SSS
restoring is used to prevent unbounded salinity trends in all the model
simulations used for this study. The NEMO-based models convert SSS
restoring to a freshwater flux. All the other models apply SSS restoring
as a salt flux. The restoring time scales vary considerably by days to
years between the groups. Weak restoring with time scales of about
4 years were used in FSU, KIEL and NCAR, moderate restoring with
time scales of 9–12 months were used in AWI, BERGEN, CERFACS,
CMCC, CNRM, GFDL-MOM, ICTP and MRI, strong restoring with time
scales of 50–150 days were used in ACCESS and GFDL-GOLD (see
Appendix C in Danabasoglu et al. (2014) for more details on SSS
restoring technique). The vertical mixing scheme used in different
models is detailed in Appendix A of Danabasoglu et al. (2014).

For SST, we also make use of nine corresponding climate models
(Table 2) from the Coupled Model Inter-comparison Project Phase
5(CMIP5; Taylor et al., 2012), utilizing historical runs forced with
natural and anthropogenic radiative gases to simulate climate over
years 1850–2005. We use CMIP5 simulations from January 1982 to
December 2005 for generating a monthly climatology. There are many
studies which show that ISMR variability is mainly governed by the
mean state SST in the Indian Ocean (Lee et al., 2010; Li et al., 2001).
Most of the coupled models show large cold biases in SST in the Indian
Ocean, especially in the AS. The cold bias will have large impacts on the
coupled feedbacks and thus the monsoon. Sujith et al. (2019) showed
that improvements in mean state of SST in coupled model (CFSv2)

have led to realistic simulation of oceanic modes of variability over
Indian Ocean (IO), Pacific (i.e. ENSO, Indian Ocean Dipole (IOD)) and
that lead to improve simulation of ISMR. The very purpose of CORE-II
experiments is to see how the ocean models perform with a prescribed
atmospheric state. In the coupled models the exact cause of the SST bias
is not yet known hence we used SST simulations from both the forced
and coupled model with same ocean configuration to delineate the
probable source of the SST bias. The comparison between CORE-II and
CMIP5 SST patterns offers a means to expose the role of atmosphere-
ocean coupling with a dynamical atmospheric model on SST patterns.
A more complete comparison of CORE-II and CMIP5 simulations is
beyond our scope.

3.2. Observations and reanalysis data used for the model evaluation

We make use of the following observational and reanalysis data to
evaluate the CORE-II simulations.

• Monthly one degree gridded optimum interpolation (OI) SST
product (Reynolds et al., 2002) for 1982–2007 is taken from the
National Oceanic and Atmospheric Administration (NOAA).

• The subsurface temperature and salinity are taken from the
World Ocean Atlas (WOA09) climatology (Locarnini et al., 2010;
Antonov et al., 2010; Boyer et al., 2009). We also use WOA09 for
the SSS. In WOA09, data until 2006 were used to compute the
climatology. However, more Argo profile data started in 2007 in
the Indian Ocean. Including those years of data in the climatology
may represent different mean state as compared to mean state
based on data until 2006. Since the CORE-II simulations ran until
2007, hence we used WOA09 for this study.

• Surface currents are taken from the Ocean Surface Current Anal-
ysis (OSCAR, Bonjean and Lagerloef, 2002). The OSCAR prod-
uct is available at 0.33◦ spatial resolution and 5 day averaged.
For this study, we computed monthly climatologies from the 5-
day averaged data for the period 1993–2007. We also use ship
drift climatology from Cutler and Swallow (1984) as well as the
near-surface current (0–15 m) climatology (version 2.07) from
satellite-tracked drogued drifter velocities gridded at 0.5 × 0.5◦

resolution (Lumpkin and Johnson, 2013). All these data were
re-gridded to 1◦ × 1◦ conforms to the MOM grid for comparison.

• We employ monthly-mean 1◦ × 1◦ zonal and meridional subsur-
face currents from the Operational ocean (ORAS4) (Balmaseda
et al., 2013) reanalysis product for 1982–2007. The long-term
mean is calculated for this period. Inter-comparison studies of
different reanalysis products over Indian Ocean show ORAS4
is performing best among most of the widely used products
(Karmakar et al., 2017).

• Observed long-term monthly mean net heat flux (NHF) was used
from National Oceanography Centre Southampton (NOCS; Berry
and Kent, 2009) available at 1◦ × 1◦ resolution. We also used
monthly-mean TropFlux (Praveen Kumar et al., 2013) NHF for
1982–2007 and computed monthly climatologies for the compar-
ison.

We note that different observation based products differ among each
other and this can adversely affect the assessment of model perfor-
mance based on single observation. Thereby, by comparing the model
simulations with multiple observational products, we may achieve
robust results.

3.3. Datasets used for the wind speed evaluation

We used buoy observed wind speed data at 3 m height provided
by National Institute of Ocean Technology (NIOT) under National Data
Buoy Programme (NDBP) of the Ministry of Earth Sciences, Govern-
ment of India (Premkumar et al., 2000), to compare the most widely
used forcing fields from CORE-II, JRA55-do (Tsujino et al., 2018)
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Table 1
List of models and their configurations used for the CORE-II inter-annual simulations following Danabasoglu et al. (2014). Note that z* represents the stretched geopotential vertical
coordinate that absorbs motion of the free surface (see Adcroft and Campin, 2004 and Griffies (2009) for details).

Group Configuration Ocean Model Sea-ice model Vertical Orientation Horizontal Resolutionnominal

ACCESS ACCESS-OM MOMp1 CICE4 z* (50) tripolar 360 × 300 1◦

AWI FESOM-COREII FESOM FESIM z (46) displaced 126 000 1◦

BERGEN NorESM MICOM CICE4 sigma2 (51 + 2) tripolar 360 × 384 1◦

CERFACS ORCA1 NEMO3.2 LIM 2 z (42) tripolar 360 × 290 1◦

CMCC ORCA1 NEMO3.3 CICE 4 z (46) tripolar 360 × 290 1◦

CNRM ORCA1 NEMO3.2 Gelato 5 z (42) tripolar 360 × 290 1◦

FSU HYCOM 2.2 CSIM 5 hybrid (32) tripolar 320 × 384 1◦

FSU-2 HYCOM 2.2 CICE4 hybrid (32) tripolar 500 × 382 1◦

GFDL-MOM ESM2M-ocean-ice MOM 4p1 SIS z* (50) tripolar 360 × 200 1◦

GFDL-MOM025 CM2.5-ocean-ice MOM5 SIS z* (50) tripolar 1440 × 1070 0.25◦

GFDL-GOLD ESM2G-ocean-ice GOLD SIS sigma2 (59 + 4) tripolar 360 × 210 1◦

ICTP MOM 4p1 SIS z* (30) tripolar 180 × 96 2◦

MRI-F MRI.COM 3 MK89; CICE z (50) tripolar 360 × 364 1◦ × 0.5◦

KIEL ORCA05 NEMO 3.1.1 LIM 2 z (46) tripolar 722 × 511 0.5◦

KIEL025 ORCA025 1442 × 1021 0.25◦

NCAR POP 2 CICE4 z (60) displaced 320 × 384 1◦

Table 2
List of coupled climate models and their configurations used from CMIP5.

Atmosphere Ocean Modeling centre Ocean resolution

ACCESS1–0 1.25◦ × 1.875◦ L38 ACCESS-OM (MOM4p1) Commonwealth Scientific
and Industrial
Research Organization
(CSIRO) and Bureau
of Meteorology (BOM),
Australia

nominal 1◦

CCSM4 0.94◦ × 1.25◦ L26 POP2 National Center for
Atmospheric Research,USA

nominal 1◦

CMCC-CM T159L31 OPA8.2 Centro Euro-Mediterraneo
per I Cambiamenti
Climatici, Italy

nominal 1◦

CNRM-CM5 T127L31 (256 × 128) NEMO Centre National de
Recherches
Meteorologiques/Centre
Europeen de
Recherche et Formation
Avancees en Calcul
Scientifique, France

nominal 1◦

GFDL-CM3 2◦ × 2.5◦ L48 MOM4p1 Geophysical Fluid
Dynamics Laboratory,
USA

nominal 1◦

GFDL-ESM2M 2◦ × 2.5◦ L24 nominal 1◦

GFDL-ESM2G 2◦ × 2.5◦ L24 GOLD nominal 1◦

MRI-CGCM3 T159L48 MRI.COM3 Meteorological Research
Institute, Japan

nominal 1◦

NorESM1-M 1.875◦ × 2.5◦ L26 NorESM-Ocean Norwegian Climate Center,
Norway

nominal 1◦

and DRAKKAR (Brodeau et al., 2010). The buoy location is at 94◦E,
10.5◦N in the BoB and shown in Fig. 1a as red dot. Daily wind speed
from buoy is used for the comparison. The 3-hourly 55-km horizontal
resolution JRA55-do, and the 6-hourly 75-km resolution DRAKKAR
wind speed were used for the comparison. However, daily averages
were computed from these 3-hourly and 6-hourly data to compare with
daily buoy wind speed. These datasets have been corrected relative to
reanalysis product ERA-Interim (Dee et al., 2011) for DRAKKAR and
Japanese 55-year Reanalysis (Kobayashi et al., 2015) for JRA55-do
products, analogous to how CORE-II has been corrected. We also used
Cross-Calibrated Multi-Platform (CCMP; available at http://rda.ucar.
edu/datasets/ds745.1/#!access) Surface Wind Vector Analyses (Atlas
et al., 2009) for the spatial wind speed comparison. Here we provide
a comparison of CORE-II with DRAKKAR and JRA55-do to understand
the reliability of these products for the Indian Ocean simulation. There
are notable differences in spatial resolution (CORE-II: 2◦ and JRA55-
do: 0.5◦) as well as differences in temporal resolutions (CORE-II and
DRAKKAR : 6-hourly and JRA55-do: 3-hourly). Yet for the comparison
we only considered daily averaged datasets from all products. The
corrected CORE-II, JRA55-do and DRAKKAR data are available at 10
m height. For comparison, we interpolate the CORE-II, JRA55-do and

DRAKKAR 10 m winds to 3 m using the logarithmic scale given by Stull
(2011).

3.4. Assessment in sub-regions of the Indian Ocean

The Indian Ocean variability is very inhomogeneous (e.g. Schott
et al., 2009). Hence, we find it useful to examine the simulations within
sub-regions as shown in Fig. 1a. These regions include the Arabian Sea
(AS): 50 – 70 ◦E and 6 – 25 ◦N, the Bay of Bengal (BoB): 79.5 – 95.5 ◦E
and 7.5 – 23.5 ◦N, the South Eastern Arabian Sea (SEAS): 71 – 77 ◦E
and 7 – 13 ◦N, the Eastern Equatorial Indian Ocean (EEIO): 80 – 100
◦E and 5 ◦S – 5 ◦N, the Thermocline Ridge (TR): 50 – 75 ◦E and 5 ◦S
– 10 ◦S and the Southern Indian ocean (SIO): 40 – 100 ◦E and 15 ◦S –
30 ◦S.

4. Results and discussions

4.1. Evaluation of CORE-II forcing fields

4.1.1. Assessment of the winds and latent heat fluxes
Latent Heat Flux (LHF) is mainly determined by wind speed apart

from near-surface air temperature and humidity. Thus, any error in
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Table 3
Wind speed comparison statistics over Bay of Bengal (Buoy location 94◦E, 10.5◦N).

AN3 2006 ( no of points 365)

Mean
(m/s)

Standard
Deviation (SD)
(m/s)

Bias
(m/s)

Correlation
Coefficient
(CC)

RMSD
(m/s)

Buoy 5.38 2.09 – – –
CORE-II 6.16 2.64 0.78 0.80 1.75
JRA55-do 4.98 2.17 −0.4 0.84 1.26
DRAKKAR 5.03 2.20 −0.35 0.86 1.20

the computation of LHF due to inconsistencies in any of these com-
ponents would reflect in the NHF. Rahaman and Ravichandran (2013)
have documented the evaluation of CORE-II near surface humidity and
air temperature. The findings of Rahaman and Ravichandran (2013)
are briefly mentioned in Section 4.1.2. In what follows, we therefore
restrict our comparison to the wind speed.

Fig. 2 shows the time series comparison of daily wind speed from
corrected CORE-II, JRA55-do and DRAKKAR in 2006 over southern
BoB. CORE-II wind speed reproduce the observed seasonal and intra-
seasonal variability. However, for most of the year, it overestimates
the buoy wind speed (Fig. 2). In contrast, JRA55-do and DRAKKAR
winds more accurately capture the buoy-observed daily wind speed
with slight under estimations. The statistics of wind speed comparison
is given in Table 3. The CORE-II mean wind speed bias is 0.8 m/s
with a root-mean-square deviation (RMSD) value of 1.75 m/s and a
correlation coefficient of 0.8. The underestimation of JRA55-do and
DRAKKAR wind speed with respect to buoy observation is reflected
with mean bias of −0.40 m/s and −0.35 m/s respectively (Table 3).
However, the RMSD values in JRA55-do and DRAKKAR are much
lower when compared to CORE-II. CORE-II wind speed have larger
variability as compared to buoy observation with standard deviations of
2.1 m/s in the buoy and 2.6 m/s in CORE-II. JRA55-do and DRAKKAR
standard deviation (SD) values are very close to the observed buoy
value (Table 3).

Fig. 3a shows the 1993–2007 mean spatial distribution of wind
speed from CORE-II, CCMP, JRA55-do and DRAKKAR. The basin-
average mean wind speed is given within each panel (top right). The
values are roughly similar except for CORE-II, which is slightly higher
than the other products, which is also seen in the buoy comparison
(Fig. 2). The mean wind speed structure over the Indian Ocean is
dominated by the summer monsoon wind. The summer monsoon wind
speed over AS is high as compared to BoB and it reflects in the annual
mean structure. CORE-II wind speed is higher by ∼0.5 m/s over the
west coast of Australia as compared to the other products. This region
also shows the highest wind speed over the entire Indian Ocean. CORE-
II wind is corrected by QuikScat wind (Large and Yeager, 2009), but
still it shows higher values as compared to buoy and other wind
products. Yu et al. (2007) have reported large LHF over this region
in NCEP2 product as compared to other products, and attributed this
bias to the strong wind. Sanchez-Franks et al. (2018) also noted LHF
biases in this region and linked them to dry biases in humidity. The
spatial distribution of monthly SD is shown in Fig. 3b. All wind products
show that the variability is highest over the Somalia coast and it is ∼4–
5 m/s in CORE-II, DRAKKAR and JRA55-do, but slightly lower values
(∼3–4 m/s) are seen in satellite-based product, CCMP. The variability
is lowest over equatorial Indian Ocean and in a zonal band over the
south Indian Ocean (20–25◦S) in all products. The SD values over these
regions are similar in DRAKKAR, CCMP and JRA-do, but slightly larger
values are seen in CORE-II.

To understand the wind impact on LHF, we computed latent heat
fluxes using bulk formula (see details in Rahaman and Ravichandran,
2013) by using buoy observed atmospheric fields but replacing buoy
wind speed with CORE-II, JRA55-do and DRAKKAR wind speed fields.
The daily LHF comparison is shown in Fig. 4. The wind impact on
LHF shows RMSD values of ∼50 W/m2 and a mean bias of ∼22

Table 4
LHF Comparison statistics over Bay of Bengal (Buoy location 94◦E, 10.5◦N).

AN3 2006 (no of points 365)

Mean
(W/m2)

Standard
Deviation (SD)
(W/m2)

Bias
(W/m2)

Correlation
Coefficient
(CC)

RMSD
(W/m2)

Buoy 144 44 – – –
CORE-II 166 62 22 0.70 50
JRA55-do 133 46 −11 0.72 36
DRAKKAR 134 47 −10 0.75 34

W/m2 in CORE-II. The underestimation of wind speed in JRA55-do
and DRAKKAR is reflected as mean LHF bias of −11 W/m2 and −10
W/m2 respectively. Sanchez-Franks et al. (2018) found that JRA-55
underestimates buoy wind speed in the BoB in agreement with results
here. Biases in turbulent heat fluxes of the order reported in their
work can have large implications for a product/model to correctly
represent monsoon-related processes. The RMSD values of 36 W/m2

and 34 W/m2 are much lower in JRA55-do and DRAKKAR as compared
to CORE-II. These results also corroborate the finding of Swain et al.
(2009). They showed that over the SEAS during monsoon season, 1 m/s
RMSD in wind speed can cause 45 W/m2 RMSD in LHF. As expected the
variability in CORE-II is also large with SD value 62 W/m2 as compared
to buoy SD value of 44 W/m2. The SD in JRA55-do and DRAKKAR is
also very close to the SD derived from buoy observations (Table 4).

4.1.2. Specific humidity, air temperature, and radiative fluxes
Rahaman and Ravichandran (2013) evaluated CORE-II specific hu-

midity (Qa) and air temperature (Ta) with independent in situ obser-
vations over the tropical Indian Ocean. They reported that the RMSD
value of Ta is ∼0.5 ◦C, but a large drop in Ta observed during intense
rainfall events are not well captured by CORE-II products. They also
reported a change in 1 g/kg Qa can cause about 11–15 W/m2 errors in
latent heat flux. Qiu et al. (2004) showed that over the western North
Pacific, the synoptic-scale heat fluxes have a large impact on SST and
have typical amplitude of ±1 ◦C. The downwelling fluxes of shortwave
and longwave radiation from the CORE-II product have been evaluated
with the tropical moored buoy observations (Venugopal and Rahaman,
2019). They found the mean bias in CORE-II over the Atlantic Ocean
is about zero and a RMSD of 43 W/m2 and 12 W/m2 for downwelling
shortwave and longwave radiation, respectively. For the Indian Ocean
with respect to Research Moored Array for African–Asian–Australian
Monsoon Analysis & Prediction (RAMA) buoy the mean bias is roughly
-3 W/m2 and −8 W/m2 but with large RMSD values of 50 W/m2 and 14
W/m2 for downwelling short and longwave radiation, respectively. The
variability is also underestimated with standard deviations of 70 W/m2

in RAMA for shortwave whereas in CORE-II it is 48 W/m2. In the case
of longwave, variability is larger in CORE-II (23 W/m2) as compared
to buoy values of 18 W/m2. CORE-II forcing fields compare reason-
ably well to observational-based measures as well as other reanalysis
products.

4.2. Sea surface temperature

In this section, we offer a particularly extensive analysis of the SST
given its importance for Indian Ocean climate variability and due to its
relatively precise observational measures. For the analysis purpose, we
regrided all models and observed SST and NHF dataset uniformly on a
1◦ x 1◦ grid.

4.2.1. Spatial patterns
4.2.1.1. SST patterns from CORE-II simulations. Fig. 5 shows the annual
mean SST bias for each model together with the model ensemble mean
bias. The observed and model ensemble mean SST is also shown in the
upper left corner of each panels. The annual mean is computed over
the period 1982 to 2007 for both observations and models. The OI-SST
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Fig. 2. Daily wind speed comparison of CORE-II, JRA55-do and DRAKKAR with buoy data over the southern Bay of Bengal at 3 m height for 2006.

Fig. 3a. Mean wind speed (m/s) at 10 m height from CORE-II, DRAKKAR, CCMP and JRA55-do. Average over 1993–2007 is taken. The basin-average mean values are given in
the upper right corner of each panel.

data is based on advance very high resolution radiometer (AVHRR)
satellite data (Reynolds et al., 2002) which is available from April
1981, hence we used 1982–2007 to compute monthly climatology.
Observations (Fig. 5a) show SST cooler in the west and warmer in
the east (Murtugudde and Busalacchi, 1999; Schott et al., 2009) and a
tongue of relatively warm SST (>29 ◦C) in the equatorial Indian Ocean,
forming the Indian Ocean warm pool (Fasullo and Webster, 1999;
Rao et al., 2015; Rao and Ramakrishna, 2017). The CORE-II ensemble
mean (Fig. 5b) reproduces this warm pool structure both in terms of
the magnitude and spatial extent. Looking at singular model annual
means (Fig. 5d-s, contours) almost all of them reproduce the observed

patterns. Two exceptions are AWI and ACCESS, where the maximum
SST does not exceed 28 ◦C, and show a basin-wide cold bias (shaded
values) including the warm pool region. Zonal variation of the SST
pattern is well reproduced in all the CORE-II simulations. The ensemble
mean SST pattern nearly replicates the observed mean SST spatial
pattern. Individual models show biases of +∕− 1 ◦C with a warm bias
over the southwest Indian Ocean and cold bias over the AS and BoB.
No significant improvement is seen in the two eddy-permitting models
GFDL-MOM025 and KIEL025 as compared to their coarser resolution
companion configurations. Therefore, biases may be arising more from
improper representation of physical parameterizations (e.g., boundary

8



H. Rahaman, U. Srinivasu, S. Panickal et al. Ocean Modelling 145 (2020) 101503

Fig. 3b. Monthly standard deviation (1993–2007) of wind speed (m/s) at 10 m height from CORE-II, DRAKKAR, CCMP and JRA55-do. The basin averaged mean values are given
in the upper right corner of each panel.

Fig. 4. Latent Heat Flux (LHF) computed from buoy observations (black) and replaced buoy wind speed with CORE-II (red curve), JRA55-do (green curve) and DRAKKAR (blue
curve) wind speed fields. In the calculation of LHF only wind fields are changed, while all other fields are from observations. This comparison reveals the impact of wind speed
on LHF.

layer processes) than coarse grid resolution or it may be also due to
surface forcing bias.

Previous studies have shown that the NHF accounts for most of the
tropical Indian Ocean (TIO) SST variability (Murtugudde and Busalac-
chi, 1999; Klein et al., 1999). Over the AS, apart from the NHF, oceanic
processes also play a major role in the SST variability (Shenoi et al.,
2002). However, SST over BoB is more air–sea flux driven due to the
Bay’s BL (Vialard et al., 2012). In the tropical southwest Indian Ocean

(SWIO), ocean dynamics plays an important role at all timescales due to
local and remotely-forced ocean dynamics (Lau and Nath, 2004). Mur-
tugudde and Busalacchi (1999) and Xie et al. (2002, 2009) have shown
that SST variability over this region is forced by thermocline variability
and mixed layer-thermocline interactions. The warm SST bias over this
region is coincident with the warmer thermocline temperature bias over
the same region (see Fig. 19). The NHF bias computed from model SSTs
is uniform throughout the basin (∼10 W/m2) in all these models (not
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Fig. 5. Annual mean SST bias (model minus observation) from all model simulations are shown in color (panels d-s). The contours show the annual mean SST (1982–2007) of the
5th CORE-II cycle. The model ensemble mean bias is shown in the upper right panel (c). Observed annual mean SST from observation is shown in upper left panel from NOAA-OI
(Reynolds et al., 2002) (a). The ensemble mean from CORE-II models is shown in the upper middle panel (b). Contour levels for the NOAA-OI observation and all models are the
same. Units are in degrees Celsius. The basin averaged mean (upper right corner) and its standard deviations (left) are also given in each panel in blue colors.

shown), which further confirms this finding. The NEMO-based models
(CERFACS, CNRM, CMCC and KIEL) show slightly larger warm bias to
the south of the equator as compared to other models.

In the AS and the BoB, almost all simulations show a cold SST bias.
The annual mean cold bias over these regions mainly arises from a large
cold bias during March (Fig. 6). Chowdary et al. (2015, 2016) have
shown that the seasonal SST over the BoB is governed by the seasonal
NHF. But the observational study of Thangaprakash et al. (2015) show
that vertical processes and horizontal advection also play a significant
role in the seasonal SST tendency over the BoB. The NHF in CORE-II
simulated models does not differ much with the TropFlux observations
(see Fig. 11b and Section 4.2.2.2). Hence, the different magnitudes for
the SST bias in CORE-II simulated models over the BoB could be due
to the vertical processes and horizontal advection, thus supporting the
finding of Thangaprakash et al. (2015).

In the AS, the Great Whirl and the southern eddy are two dominant
anti-cyclonic eddies present near the Somalia coast. The Great Whirl
has been observed to form during late May and early June between 5◦N
and 10◦N. A large branch of the East African Coastal Current (EACC)
turns offshore after crossing the equator at about 2◦N to 3◦N and forms
the Southern Gyre (SG). The SG is a large anticyclonic retroflection
cell with a well-marked wedge of cold upwelled water attached to its

northern flank (the southern cold wedge). A third anticyclonic eddy
named the Socotra Eddy (SE) is frequently present in the northeast of
the Island of Socotra (Beal and Donohue, 2013; Beal et al., 2013). The
very prominent small circular patch of cold SST bias seen over these
regions, found in most of the CORE-II models, represents the presence
of these anti-cyclonic eddies in July and October (Figure not shown).
Most of the models show a cold bias with ACCESS showing the largest
(∼1.5 ◦C). GFDL-MOM group of models also shows a fairly large cold
bias, whereas this bias is relatively small in the NEMO group of models.
Annual mean bias over the BoB in the NEMO models and FSU are least
among all the model simulations.

The region of the equatorial Indian Ocean and latitudes to its
south show a positive bias (∼0.6 ◦C) in all simulations except AWI
and ACCESS, whose simulations show a small cold bias (∼0.4 ◦C). All
biases are within observational errors (Bhat et al., 2004; Senan et al.,
2001). Furthermore, the flux errors are larger than the corrective fluxes
needed to correct these SST biases which make it difficult to assign
any errors in the models (see Murtugudde et al., 1996). However, the
high mean SSTs are close to atmospheric convective thresholds and thus
even small errors can lead to large errors in a coupled climate model.
The CORE-II models realistically simulate the spatial distribution and
zonal variation of SST in the Indian Ocean. The basin-wide bias is
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Fig. 6. Mean SST bias (model minus observation) in March from all model simulations are shown in shade (panels d-s) from the 5th CORE-II cycle. The overlaid contour levels
are for the mean SST in March. The ensemble mean from CORE-II models is shown in the upper middle panel (b). Ensemble mean bias for all models is shown in upper right
panel (c). Observed mean SST in March from observations is shown in the upper left panel (NOAA-OI) (a). Contour levels for NOAA-OI observation and all models are same. The
basin averaged mean (upper right corner) and its standard deviations (left) are also given in each panel in blue colors. Units are degrees Celsius.

within +∕− 1 ◦C seen in almost all the models, which may arise from
problems representing ocean physics as well as atmospheric forcing.
We conjecture that the most important physical process is related to
vertical mixing, given the importance of upper ocean boundary layer
processes for setting the SST. These results suggest that a focus on
improved physical parameterizations may, in the near term, offer more
advances in Indian Ocean simulations than refinement of the grid
resolution. This conclusion is supported by Benshila et al. (2014).

4.2.1.2. Comparing SST from CORE-II and CMIP5 simulations. We here
compare SST from CMIP5 coupled models using the same ocean compo-
nent as the CORE-II models. In particular, we analyze SSTs from CMIP5
historical simulations from the nine models that employ the same
ocean configuration used in our CORE-II study (Table 2). Compared
to forced CORE-II model simulations, coupled CMIP5 simulations show
SST biases that are not uniformly distributed across different seasons.
They also show a similar pattern to that of the forced simulations
described in Section 4.2.1.1, but with larger amplitude. The larger
biases suggest the amplification of SST errors that arise from coupling
with an interactive atmospheric model.

Previous studies have identified a cold SST bias in the Indian Ocean
in coupled climate models (Pokhrel et al., 2012a,b; Chowdary et al.,

2015, 2016; Prasanna, 2015). Fathrio et al. (2017a) examined the
western Indian Ocean SST biases among CMIP5 models and found that
about half of the models show positive SST biases, while others show
negative bias. The models with cold SST biases exhibit a colder bias in
the entire tropical Indian Ocean throughout the year. The positive bias
was attributed to relatively weak southwest monsoonal winds over the
AS and an equatorial southeasterly wind bias. The warm SST biases
persisted until boreal fall, and then disappeared in winter (Li et al.,
2015). All CMIP5 models show cold SST biases over the northern AS
during the pre-monsoon season (Marathayil et al., 2013; Sandeep and
Ajayamohan, 2014; Levine et al., 2013; Li et al., 2015; Fathrio et al.,
2017a). Studies show that anomalous advection of cold surface air from
the south Asian landmass during boreal winter contributes to the cold
SST biases over the north AS (Marathayil et al., 2013; Sandeep and
Ajayamohan, 2014).

We show the annual mean SST (contour) and bias (color) from the
CMIP5 simulations in Fig. 7. Except for CESM and CMCC, none of the
CMIP5 models reproduce the observed warm pool over the equatorial
Indian Ocean (Rao et al., 2015). The majority of the CMIP5 models
show a basin-wide cold bias with highest bias in the northern AS up
to 4 ◦C. The north AS cold bias is more than 3 ◦C in MRI whereas
CESM shows the smaller cold bias of ∼0.6 ◦C. CESM, CMCC and MRI
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Fig. 7. Annual mean SST bias (model minus observation) from CMIP5 simulations (shade), with contours for the mean SST. The ensemble mean from the CMIP5 models is shown
in the upper middle panel (b). The CMIP5 model ensemble mean bias is shown in the upper right panel (c). Observed annual mean SST is shown in upper left panel from NOAA-OI
(a). Contour levels for the NOAA-OI observation and all models are the same. The basin averaged mean (upper right corner) and its standard deviations (left) are also given in
each panel in blue colors. Units are degrees Celsius.

show a warm positive bias (of up to 1.6 ◦C) over the western equatorial
Indian Ocean and southeast Indian Ocean off the Australian Coast.
The overall basin wide cold bias is weakest in CMCC (−0.12 ◦C) and
largest in NorESM(−0.93 ◦C). The largest basin averaged cold bias in
CORE-II ocean only simulations is −0.37 ◦C in ACCESS. Biases in the
NCAR CORE-II model are only ∼0.1–0.2 ◦C to the south of the equator.
However, when coupled as part of CESM, this model shows roughly five
to ten times larger biases up to ∼1 ◦C.

The large cold bias in the CMIP5 models over the northern AS in the
annual mean mostly arises from the cold bias during February–April,
which peaks in March (Fig. 8). The SST cold bias is larger than 3 ◦C
in GFDL-ESM2M, GFDL-ESM2G, GFDL-CM3, NorESM and MRI during
March. Sandeep and Ajayamohan (2014) show a similar cold bias, but
with larger amplitude over the north AS in all CMIP5 models. They
attributed this bias to an equatorward bias in the subtropical jet stream
during boreal spring, thus causing excessive cooling of the northern AS
and adjoining land regions. This cold bias in coupled models was also
attributed to the northeasterly cold air temperature (Marathayil et al.,
2013).

The cold bias in forced CORE-II simulations is much weaker when
compared to coupled models that use the same ocean component
(Figs. 5 and 7). The cold biases in the CORE-II simulations are ∼1 ◦C
over the northern AS whereas they are ∼3 ◦C in the CMIP5 models,
with even larger biases in the MRI and NorESM. These results suggest
that the large northern AS SST biases in coupled models may arise from
coupled dynamical feedbacks that amplify ocean errors. This hypothesis
is supported by Fig. 9a, which shows the seasonal cycle of the mixed
layer depth (MLD) in CORE-II models and WOA observations over the

northern AS. The CORE-II MLDs are generally deeper than WOA during
February–March. Fig. 9b shows the MLD vs SST bias over the northern
AS. It can be seen that larger SST cold biases are associated with deeper
MLDs as compared to observations. The correlation coefficient between
MLDs and SST bias is 0.64, which is significant at the 99% confidence
level. In Fig. 9b, the BERGEN simulation appears like an outlier. With-
out this simulation the correlation coefficient value reduces from 0.64
to 0.50 but it is still significant at the 95% confidence level. Tozuka
et al. (2017) showed in the upstream Kuroshio Extension region in
the North West Pacific that the deeper MLD is less sensitive to cooling
by surface heat fluxes. However, Roxy et al. (2012) showed a shallow
(deep) MLD enhances (suppress) the SST anomaly, thereby amplifying
(lessening) the intra-seasonal variability of the monsoon in a coupled
model (CFSv2) and argued that a prime focus should be on improving
the mixed layer scheme of the ocean component in that model. This
confirms the need of improvement of MLD in ocean models for a better
simulation of SST over the northern AS.

These results suggest that the origin of SST bias during spring
(February–April) mainly arise from the coupled feedbacks as well as
MLD biases. The spatial distribution and magnitude of SST bias in
CORE-II forced simulations are weaker than those in coupled simula-
tions since the errors are amplified by coupled feedbacks. We conjec-
ture that the basin-wide cold bias in CORE-II simulations arises from
deficiencies in ocean vertical mixing, with biases enhanced due to
coupled feedbacks in the coupled model simulations.
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Fig. 8. March mean SST bias (model minus observation) from CMIP5 simulations are shown in shade. The ensemble mean from the CMIP5 models is shown in the upper middle
panel (b). Ensemble mean bias for all models is shown in the upper right panel(c). Observed mean March SST is shown in the upper right panel (NOAA-OI) (a). The basin averaged
mean (upper right corner) and its standard deviations (left) are also given in each panel in blue colors.

4.2.2. Seasonal cycle of SST and net surface heat flux
The Indian Ocean circulation and tracer property distributions ex-

hibit great spatial inhomogeneity. Correspondingly, so is the spatial
distribution of the SST bias. Hence, we here consider the area averaged
seasonal cycle over the different sub-regions shown in Fig. 1 and
described in Section 3.4. The ability of model simulations to correctly
capture the seasonal SST variation is a difficult task, particularly over
the north Indian Ocean.

4.2.2.1. Arabian Sea (AS). Fig. 10a shows the seasonal evaluation of
SST over the AS from CORE-II simulations and its ensemble mean
along with observation. The observed annual cycle over the AS shows a
bimodal SST seasonality with the primary maximum during April–May
and the secondary maximum in October (Murtugudde and Busalacchi,
1999; Vinayachandran and Shetye, 1991; Fathrio et al., 2017a). During
April–May, prior to the onset of the Indian summer monsoon, the AS
evolves to one of the warmest areas in the tropical oceans (Joseph,
1990; Joseph et al., 2006). All CORE-II simulations show bi-modal SST
seasonality, but there exists inter-model spread that is largest during
summer.

Observations show that SST reduces after the onset of the summer
monsoon in June. It reaches a minimum during the peak summer
monsoon (July–August) over the AS due to upwelling off the Somali
Coast and Arabian Peninsula as well as due to latent heat loss caused
by strong southwesterly monsoon winds (Shenoi et al., 2002). Another
mechanism through which SST reduces over the AS is the export of
heat through meridional overturning. Few models show lower SST
during July–August with respect to NOAA-OI observation, while others
show slightly higher. This behavior could be due to the different

cross-equatorial heat transport among different models (Swapna et al.,
2017).

The CMIP5 coupled model simulations show similar variations to
those forced by CORE-II, but CMIP results show far more inter-model
spread (Fig. 10c). The cold biases during winter and spring in the
coupled models are larger (∼2 ◦C) than the CORE-II models (∼0.5 ◦C)
(Fig. 10a,c). Coupled Model Inter-comparison Project Phase 3 (CMIP3)
and other CMIP5 coupled models (not considered here) also show
similar cold biases over the AS (Marathayil et al., 2013; Levine et al.,
2013). Levine and Turner (2012) showed that coupled model SST
biases over the northern AS are substantially larger than the observed
interannual variability of AS SST, and in turn these biases affect the
Indian summer monsoon simulations and forecasts (Narapusetty et al.,
2015).

The AS seasonal cycle of NHF from the CORE-II models matches that
of the TropFlux observation (Fig. 10b) during October–March, while
the magnitude is about 20%–30% less than the observation. Despite this
reasonably good match in surface heat flux forcing, the cold SST bias
in CORE-II simulations indicates the role of oceanic process in seasonal
SST evolution, which is also evident from the deeper MLD in all models
(Fig. 9a). Recent studies by Parampil et al. (2016) have shown that
TropFlux derived NHF over the NIO is more realistic when compared
with OAFLUX and satellite derived products. All the CORE-II models
underestimate the NHF as compared to observations (Fig. 10b) during
March–October. Most models show a cold SST bias during spring but
the majority shows warm bias during summer (July–August) (Fig. 10a).
The wind speed is strong over AS in CORE-II during spring but it is
weaker during peak summer (August) as compared to other wind speed

13



H. Rahaman, U. Srinivasu, S. Panickal et al. Ocean Modelling 145 (2020) 101503

Fig. 9. (a) Seasonal cycle of MLD from all CORE-II model simulations and WOA observation averaged over northern AS (10–25◦N, 55–70◦E) (b) scatter plot of MLD vs SST
bias over northern AS for the individual models in March. For the observations (NOAA-OI) the SST bias is just zero while the MLD (32 m) is the reference for that month. The
correlation coefficient between model MLD and SST bias is 0.639, which is significant at 99% confidence level.

products (figure not shown). This leads to an over estimation of the LHF
in model. The overestimation of the LHF due to CORE-II wind speed is
also shown in Fig. 4 and Table 4. As previously noted, wind speed is
not the sole factor determining the LHF (Rahaman and Ravichandran,
2013). They showed that the LHF overestimation is mainly due to the
positive biases of CORE-II near-surface air temperature and specific
humidity.

Fig. 10d shows the seasonal evolution of ensemble mean SST and
NHF from observations, CORE-II and CMIP5 simulations. The NHF
reaches its maximum in April whereas SST attains its maximum in
May. Studies have shown that the seasonal evolution of SST tendency
matches well with the NHF seasonal cycle (Chowdary et al., 2015;
Sayantani et al., 2016; Kurian and Vinayachandran, 2007).

In summary, the bimodal semiannual cycle of SST in the AS is
well captured by the CORE-II forced simulations, revealing weaker
biases than the coupled CMIP5 models. We conjecture that the cold
SST bias and under-estimation of SST maximum in the pre-summer
monsoon season reflects a problem with simulated oceanic processes
since the CORE-II ensemble NHF is reasonably well matched with
both observational products. Additionally, the inability to reach the
minimum SST during the summer monsoon season may arise from
biases in the wind forcing (see Section 4.1.1) as well as simulated
oceanic processes.

4.2.2.2. Bay of Bengal (BoB). Fig. 11a shows the SST seasonal cycle
over the BoB from CORE-II simulated models and observation. As for
the AS, the semiannual cycle is very prominent in the BoB, with peak
SSTs in May and October. Although the SST reduces rapidly over the
AS following the monsoon onset, SST in the BoB remains higher than
28 ◦C, making the BoB favorable for deep atmospheric convection
(Gadgil et al., 1984; Graham and Barnett, 1987). The magnitude of
SST reduction in the BoB is smaller (∼1 ◦C) than in the AS (2–
3 ◦C). This difference arises from the BL present in the BoB, with this
layer suppressing ocean vertical mixing and thus maintaining a higher
SST throughout the year (Thadathil et al., 2007; Shenoi et al., 2002;
deBoyer Montégutet et al., 2007; Sprintall and Tomczak, 1992). The
models are able to simulate the observed seasonal cycle but mostly
underestimate the observed SST, with KIEL and KIEL025 as exceptions.
This underestimation of SST could be due to the models’ inability
to simulate properly the (observed) BL thickness (Thadathil et al.,
2007). Several studies point to the impact of BL on BoB’s SST variation
(e.g. deBoyer Montégutet et al., 2007; Saji and Yamagata, 2003; Saji
et al., 2006; Girishkumar et al., 2011). The model study of Rahaman
et al. (2014) suggested the importance of relatively fine vertical grid
spacing (∼2 m) to properly represent the BL features. Note that most
of the CORE-II models have vertical grid spacing no finer than ∼5 m in
the upper ocean.
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Fig. 10. Seasonal cycle of SST over the Arabian Sea (AS) from (a) CORE-II simulations (c) CMIP5 simulations. The model ensemble mean and observed SST are also shown as
dashed thick gray and blue lines, respectively. (b) Seasonal cycle of net heat flux from all the CORE-II simulations as well as two observations (NOCS and TropFlux in dashed
thick red and black lines, respectively). (d) Seasonal cycle of CORE-II and CMIP5 ensemble mean and NOAA-OI SST (left axis) and net heat flux (NHF) from CORE-II ensemble
simulation and observations (NOCS and TropFlux; right axis). The legend for individual models is the same in panels a and b.

Fig. 11. Same as Fig. 10 but for the Bay of Bengal (BoB).
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Further evidence for the oceanic role in establishing the SST biases
can be seen in Fig. 11b, which shows that the CORE-II ensemble mean
surface heat fluxes closely follow the TropFlux observations with little
spread across the models. As pointed out by Parampil et al. (2016), data
from NOCS overestimates the NHF compared to other observational
products. This bias is also reflected in Fig. 11b where the NOCS NHF
is larger than TropFlux throughout the year.

In contrast to the CORE-II forced simulations, the coupled CMIP5
simulations show larger SST bias ranging up to −2 ◦C almost through-
out the year with maximum during February–May (Fig. 11c). The
inter-model spread is large in coupled models compared to the CORE-
II forced simulations. Fig. 11d shows the seasonal variation of the
ensemble mean SST and the NHF from both CORE-II and CMIP5
along with observations, with CORE-II models better representing the
seasonal variation of SST in the BoB than CMIP5 models, showing a
rather uniform offset of 1 ◦C over the year compared to observations.

4.2.2.3. Eastern Equatorial Indian Ocean (EEIO). SST over the Indian
Ocean generally shows large-scale seasonal variability, but SST varia-
tion in the EEIO remains within about ±0.5 ◦C (Fig. 12a). The mean SST
is above 28 ◦C throughout the year, thus favoring deep atmospheric
convection (Gadgil et al., 1984) and rainfall throughout the year.
Fig. 12a shows the EEIO SST seasonal cycle from CORE-II forced
models and observation. The observation shows that SST exceeds
29 ◦C throughout the year and peaks in April. All models are able to
capture the observed seasonal cycle with comparatively small biases
(∼0.25 ◦C), except ACCESS and AWI, both of which show a systematic
year-round cold bias of ∼0.5 ◦C. Similar to the AS and the BoB, the
NHF over the EEIO is also underestimated by all models compared to
both observational products. The CORE-II ensemble mean value shows
good agreement with the observations, but a large inter-model spread
exists throughout the year, with all models showing systematically
warm or cold biases. KIEL and FSU show positive SST biases during
April–May despite a NHF that underestimates the observed values. This
result suggests that the NHF may not be a major factor determining the
evolution of SST during April–May, but that instead the ocean dynamics
likely dominate. Over the EEIO, particularly off Java and further east,
horizontal advection through the ITF and vertical entrainment by
upwelling are the most important processes balancing the annual mean
heat budget, and these processes in turn control the SST variation (Qu
et al., 1994; Du et al., 2005). In the EEIO, the horizontal advection by
the WJ is also expected to contribute to the SST (e.g. Halkides and Lee,
2009).

Coupled CMIP simulations show large cold biases throughout the
year and inter-model spread is much larger than their CORE-II counter
parts (Fig. 12c). The systematic inter-model spread is ∼2 ◦C and the
systematic bias is much larger (∼1–1.5 ◦C) in coupled simulations
compared to 0.25–0.5 ◦C in CORE-II simulations. The zonal wind
stress over this region is westerly from March to October and largest
during northern hemisphere spring and autumn, driving the bi-annually
observed equatorial jets in spring and autumn (Wyrtki, 1973). These
equatorial jets deepen the thermocline in the east, thus contributing to
SST increase in the EEIO.

Fig. 12d shows the ensemble mean SST seasonal cycle from the
CORE-II and the CMIP5 simulations along with observations. The en-
semble mean NHF from the CORE-II simulations and observations
(TropFlux and NOCS) are additionally overlaid. The CORE-II ensemble
mean closely matches the observed SST seasonal cycle, whereas the
CMIP5 simulations show a systematic cold bias throughout the year
with a maximum bias of about 1.2 ◦C during December–January.
Additionally, the peak SST in CMIP5 models is reached in May, which is
one month after the observed peak in April. The NHF from the CORE-II
ensemble is underestimated throughout the year except in autumn. As
for the AS and the BoB, the EEIO NHF peaks one month earlier than
the SST, so that the tropical Indian Ocean SST responds to NHF changes
after roughly one month.

4.2.2.4. Thermocline ridge (tr). SST in the TR (also called the Sey-
chelles Dome) region shows a dominant annual cycle, rather than a
semiannual cycle as in the AS, the BoB and the EEIO (Levitus, 1987;
Rao and Sivakumar, 1999; Vialard et al., 2009). SST in the TR region
has a large impact on the Indian summer monsoon (Annamalai et al.,
2005) and the tropical cyclone activity (Xie et al., 2002). Therefore, it
is important for coupled prediction models to simulate the observed
SST variability over TR. In particular, resolving its seasonal cycle
provides a useful benchmark test for model performance. Fig. 13a
shows the seasonal variation of SST from observation and the CORE-
II simulations. Observational estimates show an increase in SST from
August to April followed by decrease from May to July as the cross-
equatorial wind starts evolving (Fig. 13a). Most of the model capture
this seasonal variation, but they generally overestimate the observed
SST throughout the year with a maximum during July–August (up to
1 ◦C). AWI and ACCESS capture the observed July–August cooling
over the TR region. However, both models have a consistently cold
bias over other sub-regions. The NHF is underestimated (Fig. 13b)
systematically by all CORE-II simulations with an ensemble bias (−60
W/m2) during July–August (Fig. 13b). Horizontal advection tends to
warm the SST in austral winter owing to the southward Ekman heat
transport associated with the Indian summer monsoon (Yokoi et al.,
2012). Despite a large negative NHF in the CORE-II simulations, many
models show a warm bias during August, thus suggesting the role of
excess heat transport from north of the Equator by the wind driven
Ekman transport. Yokoi et al. (2012) also showed that cooling by
vertical turbulent diffusion in the ocean becomes most effective in the
austral summer, owing to the shallow mixed layer and correspondingly
shallow thermocline during that season. Positive SST biases may have
arisen due to the reduced vertical cooling since the thermocline is
deeper (85–140 m) than found in the observations (75–80 m) (not
shown). Similarly, the CMIP5 simulations also capture the observed
seasonal cycle of SST, but exhibit a larger inter-model spread than the
CORE-II simulations. Analysis indicates that almost half of the CMIP5
models shows a warm bias and the rest show a cold bias, thus leading to
an ensemble mean CMIP5 SST that is close to the observation. Nagura
et al. (2013) analyzed 35 coupled general circulation models (CGCM)
including some CMIP5 models for the simulations of the longitudinal
biases in the Seychelles Dome. They showed that the CMIP5 models
are unable to simulate the longitude of the upwelling dome and the
magnitudes of the annual and semiannual cycles of thermocline depth
variability in the dome region. These biases could help to explain why
some of the CMIP5 models generally have problems reproducing the
observed seasonal cycle of SST over this region. GFDL-ESM2G shows
a systematic cold bias throughout the year (Fig. 13c). This region also
shows that the NHF leads SST by about one month (Fig. 13d).

4.2.3. Zonal SST variation along the equator
Murtugudde and Busalacchi (1999) first reported that the mixed

layer-thermocline interactions in the EEIO potentially imply a coupled
feedback. Furthermore Saji et al. (1999) and Webster et al. (1999)
showed that coupled feedbacks in the equatorial Indian Ocean are
critical for variability in the tropical Indian Ocean. This variability
mode is known as the IOD. Many studies have since shown that IOD
is intrinsic to the Indian Ocean with a potential kick from the massive
western Pacific convection center (Annamalai et al., 2003; Annamalai
and Murtugudde, 2004; Saji et al., 2006; Wang et al., 2016; Wang and
Wang, 2014).

Fig. 14a shows the east–west SST gradients from CORE-II simu-
lations and results from CMIP5 simulations are shown in Fig. 14b.
Observational estimates for mean SST in the eastern and western
regions are 29.6 ◦C and 27.2 ◦C respectively (Fig. 14a). All models show
a warm bias of up to 0.9 ◦C in the western equatorial Indian Ocean
(45–60◦E) (Fig. 14a). This sort of bias concentrated on the western
equatorial IO would have implications for the modes of interannual
variability. The observation shows a sharp gradient at 65◦E and nearly
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Fig. 12. Same as Fig. 10 but for the Eastern Equatorial Indian Ocean (EEIO).

Fig. 13. Same as Fig. 10 but for the Thermocline Ridge (TR) region.

constant values of 29.3 ◦C in between 65–95 ◦E with a dip of 29.1 ◦C
at 80 ◦E. All models show nearly constant SST between 65–95 ◦E with
a spread of +∕− 0.5 ◦C compared to observations. The KIEL group of
models as well as FSU and FSU2 represent the upper estimates of SST

along the equator, while AWI and ACCESS show a cold bias between
65–95◦E providing the lower SST estimate of the ensemble. The CORE-
II ensemble mean shows a general warm bias stronger evolved west
of 65 ◦E. In contrast to the CORE-II forced simulations, most CMIP5
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Fig. 14. Annual mean SST along the equator from (a) CORE-II models (b) CMIP5
models, their ensemble mean and NOAA-OI observations are also shown in thick gray
and blue colors.

simulations show colder SST throughout the basin as well as a large
model spread (Fig. 14b). Overall, CORE-II models show a higher skill
in simulating zonal SST distribution along the equator than the CMIP5
models.

We summarize this analysis by noting that the seasonal variation
of SST in different sub-regions in the Indian Ocean is well captured
by the CORE-II models compared to the coupled CMIP5 simulations.
In particular, the bi-modal SST variability over the AS, the BoB and
the EEIO are well reproduced in CORE-II models, while the absolute
climatological values differ regionally and seasonally by up to 1.8 ◦C,
with a broad range of variations shown by the models. However,
both CORE-II and CMIP5 models exhibit deficiencies in capturing the
equatorial Indian Ocean dynamics, as evident from the flat zonal SST
gradient and the warm bias over the open ocean upwelling dome
south of the equator. The seasonal prediction skill for the tropical SST
anomalies is a major predictability source for monsoon precipitation in
the coupled models and is closely linked to the ability to simulate the
SST mean state (Lee et al., 2010). We conjecture that the relatively poor
skill of the coupled models at simulating the mean SST in the Indian
Ocean versus the higher skill in the CORE-II simulations indicates the
role for coupled feedbacks that amplify ocean biases. These results offer
a useful benchmark for use in developing methods to reduce biases in
coupled prediction models.

4.3. Surface salinity and barrier layer

In this section, we study the behavior of the surface salinity and
associated BL within the Indian Ocean. Much of this behavior is affected
by precipitation and river runoff forcing, with CORE-II simulations
using interannually varying monthly mean precipitation derived from
satellite corrected rainfall and interannually varying monthly mean
river runoff (Dai et al., 2009; Danabasoglu et al., 2014). Additionally, as
detailed in Griffies et al. (2009) and Danabasoglu et al. (2014), CORE-
II simulations are integrated with surface salinity restoring in order to
reduce long-term drifts in the thermohaline properties of the models.
Details are given in Section 3.1. The monthly climatology is computed
over the period 1982 to 2007 for all models.

4.3.1. Surface salinity
Fig. 15 shows the annual mean SSS from the CORE-II models

and their biases with respect to observation. Fig. 15a shows the SSS
from WOA observation, Fig. 15b shows the ensemble mean from all
models and Fig. 15c shows the ensemble bias. Asymmetry in the SSS
distribution with higher salinity in the AS and lower salinity in the
BoB is seen in the observation and is reproduced by all simulations.
However, all models show a basin wide positive salinity bias with large
values over the northern BoB and the SEAS. Interestingly, the biases
are much smaller along the observed salinity fronts aligned towards
Madagascar Island from Sumatra. Some models, such as CNRM, CMCC,
AWI and BERGEN, even show lower salinity along this path. Due to
this opposite sign of the bias, the basin averaged salinity bias is much
weaker in these models. Both FSU models show a basin wide bias of
0.44 and 0.48 psu, which is much larger than the ensemble mean bias
(0.16 psu) as well as the bias in other models. The annual mean basin
averaged salinity from WOA observation is 34.77 psu and over the
northern BoB it reaches down to 32.12 psu due to the strong influence
of river runoff.

In the northern BoB, the mean SSS bias in the individual models
ranges between 0.3 and 0.5 psu with higher values in FSU and FSU2
(2.1 and 1.8 psu, respectively). The slight improvement in FSU2 may
be due to an improvement in model physics. The low-salinity water
flowing out of the BoB along its eastern boundary (Shetye et al., 1996;
Han and McCreary, 2001; Jensen, 2001; Sengupta et al., 2006) crosses
the basin with the SEC and reaches the western Indian Ocean to Mada-
gascar. The observed low salinity band south of the equator between
5◦S and 20◦S is well reproduced in all models. This low salinity region
also corresponds to the region of Inter Tropical Convergence Zone
(ITCZ) associated with locally large precipitation (Yu, 2011; Perigaud
et al., 2003). The annual SSS bias is only 0.11 psu over the entire basin
in GFDL-GOLD (Fig. 15p). KIEL shows a large positive bias over the
BoB. ACCESS, GFDL-MOM and NCAR show a large positive bias over
the eastern AS. A positive bias over the SEAS can be attributed to the
inability of these models to transport low salinity water by the EICC.
This behavior can be seen in the depth versus time plots of salinity over
this region as well (see Fig. 22a and Section 4.4.2). SSS simulations
improve significantly upon refining the model’s horizontal resolution
(KIEL025, GFDL-MOM025) as compared to their coarser counterpart.
Han et al. (2001) reported that advection of salinity by a coastal current
plays an essential role in the salinity balance. This may be the reason
for better salinity simulation in a higher resolution model. This result
contrasts the SST results (Fig. 5), which revealed only minor sensitivity
to the changes in horizontal grid resolution.

Unlike SST, spatial structure of annual mean SSS and its bias are
roughly symmetric across all seasons. However, different regions differ
in seasonal SSS variations (Fig. 16). The minimum surface salinity
over the NIO is seen in October over the north BoB (Fig. 16b; Rao
and Sivakumar, 2003; Sengupta et al., 2006). FSU and FSU2 seasonal
cycles are outliers with a systematic positive bias of ∼1 psu in the BoB
(Fig. 16b) and in the other regions as well with slight reduction in
bias. As in the case of SST, SSS also shows large inter-model spread.
In the BoB, only CMCC is able to capture the seasonal cycle with
lowest observed salinity in October (Fig. 16b). Peak river runoff and
the integrated summer rainfall lead to a SSS minimum in October. EEIO
shows two salinity lows during the inter-monsoon months of March–
April and October–November in the seasonal SSS variations (Fig. 16c).
These lows are associated with precipitation due to ITCZ seasonality
over this region. The models are able to capture this semi-annual signal,
but with varying biases and large inter-model spread. SSS does not
change significantly over the SIO on seasonal time scales (Fig. 16e). It
is almost constant in WOA at 35 psu and the models are able to capture
this near constant SSS throughout the year. Almost all models show a
positive salinity bias in the AS, the BoB and the SEAS (Fig. 16a, b, f),
but in FSU and FSU2 this bias is seen in all the sub-regions.

In summary, the CORE-II SSS shows good representation of the
asymmetric salinity pattern in the Indian Ocean, with high salinity
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Fig. 15. Annual mean SSS bias (model minus observation) from CORE-II simulations (color shade) with contours for the annual mean (d-s). The model ensemble mean bias is
shown in the upper right panel (c). Observed annual mean SSS from WOA is shown in the upper left panel (a). Ensemble mean from all CORE-II models is shown in the upper
middle panel (b). Contour levels for WOA and all models are same. Units are in practical salinity. Basin averaged SSS values from WOA observation, ensemble mean as well as
basin averaged bias of individual models are shown in upper right corner of each panel.

water in the AS and low salinity water in the BoB. Most of the models
underestimate the freshening in the northern BoB, with improvement
seen in high resolution eddy permitting models.

4.3.2. Barrier layer and its impact on SST bias
The time varying depth of the mixed layer is a crucial parameter

for the mixed layer heat budget and hence for the SST (Chen et al.,
1994; Qiu et al., 2004). Challenges of ocean models is to simulate this
time varying MLD over global and regional oceans. In the Indian Ocean,
the upper ocean stratification in temperature and salinity does not
necessarily coincide. Depending upon the freshwater input, it differs
particularly over the BoB, the EEIO and the SEAS (Thadathil et al.,
2007; Sprintall and Tomczak, 1992). Owing to its unique geographi-
cal location, the BoB receives large amount of freshwater both from
local precipitation and river discharge, estimated at about 4700 and
3000 km3/yr, respectively (Sengupta et al., 2006). Annual freshwater
input exceeds evaporation and hence it makes the BoB relatively fresh
compared to the rest of the basin. This low saline water is confined
within a thin layer near the surface and makes the top of the halocline
shallower than the top of the thermocline. This unique structure makes
the mixed layer limited by the top of halocline and an isothermal
layer depth (ILD) limited by top of the thermocline. The difference

of these two layers is called a BL (Thadathil et al., 2007; Sprintall
and Tomczak, 1992). BL also forms over the SEAS and the EEIO. This
layer inhibits vertical mixing and hence restricts entrainment cooling
from the thermocline and affects the mixed layer heat budget and
SST variations. Observational studies show that on a seasonal scale
this layer thickness is ∼10–60 m (deBoyer Montégutet et al., 2007;
Thadathil et al., 2007). It has been shown in these studies that BL
formation potentially plays a significant role in mixed layer heating.
In this section, we assess the BL from all the simulations and its effect
on SST. The ILD and MLD are computed based on Kara et al. (2000)
corresponding to temperature change of 1 ◦C at the surface.

The annual mean BL from all model simulations and WOA is shown
in Fig. 17. Sprintall and Tomczak (1992) show that three regions
(EEIO, north BoB and SEAS) consistently display a significant BL of
10–50 m thickness throughout the year. There is a BL in the north
BoB (Vinayachandran et al., 2002; Thadathil et al., 2007; deBoyer
Montégutet et al., 2007) due to inflow of freshwater from adjoining
rivers and local precipitation during the Indian summer monsoon, thus
making the mixed layer very thin (∼10–20 m) and in turn thickens
the BL (Fig. 17). The observed annual mean BL over the northeastern
BoB is ∼40–44 m (Fig. 17). The northwestern BoB shows slightly
thinner BL, mainly since the western BoB experiences a regime of excess
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Fig. 16. Seasonal cycle of sea surface salinity from all CORE-II models and WOA observation over different sub-regions of the Indian Ocean (see Section 3.4 for sub-regional
specifications).

evaporation as compared to the eastern BoB (Sprintall and Tomczak,
1992; Pokhrel et al., 2012b). The BL in the western BoB is maintained
by the river runoff received during summer monsoon (Vinayachandran
et al., 2002; Sengupta et al., 2006). The east–west difference in BL over
BoB is most prominently simulated by KIEL and KIEL025. Other models
are unable to capture this east–west gradient.

To see how the models simulate the seasonal variation of the BL,
we show the time series of the BL averaged over the BoB, the SEAS
and the EEIO in Fig. 18. Observation shows that the seasonality in the
BL becomes most prominent over the BoB during December–January
when it becomes ∼40 m thick (Fig. 18a) and is mainly driven by
substantial river runoff into the north BoB. Most of the models are
unable to capture this winter time thick BL in the northern BoB, though
the NEMO group of models (KIEL at both resolutions, CERFACS, CNRM
and CMCC) do a reasonable job with KIEL025 and CERFACS have BL
slightly thicker than observed value. MOM and HYCOM class of models
are unable to capture this BL. Notably, horizontal refinement of grid
resolution (e.g., MOM025) improves the BL simulations (Fig. 30b). We
conjecture that the inability of the MOM class of models to simulate

the observed BL, in contrast to the NEMO class, arises from differences
in boundary layer parameterizations.

The second region with a prominent BL occurs over the EEIO west
of Sumatra. Observation shows an annual mean BL thickness of ∼20–
25 m with seasonality and peaks during November–December with a
BL thickness of 30 m. KIEL025 and CERFACS capture the observed
mean and seasonality (Fig. 18b). The remaining NEMO models also
capture this annual mean and seasonality with reasonable accuracy.
The remaining models underestimate the BL. FSU and FSU2 mod-
els underestimate the BL by ∼10 m, and during the peak season
(November–December) it is doubled (20 m). The presence of a BL
throughout the year is due to the local maximum in P-E present
throughout the year (Oberhuber, 1988).

The SEAS is the third region where BL is prominent. Observation
shows a thick BL (∼30 m) over the SEAS (Fig. 18c). Once again, the
NEMO class of models performs better than the other models. The other
class of z-coordinate models based on MOM (MOM, MOM025, ICTP,
and ACCESS) and NCAR as well as the isopycnal model BERGEN pro-
vide a reasonable simulation of the location and amplitude of the BL.
In the hybrid vertical coordinate model FSU and FSU2, BL amplitude is
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Fig. 17. Annual mean barrier layer thicknesses (BL) in meters from CORE-II simulations and WOA observation. The observed annual mean BL from WOA is shown in upper left
panel. The ensemble means BL from all simulations is shown in the upper middle panel. The individual model performances are shown in other panels.

largely underestimated as compared to WOA observation. The seasonal
cycle of the BL shows that the BL is maximum in January–February
(∼50 m) and then gradually decreases and is almost annihilated in
April (Shenoi et al., 2004) (Fig. 18c). Large spread (10–55 m) is
seen among the models in simulating the peak BL during January–
February. The superiority of the NEMO model class in reproducing the
seasonal cycle of BL can be seen with KIEL025, which is able to capture
the peak magnitudes with slight overestimation. Although the MOM
simulations are unable to reach the highest value for the BL thickness,
the increased resolution clearly improves the peak magnitude. FSU and
FSU2 are notably poor in reproducing the seasonal cycle. The inability
of reproducing the BL is mainly due to the inability to bring the low
salinity water from the north BoB by the EICC during November–
January (Shankar et al., 2002; Rao and Sivakumar, 2003), as explained
in Section 4.3.1.

4.4. Subsurface features

4.4.1. Subsurface temperature
The spatial distribution of subsurface temperatures in the tropical

Indian Ocean has distinct regional characteristics (Colborn, 1975). It
is well documented that all climate models tend to render a diffuse
thermocline with mostly deeper than observed thermocline (Cai and

Cowan, 2013; Tao et al., 2015; Flato et al., 2013). The models’ ability to
simulate the temporal and spatial variability, particularly on a seasonal
timescale, determines how well the model performs in terms of mon-
soon strength and variability. It has been reported in IPCC-AR5 (Stocker
et al., 2013) that the thermocline biases in CMIP5 have not improved
much despite the increase in resolution compared to CMIP3 (IPCC
AR4) (Cai and Cowan, 2013; Tao et al., 2015; Flato et al., 2013). It is
important in this context to investigate how the CORE-II simulations,
perform in simulating subsurface dynamics and thermodynamics.

The average thermocline depth in the NIO is about 100 m (Rao and
Sivakumar, 2000; Yokoi et al., 2008, 2009). We thus take 100 m as
a reference depth, with Fig. 19 showing the 100 m temperature bias
from models relative to WOA. The WOA shows three distinct warm
regions over the AS, the EEIO, and along 25 ◦S–10 ◦S in the south
Indian Ocean. The relatively cooler region over the thermocline ridge
corresponds to the open ocean upwelling region (Xie et al., 2002;
Schott et al., 2009). Similar to the SST distribution, all models show
a warm bias over this region as well as the western equatorial Indian
Ocean, with ICTP and BERGEN showing the largest bias (>3 ◦C) and
CMCC and GFDL-GOLD showing the smallest in these regions. The basin
averaged bias is largest in BERGEN (2.4 ◦C) followed by ICTP (2.1 ◦C),
whereas GFDL-GOLD shows a negligible bias of 0.1 ◦C. The refined
resolution reduces the bias especially in GFDL-MOM025. Among the
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Fig. 18. Seasonal cycle of Barrier Layer Thickness over (a) Bay of Bengal, (b) Eastern Equatorial Indian Ocean, and (c) South Eastern Arabian Sea from all CORE-II model
simulations and WOA observation.

NEMO group of models, CMCC performed best with a basin averaged
bias of 0.49 ◦C. Interestingly, both the isopycal (BERGEN) and hybrid
class of models (FSU, FSU2) show larger biases than the z-coordinate
models. This result indicates a common weakness of these models in
the representation and/or parameterization of near surface physical
processes.

To see how the models capture the seasonal cycle of subsurface
temperature, we plot the depth versus time mean temperature and
the corresponding bias over different regions. The vertical levels of
all models are regrided to MOM depth levels. Fig. 20a shows the
upper ocean seasonal evolution of temperature from WOA observa-
tion, 16 CORE-II model simulations and its ensemble mean in the
AS. The biases of individual models are also shown in shade with
mean values represented in contours. The warm surface temperature
seen in April–May (Fig. 20a) penetrates down to 40 m with values
similar to the surface (∼30 ◦C) in the WOA observation, which is
well represented by the CORE-II ensemble mean. The upper ocean (0–
100 m) is warmer throughout the year with maximum of 30 ◦C right
at the surface during April/May, but decreasing to 26 ◦C near 40 m.
Below 100 m, temperature changes sharply and reaching ∼11 ◦C at
500 m depth. The ensemble mean temperature variation is close to
observed values. The ensemble mean bias in the thermocline depth and
below (100–300 m) shows much lower values (∼1 ◦C) compared to
many individual models, thus indicating a non-unidirectional bias of
the models. The MOM group of models (GFDL-MOM, GFDL-MOM025,
ICTP and ACCESS) shows a large bias in the thermocline with a range
between 1–3 ◦C, with the highest bias in the coarsest model ICTP.
Among all models, MRI shows the maximum bias of ∼4–5 ◦C in the
thermocline region. In the AS for the NEMO group of models (KIEL,
KIEL025, CERFACS, CNRM and CMCC), the bias in the thermocline
region (100–200 m) is much less (∼1 – 1.5 ◦C) with almost negligible

bias in CNRM. However, these biases are increased in the BoB and
the EEIO (Fig. 20b,c). In contrast, the deeper layers (below 250 m)
are much cooler (∼1.5 ◦C) in GFDL-GOLD, FSU and FSU2 in the AS
(Fig. 20a) and this bias reduces in the BoB and the EEIO (Fig. 20b,c).
These biases cancel each other out such that the model ensemble
mean resembles the observations. In BERGEN, the thermocline shows
a positive bias in the AS, whereas it shows a negative bias in the BoB.
But, it is much narrower relative to the MOM group of models (MOM,
MOM025, ICTP and ACCESS), which shows a broader and more diffuse
thermocline. Increased horizontal grid resolution does not show any
significant change in the thermocline bias with slight increases in the
thermocline bias for both GFDL-MOM025 and KIEL025 as compared
to their coarser resolution counterparts (Fig. 20a,b,c). This behavior
suggests that these models are producing enhanced spurious mixing due
to numerical truncation errors (Griffies et al., 2000; Ilıcak et al., 2012).
All models show a cold and warm bias within 1 ◦C in the upper ocean
(0–100 m), except AWI which shows a cold bias (∼1–2 ◦C) in the BoB
Fig. 20b. The thermocline continues to be diffuse and warmer for all
models except GFDL-GOLD and BERGEN, which are cooler than WOA.

In the EEIO, observations show a stronger seasonal cycle of tem-
perature down to 500 m depth, which is absent in other regions of
the tropical IO (Fig. 20c). All the models show a warm thermocline
bias with ICTP and MRI showing the largest bias (∼3–4 ◦C). Also note
that the thermocline bias is largest in the EEIO as compared to AS
and BoB. GFDL-GOLD is an exception among all models in all regions,
with this model showing a cold thermocline bias with magnitude range
of 0.5–1 ◦C. The positive subsurface bias is largest over the EEIO as
compared to the AS and the BoB. The isotherms show a semi-annual
signal with peaks in May and November that penetrate down to 500
m depth, which is in general present in all the models shown here.
This deep penetration of seasonal variation in the isotherms is due
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Fig. 19. The upper left panel shows the temperature (degrees Celsius) at 100 m depth from WOA (a); the upper middle panel shows the same from the CORE-II ensemble (b)
and the upper right panel shows the ensemble bias at 100 m depth with respect to WOA (c). The remaining panels show the temperature bias (model minus observation) at 100
m depth from all CORE-II individual models (d-s). The basin averaged values are given in upper right corner of each panel.

to the convergence of warm water from the western Indian Ocean
to the eastern Indian Ocean associated with the spring and autumn
WJ (Webster et al., 1999; Rao and Sivakumar, 2000). The equatorial
downwelling Kelvin waves generated in May–June and November prop-
agate eastward and deepen the thermocline in the region off Sumatra
(Du et al., 2005). The warm layer of 30 ◦C appears in February and
gradually reaches a deeper layer in May and then again cooling down to
29 ◦C in June. This near surface observed structure is well captured by
the ensemble simulation. The observed vertical temperature gradients
are well captured in GFDL-GOLD. The EEIO shows a mixed response
to refinement in grid resolution, with a slight bias reduction over the
thermocline region but degradation below the seasonal thermocline.
The ensemble mean variation closely followed the WOA but with a
warm bias almost throughout the upper ocean with highest values in
the thermocline region (Fig. 20c).

4.4.2. Subsurface salinity
Salinity stratification is mainly driven by the precipitation, evapora-

tion and freshwater through river runoff and by the horizontal advec-
tion which also play an important role (Sprintall and Tomczak, 1992).
In the NIO, near-surface haline stratification indirectly influences the
evolution of the mixed-layer temperature by inhibiting the entrainment

of subsurface cooler water (Moshonkin and Harenduprakash, 1991; Rao
and Sanil Kumar, 1991; Rao et al., 1991; Rao and Sivakumar, 2003;
Howden and Murtugudde, 2001; Shenoi et al., 2002, 2004; Miller,
1976). Many modeling studies have also shown that salinity plays
an important role in the evolution of SST through MLD variations in
the tropical Indian Ocean (Cooper, 1988; Masson et al., 2002, 2005;
Sharma et al., 2007, 2010; Durand et al., 2011; Fathrio et al., 2017b).
These results motivate us to examine the vertical salinity gradients
in the tropical Indian Ocean, with the vertical difference of salinity
between surface and 100 m shown in Fig. 21.

The WOA shows three regions with strong haline stratification
(>1.4 psu), namely: BoB, EEIO and SEAS. The strong vertical salinity
differences are noticed primarily in the northern BoB. The observed
difference is more than 3 psu over the northern BoB. The MOM group
of models (GFDL-MOM, GFDL-MOM025, ACCESS and ICTP) and the
NEMO class (KIEL, KIEL025, CERFACS, CNRM and CMCC) show their
strongest stratification there as compared to WOA. The stratification is
rather weak over the BoB in AWI, BERGEN, FSU and FSU2 as compared
to WOA.

Rao (2015) has shown that within the Indian Ocean warm pool,
near surface haline stratification exist over the SEAS, the southwestern
BoB and the EEIO. They also reported that a strong coupling between
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Fig. 20a. Seasonal variation of mean temperature (degrees Celsius) as a function of depth averaged over the Arabian Sea (contour) and its bias (model minus observation) in color.
The upper left panel shows the mean seasonal variation of temperature from WOA observation and the upper middle panel shows the mean seasonal variation of temperature from
the ensemble mean and the upper right panel shows the ensemble mean bias with respect to WOA. Contour levels for WOA observation, all individual models and its ensemble
mean are same.

near surface salinity stratification and the subsequent evolution of
warm pool core is most prominently seen over the SEAS. The near-
surface vertical salinity stratification over the SEAS is instrumental
for the mini-warm pool in the AS (Durand et al., 2004), which is
influenced by the advection of low salinity waters from the BoB during
November–February (Rao et al., 2015). Hence, it is of particular interest
to determine how the CORE-II models capture this stratification.

Since salinity stratification mostly modulates the upper ocean tem-
perature, we show the seasonal evolutions of salinity with depth over
the SEAS, the BOB and the EEIO. The vertical levels of all models are
regrided to MOM depth levels. Fig. 22a shows the seasonal evolution of
salinity with depth over the SEAS. The freshening in the upper ocean
(0–50 m) during December–February is very prominent in the WOA
observation. This freshening is reasonably reproduced by all models,
but most prominently by KIEL, KIEL025 and MOM025. Below this fresh
water, there is an intrusion of saltier water present throughout the
year with peak values in October–November at about 50 m depth. This
intrusion of saltier water is from AS high salinity water (ASHSW), as
well as salty waters from the Red Sea and Persian Gulf (Shenoi et al.,
1999, 1993, 2005; Levitus, 1983; Shetye et al., 1994; Durgadoo et al.,
2017).

Below this saltier layer there is fresher water seen in WOA, with a
minimum at 200 m depth, which can also be seen in Fig. 23c. Note that
individual profiles based observations also show this structure (Shankar
et al., 2005; Shenoi et al., 2005). The upper ocean is saltier during
December–February in all simulations, with salinity larger than 1.2
psu in GFDL-MOM, ACCESS, ICTP, NCAR, BERGEN, FSU and FSU2.
Aside from BERGEN, these models also show a saltier thermocline
region compared to observations, as well as an increased salinity down
to 300 m depth. Within the MOM models, ICTP and GFDL-MOM are
unable to capture the winter time upper ocean freshening. A refinement
of the horizontal resolution (MOM025) improves the simulation and
allows the model to capture these low salinity values. Among all
the models, BERGEN shows the freshest thermocline in contrast to a
positive salinity bias for the thermocline in other models (Fig. 22a).
The CORE-II ensemble mean variation captures the overall observed
vertical structure, but with a positive salinity bias with largest value in
the thermocline. The ensemble mean is also unable to resolve the local
minimum in salinity below.

Fig. 22b shows the seasonal cycle of vertical salinity over the BoB.
The upper ocean (0–100 m) is much fresher ∼33–34 psu in observations
than in the SEAS due to the proximity of large freshwater input by
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Fig. 20b. Same as Fig. 20a but for the Bay of Bengal.

river runoff. MRI shows the smallest biases over depth and the seasonal
cycle. Most models show an upper ocean (0–100 m) fresh bias, except
FSU and FSU2 which show a much saltier upper ocean. There is a rather
large positive salinity biased thermocline in KIEL, KIEL025, CERFACS,
CNRM, CMCC, FSU and FSU2, whereas BERGEN shows a much fresher
thermocline as compared to WOA (Fig. 22b). The remaining models
show a slightly saltier (∼0.3 psu) thermocline. In the EEIO region
(Fig. 22c) we see a fresh surface layer (0–100 m), which is mostly
captured by all models except FSU and FSU2. Below 100 m, salinity
shows only weak variation in observations, remaining nearly constant
at 35 psu. However, the simulations show a spread with a positive
salinity bias in the upper thermocline and fresh bias in the deeper ocean
(also see Fig. 23d).

Fig. 23 shows the annual mean vertical salinity variations from
WOA and CORE-II simulations averaged over different regions. The
vertical salinity distribution shows distinct variations in the western
Indian Ocean (AS, SEAS, TR) as compared to the eastern Indian Ocean
(BoB and EEIO). Over the BoB and the EEIO, higher precipitation
reduces surface salinity compared to the western basin, where evap-
oration dominates precipitation (Pokhrel et al., 2012b) thus leading
to a saltier surface layer there. The observations show that in the AS
the high surface salinity decreases rapidly with depth to 200 m then
the observed salinity decrease is small, almost stable up to 800 m
depth, while deeper a stronger freshening occurs again. All simulations

show saltier upper ocean, except for BERGEN and AWI, which show a
fresh bias. Below 200 m all models reproduce a fresh subsurface layer.
Salinities in FSU and FSU2 are the freshest of all simulations.

This low salinity could be due to the unrealistic exchange of salty
water from the Red Sea and Persian Gulf in these models (Legg et al.,
2009; Durgadoo et al., 2017). In the BoB, the halocline is represented
by a strong gradient over the upper 100 m, which is captured by
almost all models, except for BERGEN, which shows a negative salinity
bias. Observations also show a local maximum in salinity around 200–
400 m depth, which is connected to the intrusion of high saline ASHSW,
Red Sea Water (RSW) and Persian Gulf Water (PGW) (Rochford, 1964;
Varadachari et al., 1968; Sastry et al., 1985; Vipin et al., 2015). All
models capture this subsurface salinity maximum except for BERGEN.
Below 400 m, FSU and FSU2 show a much fresher layer as compared
to WOA observation.

Vertical salinity variations in the SEAS show a saltier layer at 50 m
depth with a fresh layer above and below. As already seen in the AS, in
the SEAS models overestimate the surface and subsurface salinity, with
only BERGEN showing a clear local minimum between 100 m and 200
m depth. Below 600 m, all models are fresher than the observations.
In the TR region, the presence of ASHSW increases subsurface salinity
at 100–200 m depth. Although all models overestimate salinity in
the upper 400 m, they capture this increased salinity signature from
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Fig. 20c. Same as Fig. 20a but for the Eastern Equatorial Indian Ocean.

ASHSW and finally end with a rather constant salinity over depth below
1000 m, as seen in observations already further up in the water column.

In the SIO, a high saline subsurface layer exists at 200–400 m
depth. This salty layer is formed due to the presence of Indian Ocean
Central Water. The excess evaporation over precipitation forms high
salinity surface water (>35 psu) between 35 ◦S and 25 ◦S, winter
convection and downward fluxes of salt and heat causes the subtropical
water to extend with salinity above 35 psu to a depth of about 500 m
(Wyrtki, 1973). The subsurface salinity maximum in the south Indian
Ocean spreads towards the north and is carried by the South Equatorial
Current and reduces the thickness of the central water mass to 300 m
at 20 ◦S and 100 m at 10 ◦S. The subsurface salinity maximum is at
∼250 m depth, in which salinity can exceed 35.6 psu as reported by
Warren (1981). This feature is most strongly developed in the central
Indian Ocean, between 70 and 100 ◦E along 18 ◦S. Slight freshening
at 1000 m depth is seen in the observation, which is captured by most
models except ICTP and ACCESS. This freshening is due to the intrusion
of Antarctic Intermediate Water in this layer (Wyrtki, 1973). This low
salinity layer has a thickness of 500 m or more and can be identified
by a salinity minimum of 34.3–34.4 psu at the Subtropical Convergence
Zone. Warren (1981) has reported that the salinity minimum of Antarc-
tic Intermediate Water (AAIW) is at depth of 600–900 m along 18◦S
with depth generally increasing towards the west.

In summary, the vertical salinity structure is more realistically
captured by z-level models (MOM and NEMO group of models) except
for ACCESS and ICTP. The vertical salinity structure is less well repre-
sented by the isopycnal/hybrid models (BERGEN, FSU and FSU2). An
increased horizontal resolution in the model marginally improves the
salinity simulation.

4.5. Variations in the equatorial currents

4.5.1. Surface current
As seen in Fig. 24a, the CORE-II simulations capture the major

current systems shown in Fig. 1. During the northeast monsoon the
SC flows southward and is limited to the region south of 10◦N. The
surface flow reverses in April and November, during the inter-monsoon
period (not shown). Observations show that during the southwest
Monsoon, the SC develops into an intense jet with extreme velocities
of about 2 m/s during mid-May and reaching to 3.5 m/s during June
(INDEX, 1976–1979). This jet is very well reproduced in all the models;
however, models are unable to capture the observed magnitudes (not
shown). The SEC, the westward current south of 10◦S, does not undergo
any seasonal variation in direction throughout the year. The model
simulated SEC shows good fidelity in reproducing the spatial variability
seen in the observations (Fig. 24a). Compared to the observation all
models show a narrower SEC and an underrepresented SECC pattern.
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Fig. 21. The upper left panel shows the annual mean salinity stratification (surface minus 100 m depth) from the WOA observation, and the upper middle panel shows the same
for CORE-II model ensemble mean. Remaining panels show the same for the individual CORE-II models.

Fig. 24b shows the comparison of the seasonal cycle of the WJ
between different observations (OSCAR, CUTLER and LUMPKIN) and
the CORE-II model simulations. All observations show the spring (au-
tumn) jets peak in May (November) but differing in magnitude by ∼ 20
cm/s. Interestingly, all the models show a quite coherent but under-
represented autumn jets; however, there exists a large model spread
(25–45 cm/s) in the representation of the spring jet.

4.5.2. Subsurface currents
Fig. 25 shows the seasonal cycle of sub-surface currents from Acous-

tic Doppler current profiler (ADCP) observations and the CORE-II sim-
ulations at 90 ◦E and the equator. CORE-II simulations are able to
capture the semi-annual cycle of the EUC magnitude. Refining the
horizontal resolution from GFDL-MOM to GFDL-MOM025 indicates an
improvement in the EUC representation. The NEMO groups of models
accurately simulate the EUC magnitude. However, all models are un-
able to capture the timing of the peak values of EUC (Fig. 26b), where
the peak magnitude is reached about a month earlier (February) rela-
tive to ADCP observations. The pronounced upward phase propagation
(Iskandar et al., 2009) is weaker or near absent in the CORE-II models.

The presence of WJ during inter-monsoon period extends down to
100 m (Fig. 25). The ADCP observations are not available in the upper
40 m but the extent of spring WJ can be seen between 40 and 100 m

(Fig. 25). To compare the lower part of WJ, the seasonal cycle of
upper ocean current averaged over 40–100 m depth from observations
and simulations are shown in Fig. 26a. None of the models capture
the observed peak spring jet values of ∼45 cm/s whereas the models
overestimate the autumn jet values. The observed eastward current
associated with summer monsoon in July is also not found in any of
the models whereas the rest of the season they are more coherent and
close to observations.

EUC is present below WJ and it is most prominent at 90–170 m
(Iskandar et al., 2009). To examine the simulated EUC seasonal cycle,
we show the depth averaged (100–200 m) zonal current from ADCP
observation and CORE-II simulations in Fig. 26b. The peak observed
EUC value occurs in March–April, but all the models show an early peak
in February–March. Iskandar et al. (2009) showed that development
of an eastward pressure gradient during winter is responsible for the
formation of the EUC with a delay of one month. Equatorial wave
dynamics also play a role in the development of EUC. A downwelling
Kelvin wave is excited in the western basin in March–April (see their
Fig. 8b), which raises the sea level in the western part, whereas an
upwelling Rossby wave lowers the eastern basin during same time.
These waves are responsible for generating the pressure gradient. In the
CORE-II simulations, all models show the appearance of these waves
about a month early and hence the pressure gradient force gives rise
to an early EUC peak (not shown). The subsurface-surface interactions
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Fig. 22a. The upper left panel shows the seasonal variation of WOA salinity with depth over the south eastern Arabian Sea (SEAS). The top middle panel shows the same for
CORE-II ensemble mean, and the top upper right panel shows the ensemble mean bias. The remaining panels show the individual CORE-II model bias (model minus WOA) in
colors and its mean in contours. Contour levels for WOA observation, all individual models and its ensemble mean are same.

in the ocean are governed chiefly by baroclinic dynamics and wave
propagations. If baroclinic dynamics are affected via biases in the
resolved vertical structure of density, the associated planetary/Rossby
and Kelvin waves will be affected too. These waves are the key con-
trolling factors for thermocline displacements and are at the core of
tropical climate variability such as El Nino-Southern Oscillation and
Indian Ocean dipole/zonal mode (IODZM). Recently Shikha and Valsala
(2018) have shown the subsurface temperature and salinity bias in
CMIP-5 models over the Indian Ocean tend to have a positive bias in
the speed of first baroclinic mode wave propagation since the first and
second baroclinic modes are highly sensitive to density and its biases.

Fig. 27a shows the comparison of annual mean vertical variation of
the zonal current at 90 ◦E and at the equator. The ADCP observations
show that the annual mean subsurface zonal current peaks at 80 m
depth with a magnitude of 15 cm/s. FSU2 remarkably reproduces this
feature. As explained earlier, the NEMO (MOM) class of models over-
(under)estimate this observed EUC value. Due to these counter-acting
biases, the ensemble mean is relatively close to ADCP observations
both in magnitude and depth. The subsurface zonal current in April
is shown in Fig. 27b. Most of the models are unable to capture the
peak values at the observed depth. Only KIEL simulations are able to
capture the observed depth of the EUC, but with an overestimation of

up to 10 cm/s. BERGEN and NCAR simulate the peak EUC value, but
it peaks at a shallower depth of 90 m. The EUC in the coarse model
from ICTP is almost absent, while all other models show a comparable
velocity structure as the observations.

The autumn EUC appears at a slightly shallower depth (90 m) com-
pared to spring (∼110 m) (Fig. 27c), with the models showing biases in
the peak depth and its amplitude. During autumn, most models show
stronger EUC with varying peak depths ranging between 45 and 90 m,
whereas the observed value is ∼35 cm/s at 90 m. The spread of peak
EUC values in the autumn is much less than its spring values. But in
the autumn, the models are unable to capture the westward current at
the depth range 300–400 m seen in observations.

To assess the robustness of the above results, we repeated the analy-
sis at 80 ◦E, where only 3 years (2005–2007) continuous observational
ADCP data is available till 340 m depth (Nagura and Masumoto, 2015).
We thus computed a monthly climatology for both ADCP and CORE-II
simulated data over that period. At 80 ◦E location the ADCP and CORE-
II model comparisons show coherent results with that at 90◦E. The WJ
and the EUC are stronger at 80 ◦E compared to at 90 ◦E (not shown).
Furthermore, the inter-model spread for both currents is reduced at 80
◦E. Another notable difference at 80 ◦E is that the timing of the EUC
peak in spring is reproduced by all models. At 90 ◦E all models exhibit
an early peak.
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Fig. 22b. Same as Fig. 22a but for the Bay of Bengal.

Recently, McPhaden et al. (2015) showed that the volume transport
associated with the WJ peaks in May (November) with a transport
of 14.9 +∕− 2.9 Sv (19.7 +∕− 2.4 Sv). The coupled models analyzed
by McPhaden et al. (2015) were unable to capture these observed
values. We examine here the performance of the CORE-II models by
computing the transport following McPhaden et al. (2015). The CORE-
II models capture the observed seasonal variation of upper ocean
volume transport (not shown). The ensemble mean of zonal transport
shows a transport of 18.74 Sv in May and 16.83 Sv in November which
is similar to Wrytki jet volume transport reported by McPhaden et al.
(2015).

4.6. Indian Ocean meridional overturning circulation

The surface circulation of the northern and the equatorial Indian
Ocean shows large seasonal changes due to seasonal reversals of the
monsoon winds. The seasonal variability of surface circulation is well
known, such as the Somali Current (Schott et al., 1990) and the semian-
nual equatorial jet (Wyrtki, 1973). However, characteristics of CEC and
its underlying mechanisms are not very well known (Lee, 2004). Apart
from CEC, the presence of an ‘‘equatorial roll’’ in the mixed layer of
the Indian Ocean was also identified in model simulations of Wacongne
and Pacanowski (1996), and its presence has been confirmed thereafter

by observations (Wang and McPhaden, 2017; Horii et al., 2013; Perez-
Hernandez et al., 2012; Schott et al., 2002a,b). This shallow equatorial
roll consists of a northward wind-driven surface current in the upper
25 m near the equator overlaying the southward directed subsurface
Sverdrup transport. This circulation is narrowly confined to within ±1◦

of the equator and is most strongly developed seasonally during July–
October. However, it has little impact on cross-equatorial heat transport
(e.g., Schott et al., 2002a,b; Miyama et al., 2003).

In the north Indian Ocean (north of 10 ◦S) the annual mean net
surface heat flux is directed into the ocean (Oberhuber, 1988; Godfrey
et al., 2007). It is the wind-driven meridional overturning circulation
in the upper several hundred meters that exports the annual-mean net
heat gain towards the subtropical SIO, south of the equator (Wacongne
and Pacanowski, 1996; Lee and Marotzke, 1997, 1998; Garternicht and
Schott, 1997; Miyama et al., 2003). Godfrey et al. (2007), evaluating a
variety of different models over the Indian Ocean, found a mean heat
transport more than double the mean obtained when averaging the
observed climatology. The CEC is very important for the NIO warming
and sea level variability (Srinivasu et al., 2017; Swapna et al., 2017).

Fig. 28 shows the Indian Ocean Meridional Overturning circulation
(IOMOC) computed from all the models and the ORAS4 reanalysis.
Most of the models are able to simulate the CEC, while there is almost
no thermocline northward flow in the coarse model from ICTP. The
mean strength of CEC varies in different models and is in the range of
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Fig. 22c. Same as Fig. 22a but for the Eastern Equatorial Indian Ocean.

2–8 Sv. This value is within the earlier reported value of 6 Sv (Lee
and Marotzke, 1997; Schott et al., 2002a,b). The CEC structures as
demonstrated by Miyama et al. (2003) is well reproduced by a majority
of the models (Fig. 28). The ensemble mean from the entire model
suite is shown in upper middle panel of Fig. 28. The CEC structure is
prominent and it corroborates the finding of Miyama et al. (2003).

Although Miyama et al. (2003) have shown the pathways of CEC,
the vertical extent and the exact location of equatorial crossing have
not been reported in earlier studies. To quantify the vertical extent and
exact location, we plot the cross equatorial transport across the equator.
The cross equatorial transports from all the individual models show
the vertical extent of the northward cross equatorial flow extends over
the full water column near the African Coast (Fig. 29). The magnitude
of this flow varies and is strongest in CERFACS, CNRM, AWI, FSU
and FSU2. The ensemble mean cross equatorial transport with depth
is shown in the upper middle panel of Fig. 29. A narrow band of CEC
near the Somali coast can be seen from Fig. 29, with vertical extent
of the transport that extends to 1500 m. All the models show another
secondary pathway of northward transport of cross equatorial flow
along 75 ◦E with a value ranging 5–10 m2/s. These values are more
prominent and higher in the fine resolution MOM and KIEL simulations
with a maximum value of ∼20–25 m2/s. With islands and seamounts
along 75 ◦E (the Maldives and Chagos Archipelago), topography plays
a major role for the northward transport along that longitude. Nagura

and Masumoto (2015) used in-situ observations and OGCM output to
find a northward current at about 75 ◦E. They discussed its dynamics
using 1.5-layer model experiments and found that the WJ hits the
Maldives Islands near 73 ◦E and meanders, leading to a northward
current near the islands. The KIEL and MOM topography do not show
the presence of Maldives Island along the 73 ◦E in the upper 1000
m. However, the MOM025 and KIEL025 models show the presence
of bathymetry at 45 m depth onwards (not shown). The annual mean
currents in the models at 200 m and below are mostly zonal along the
equator. As reported by Nagura and Masumoto (2015) the presence of
Maldives Island around 73 ◦E meanders this zonal current and leads
to northward current at the southern flank of the Island, which mainly
drives the northward transport seen in Fig. 29 for the 1∕4 degree MOM
and KIEL simulations.

The strong southward flow apparent in the KIEL models near to the
Somali coast is due to the stronger meridional currents seen in these
models. This strong southward current is absent in other models (not
shown). The transport along the African coast across 5 ◦S is stronger
than across the Equator (not shown). This band is also a slightly wider
across 10 ◦S. Observations show a strong northward transport (25–
30 m2/s) along 50 ◦E across the 10 ◦S latitude (not shown). Only
GFDL-MOM and ICTP are able to capture this band.

We conclude that most CORE-II models simulate the structure of the
CEC in the Indian Ocean. Additionally, the CORE-II analysis uncovers a
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Fig. 23. Annual mean vertical salinity variations from the CORE-II simulations as compared to WOA observation averaged over different sub-regions in the Indian Ocean: (a)
Arabian Sea(AS), (b) Bay of Bengal (BoB), (c) South Eastern Arabian Sea (SEAS), (d) Eastern Equatorial Indian Ocean (EEIO), (e) Thermocline Ridge (TR) and (f) Southern Indian
Ocean (SIO). (see Section 3.4 for sub-region specifications).

previously unidentified secondary pathway of CEC. Namely, there is a
northward cross-equatorial transport along 75 ◦E, which is also present
feebly in ORAS4, complements the pathway near the Somali coast.

5. Summary of impacts from model resolution

Momin et al. (2014) is the only study that reported on the impact
of model resolution for Indian Ocean simulations. They showed an
overall marginal improvement in D20, SST and SSS, though with a
degradation in SST seasonal cycle over the equatorial Indian Ocean. In
earlier sections, we identified a variety of features that differ across the

ICTP, GFDL-MOM/GFDL-MOM025 and KIEL/KIEL025 resolution suite.
In this section, we discuss these two resolution suites with a focus on
the Bay of Bengal.

Fig. 30a shows the comparison of SST simulation derived from
KIEL and MOM. Both coarse and fine resolution models capture the
observed seasonal cycle. Increased resolution does not improve the
biases in spring (MOM) and summer for neither KIEL nor MOM. The
KIEL and KIEL025 simulations reproduce the observed SST variation
during winter and spring, associated with a good representation of the
BL thickness (Fig. 30b).

The observed thermocline seasonal cycle is well captured in MOM
with some improvement in MOM025. However, the KIEL and KIEL025
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Fig. 24a. Annual mean surface current comparison (current speed is given in color) with ship drift observation. The upper left panel shows observations (CUTLER) and the upper
middle panel shows CORE-II ensemble mean. The remaining panels show the individual CORE-II models. Units are in cm/s.

Fig. 24b. Seasonal cycle of zonal currents at the WJ location [55–80◦E, 2.5◦S – 2.5◦N]
averaged over 0 −15 m depth from CORE-II simulations and observations (CUTLER,
OSCAR, LUMPKIN).

simulations show a systematic bias of ∼20 m in 20 ◦C isotherm (D20)
throughout the season (Fig. 30c), possibly as a result of differences in
parameterizations between KIEL and MOM. Enhanced horizontal reso-
lution shows a significant improvement in the MLD simulations both in

MOM025 and KIEL025 as compared to their coarse resolution counter-
parts (Fig. 30d). The mixed layer depth in MOM025 and KIEL025 shows
similar value to WOA during spring and summer, but deeper by ∼10 m
during autumn and winter. Their coarse resolution counterparts show
∼20 m deeper MLD as compared to WOA observations. The vertical
temperature difference with respect to WOA observations is shown in
Fig. 30e. KIEL does not show any significant improvement in vertical
temperature simulations as resolution increases, but MOM shows a
slight warming in the deeper layer when refining the resolution, which
can also be seen in the seasonal bias plot in Fig. 20b. For salinity,
MOM shows improved simulations below the thermocline as resolution
increases, but in KIEL bias slightly increases with increase in resolution
(Fig. 30f).

Fig. 31 shows the annual mean cross equatorial transport with depth
along the equator for MOM, MOM025, KIEL, KIEL025, ensemble mean
of all models and ORAS4. As explained in the previous section, the
coarse resolution models do not show much transport across 72–76
◦E, but with enhanced resolution this transport is very prominent with
magnitude of 25–30 m2/s. Earlier modeling studies show that the cross
equatorial volume transport is maximum near the Somali coast in a
narrow band between 43 and 46 ◦E (Jensen, 2003, 2007; Miyama et al.,
2003). The coarse resolution MOM and KIEL simulations also show the
similar band in the surface layer, with the high resolution (MOM025
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Fig. 25. Upper ocean mean zonal current (cm/s) comparison of CORE-II simulations with ADCP observation at 90◦E and equator. The mean is computed for 2001–2007 for both
models and ADCP observation.

and KIEL025) showing even narrower band of cross equatorial flow
near the Somalia coast (Fig. 31) with much stronger value (∼50 m2/s)
and a strong secondary pathway along 72–76 ◦E. As previously reported
at around 50 ◦E a weak cross equatorial transport can be found in the
simulations except for the MOM025 configuration. The cross equatorial
transport near Somalia coast is mainly contributed from July (Fig. 32b),
whereas there is a negligible cross equatorial volume transport during
January (Fig. 32a) over the Somali coast.

There is stronger cross equatorial transport in the subsurface with
enhanced resolution in KIEL025 as well as MOM025. The secondary
cross equatorial pathways of volume transport along 72–76 ◦E in the
subsurface appear in the high resolution models both during winter and
summer (Figs. 32a, 32b). This feature is absent or near absent in the
coarse resolution models in the ensemble mean and ORAS4 reanalysis
products as well.

We conclude that increasing the horizontal resolution does not
necessarily improve the temperature and salinity properties noticeably.
However, increased resolution with a realistic topography represen-
tation does improve fidelity in the cross-equatorial pathways in the
Indian Ocean.

6. Summary of the assessment

We presented an analysis of 16 ocean/sea-ice models forced accord-
ing to the Coordinated Ocean-ice Reference Experiments (CORE) inter-
annual protocol, focusing here on the annual mean and seasonal fea-
tures of the Indian Ocean. This assessment is the first of its kind, and
thus it offers an important benchmark for further studies with global
ocean/sea-ice models or fully coupled climate models. In particular,
we documented the mean state by analyzing surface properties (SST,
SSS and surface currents), subsurface properties (temperature, salinity
and currents), and the MOC. The SST from CMIP5 simulations was also
utilized to compare the coupled and CORE-II simulations.

Our study provides an assessment across a suite of high-end global
ocean climate models, many of which were part of CMIP5 climate
models. We identified many biases with the simulations, and offered
suggestions for where these biases might be related to limitations in
the CORE-II forcing or the ocean model physical parameterizations. As
in other CORE-II assessments, we do not perform sensitivity studies to
support hypotheses for what mechanisms lead to the diagnosed model
biases. Nevertheless, our study provides a critical baseline from which
future targeted studies can address these limitations. This perspective
forms the basis for the nine other published CORE-II assessments.
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Fig. 26. Seasonal cycle of zonal current at 90 ◦E and the equator from CORE-II
simulations and ADCP observation (a) averaged over 40–100 m depth and (b) averaged
over 100–200 m depth. Model ensemble mean is also plotted in gray.

In the following we offer a summary of the main results from our
assessment.

6.1. Sea surface temperature

CORE-II models show improvement in capturing the observed sea-
sonal variability with less bias compared to the coupled models, and
their SST biases are ∼2 times smaller than coupled simulations. The
SST simulations from coupled CMIP5 models that we analyzed are
dominated by a negative (cold) bias in the Indian Ocean of about
1–2 ◦C, with large inter-model spread particularly over the EEIO.
Additionally, CMIP5 models are generally unable to simulate the timing
and magnitude of peak SST values, thus affecting the seasonal cycle
over the AS, the BoB and the EEIO. This result emphasizes the need
to improve the atmosphere and ocean components of coupled climate
models and their coupling to improve their representation of regional
Indian Ocean features.

We comment in particular on the northern AS, where the CORE-II
simulations show a negative (cold) SST bias (1–2 ◦C) during February
to April, which is increased to (2–3 ◦C) in the CMIP5 models. Previous
studies showed that the advection of cold air from the Asian land mass
causes this large cooling in coupled models (Marathayil et al., 2013;
Sandeep and Ajayamohan, 2014). We also find that this large bias arises
from a deeper MLD over this region in the CORE-II simulations.

Fig. 27. The upper ocean zonal current with depth at 90 ◦E and the equator from CORE-II models and ADCP observation (a) Annual mean, (b) April mean and (c) October mean.
The mean is computed for 2001–2007 for both models and ADCP observation.
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Fig. 28. Indian Ocean meridional volume transport (IOMOC) from CORE-II simulations and ORAS4 analysis. Units are in Sv.

6.2. Sea surface salinity (SSS) and barrier layer

The CORE-II models show a positive salinity bias in the BoB, the
AS and the SEAS. The simulations from FSU and FSU2 consistently
overestimate the SSS throughout the basin, particularly over the BoB,
the EEIO and the SIO, with these two models exhibiting the largest bias
among the CORE-II models. The seasonal cycle of SSS shows that inter-
model spread is larger in the AS and the SIO. The unrealistic seasonal
cycle in CORE-II models in the AS might be due to the unrealistic
representation of the overflow of high salinity waters from the Red Sea
and Persian Gulf into the AS. The intrusion of high-salinity water from
the AS to the BoB during the summer monsoon (Murty et al., 1992;
Vinayachandran et al., 1999) is not realistic in most of the models,
particularly in FSU and FSU2. Peak river runoff and the integrated
summer rainfall lead to a SSS minimum in October over the BoB.
Only CMCC captures the seasonal cycle with low salinity in October
reflecting those found in observations. Whereas SST simulations do
not notably improve with enhanced resolution, the SSS simulation
improves significantly when moving to the eddy permitting models
KIEL025 and GFDL-MOM025 compared to their respective coarser
counterparts.

The seasonal variation in the BL becomes most prominent during
December–January when it reaches 40 m thickness and is mainly
driven by substantial river runoff into the northern BoB. None of
the models capture this thick BL over the northern BoB. The NEMO
models (KIEL, CERFACS, CNRM and CMCC) reasonably capture the BL
and the east–west gradients. The MOM based models and the hybrid-
coordinate models are unable to represent the observed BL variation.
We conjecture that the inability of MOM class of models to simulate
the BL, in contrast to the NEMO models, might be due to the use of
distinct vertical turbulence mixing schemes.

6.3. Indian Ocean circulation features

The CORE-II models are able to simulate the Indian Ocean circu-
lation features with reasonable accuracy. The WJs are weakest in the
ICTP simulations (coarsest resolution model in the suite) and are more
faithfully represented in the other MOM and NEMO class of models.
All the models capture the observed seasonal cycle of WJs except ICTP,
which underestimates both the spring and autumn jets. Interestingly, all
the models show converging values in the autumn jets, however there
is a larger spread among the models for the spring jet.

Three different observations (OSCAR, CUTLER and LUMPKIN) show
the spring (autumn) jets peak in May (November) but they differ in
magnitude. The SMC is almost absent in some models and the NMC is
weaker in ICTP (again we hypothesize that this weakness is due to the
coarse resolution of 2◦ used in the ICTP model). AWI, BERGEN, NCAR
and FSU2 also show a near absence of observed peak values of SMC.
We found a splitting of the zonal currents at ∼10◦N off the Somali coast
in the AS during peak summer monsoon in the observation which is
absent in all simulations. This splitting has not been noted in previous
studies and is worthy of further investigation in the future using model
and observational data.

All models underestimate the spring WJ peak values of ∼45 cm/s
found in ADCP observations, whereas all models overestimate the
autumn jet values. The observed eastward current associated with the
summer monsoon in July is also poorly simulated by the CORE-II
models. The NEMO group of models most accurately simulates the EUC
magnitude. However, all models show an inaccurate timing of the peak
values of the EUC, with models showing their peak magnitudes about
a month earlier (February) than the ADCP observations (March).
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Fig. 29. Transport across the equator from all the models. The upper left panel shows transport from ORAS4 reanalysis product. The upper middle panel shows transport from
CORE-II ensemble. The remaining panels show transport from all CORE-II individual models. The maximum transport occurs through a narrow passage near to Somali Coast. Note
that the 1∕4 degree simulations from MOM025 and KIEL025 show large transport at ∼75◦E. Units are in m2/s.

6.4. Subsurface temperature and salinity

All models show a basin wide warm bias at 100 m depth (typi-
cally the mean thermocline depth) except GFDL-GOLD, which shows a
slightly cold bias over the EEIO and eastern AS. ICTP and BERGEN show
the largest bias (>3 ◦C) over the western equatorial Indian Ocean. Many
models (ICTP, MRI, and BERGEN) show a warmer subsurface layer
over central AS. CMCC and GFDL-GOLD well reproduce the observed
spatial distribution of subsurface temperatures. The MOM group of
models (GFDL-MOM, GFDL-MOM025, ICTP and ACCESS) is unable to
reproduce the spatial extent and magnitude of the TR region. These
models show a higher temperature at 100 m depth as compared to
WOA. Although CMCC and GFDL-GOLD capture the TR cooler water,
they show a cold bias in the EEIO. The observed spatial distributions
are most accurately reproduced by CMCC whereas the BERGEN and
ICTP simulations perform the worst.

The seasonal evolution of subsurface temperature shows distinct
differences. All the models show a positive (warm) thermocline bias
over the AS, BoB and EEIO with a magnitude ranging from ∼1 to 4 ◦C.
MRI and ICTP show the warmest thermocline bias (3–4 ◦C) among all
the models in all the regions, whereas GFDL-GOLD shows a slightly
cold thermocline bias. The NEMO group of models shows a reduced
bias (∼0.5–1 ◦C) in the AS. AWI, FSU and FSU2 also show a similar
low thermocline bias over the AS. Over the EEIO, isotherms below
100 m show a clear semiannual signal reaching to 500 m depth. The
thermocline bias shows seasonality in all the models. Over the AS and
the EEIO there are maximum biases during winter and spring, but over
the BoB the models show maximum biases during the summer time.
Increased spatial resolution in the model increases the thermocline bias

over AS and BoB, possibly as a result of increases in spurious mixing
(Griffies et al., 2000; Ilıcak et al., 2012).

The MOM (GFDL-MOM, GFDL-MOM025, ACCESS and ICTP) and
NEMO (KIEL, KIEL025, CERFACS, CNRM and CMCC) group of models
show stronger upper ocean salinity stratification near the north BoB as
compared to WOA, but over the south BoB they show weaker salinity
stratification. AWI, BERGEN, FSU and FSU2 are unable to capture
either north or south BoB salinity stratification.

6.5. Meridional overturning circulation and cross equatorial transport

The MOC in the Indian Ocean consists of a CEC and a Subtropical
Cell (STC) also called southern cell (see Fig. 1b). The CEC is a shallow
(∼500 m) meridional overturning circulation consisting of the north-
ward flow of southern-hemisphere thermocline water, upwelling in the
northern hemisphere, and a return flow of surface water (Miyama et al.,
2003). Most of the CORE-II models simulate the structure of the CEC.
The mean strength of the simulated CEC is in the range of 2–8 Sv, which
is within the earlier reported value of 6 Sv (Lee and Marotzke, 1997;
Schott et al., 2002a,b). The CEC structures reported by Miyama et al.
(2003) are well reproduced by a majority of the CORE-II models.

Maximum transport occurs through a narrow passage near the
Somali Coast as reported by Miyama et al. (2003). All simulations show
a single narrow band of cross equatorial flow near the Somali Coast,
but its vertical structure is yet unknown (see Figs. 3 and 4 of Miyama
et al., 2003). This study shows that the vertical extent of the transport
extends to 1500 m.

All models show a secondary pathway of northward transport of
cross equatorial flow along 75 ◦E with a value ranging between 5 and
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Fig. 30. Seasonal cycle of (a) SST, (b) Barrier Layer Thickness, (c) Thermocline Depth, (d) mixed layer depth for 1 degree and 1∕4 degree MOM and 0.5 degree and 1∕4 degree
KIEL models. Vertical temperature (e) and salinity (f) bias (model minus observation) with respect to WOA observation. The averages are taken over the Bay of Bengal.

10 m2/s. These values are more prominent and higher in the high
resolution MOM025 and KIEL025 models with a maximum value of
∼20–25 m2/s.

Thus, most CORE-II models simulate the structure of the CEC in the
Indian Ocean. Importantly, the CORE-II analysis uncovers a previously
unidentified secondary pathway of CEC, northward cross-equatorial
transport along 75 ◦E, thus complementing the pathway near the
Somali coast. We plan to study this secondary pathway in future studies
targeted on the dynamics of this flow.

6.6. Comments on model resolution

ICTP is the coarsest model considered in this study, which has a
nominal 2 degree horizontal grid spacing with 30 vertical levels. For

many of the metrics assessed in this study, this coarse model performed
the worse. We therefore suggest that Indian Ocean simulations should
be conducted with grid spacing no coarser than the 1 degree used by
the bulk of the models considered here.

When comparing the one degree and one-quarter degree simula-
tions, we find that moving to a fine horizontal resolution plays a
large role in improving mesoscale eddy dominated processes and strong
confined boundary current regions. In particular, for the eddy active
BoB region the simulations are better represented using 1∕4 degree
models (MOM025 and KIEL025) than their coarser resolution (1◦ MOM
or 0.5◦ KIEL) counterparts. Furthermore, an improvement is seen in
the representation of mixed layer depth, and SSS with simulations
of 1∕4◦ as compared to their coarse resolution counterpart. However,
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Fig. 31. Annual mean transport across the equator from MOM, MOM025, KIEL, KIEL025, all model ensemble and ORAS4. Units are in m2/s.

the thermocline becomes deeper as well as the vertical temperature
and salinity representation degrades in 1∕4◦ models compared to their
coarser resolution counterparts. This is reflected in the SST features
which are not improved, thus suggesting that many biases result from
limitations due to physical parameterization (e.g., vertical mixing in
the boundary layers) rather than limitations due to horizontal grid
resolution.

Our current understanding of the meridional overturning circulation
in the Indian Ocean is based largely on non-eddy-resolving models. The
CORE-II simulations provide new insight on the cross-equatorial cell,
which is an important component of MOC in the Indian Ocean. A future
analysis will target how these new pathways improve the inter-annual
variability of the Indian Ocean.

6.7. Closing comments about the present study and its future implications

The Indian subcontinent and surrounding south Asian region are
home to billions of people whose livelihood depends on the ISMR.
Hence, a timely and accurate prediction of the monsoon rains is cru-
cial throughout this region. Presently, many global prediction centers
predict ISMR on a seasonal time scale. The seasonal prediction skill
for tropical SST anomalies provides the major predictability source of
monsoon precipitation, and is closely linked to the models’ ability to
accurately simulate the mean SST (Sperber and Palmer, 1996; Lee et al.,
2010; Pokhrel et al., 2012a, 2016; Saha et al., 2019). Current coupled
models generally show cold biases over the Indian Ocean. Our study
of CORE-II simulations shows that these biases are reduced in CORE-
II forced simulations, thus suggesting that the origin for the coupled
biases is mostly related to coupled feedbacks that amplify ocean and
atmospheric biases. However, apart from this coupled feedback the

coupled mode SST bias also arises due to the tuning effect to make
coupled model’s global mean temperature comparable to observations.

The present study also shows that despite using the same atmo-
spheric state and experimental protocol, the oceanic response from
different models can be quite different as revealed by the sizable
intermodal spread in many of the prognostic variables. Enhanced model
horizontal resolution (to 1∕4◦ ) fails to improve the mean state and
the seasonal evolutions. This result emphasizes the need to improve
the model physics as well as providing a realistic representation of
bathymetry. The phase and strength of the IOD play an important role
in modulating regional as well as global climate (Saji et al., 1999;
Webster et al., 1999), with the seasonal evolution of the IOD sensitive
to the representation of the model mean state. A recent study also
shows a model’s ability to capture the teleconnection to the positive
IOD is closely related to its representation of the mean state (Hirons
et al., 2018). Hence this study will give significant insight into the IOD
climate mode and its prediction.

Recent studies by Li et al. (2016, 2017) noted that CMIP climate
model projections of increased frequency of IOD events (Cai et al.,
2014), increased ISMR, or a change in the mean state of the oceans are
mostly artifacts of model errors that can significantly distort regional
climate projections. Shikha and Valsala (2018) showed that over the
Indian Ocean, CMIP5 models develop internal warm and saline biases
approximately between a depth range of 100 m and 800 m in long term
simulations, and these internal biases have implications in large scale
ocean dynamics via their linkage through ocean baroclinicity. These
studies suggest that the mean state and subsurface biases in the state-
of-the-art coupled climate models can largely limit the model’s skill
for regional climate prediction. The present study showed that even
in forced ocean/sea-ice climate models, the subsurface temperature
and salinity biases are persistent, with particular examples being the
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Fig. 32a. Transport across the equator from MOM, MOM025, KIEL, KIEL025, all model ensemble and ORAS4 in January. Units are in m2/s.

thermocline temperature biases that result in the inability of these
modes to realistically represent the subsurface mean state. Therefore,
more focused research is needed to improve the model physics and
the realistic representation of bathymetry in the development of future
climate models.
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Appendix. Acronyms

ACCESS: Australian Community Climate and Earth System
Simulator
AS: Arabian Sea
AWI: Alfred Wegener Institute
BoB: Bay of Bengal
BL: Barrier Layer
CEC: Cross-Equatorial Cell
CERFACS: Centre Européen de Recherche et de Formation
AvancéeenCalculScientifique
CESM: Community Earth System Model
CGCM: Coupled general circulation model
CLIVAR: ClimateVariability and Predictability
CMCC: CentroEuro-MediterraneosuiCambiamentiClimatici
CMIP3: Coupled Model Intercomparison Project Phase 3
CMIP5: Coupled Model Intercomparison Project Phase 5
CNRM: Centre National de RecherchesMétéorologiques
CORE-II: Coordinated Ocean-ice Reference Experiments phase II
DRAKKAR: Coordination of high resolution global ocean
simulations and developments of the NEMO modeling framework
EACC: East African Coastal Current
EEIO: Eastern Equatorial Indian Ocean
EICC: East India Coastal current
ENSO: El Niño Southern Oscillation
EUC: Equatorial Undercurrent
FSU: Florida State University
FSU2: Version2 of the FSU contribution
GFDL: Geophysical Fluid Dynamics Laboratory
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Fig. 32b. Transport across the equator from MOM, MOM025, KIEL, KIEL025, all model ensemble and ORAS4 in July. Units are in m2/s.

GOLD: Generalized Ocean Layer Dynamics
GOOS: Global Ocean Observing System
HYCOM: Hybrid Coordinate Ocean Model
ICTP: International Centre for Theoretical Physics
IOC:Intergovernmental Oceanographic Commission
IOD: Indian Ocean Dipole
IODZM: Indian Ocean Dipole/Zonal mode
IOMOC: Indian Ocean Meridional overturning circulation
ISMR: Indian Summer Monsoon Rainfall
ITF: Indonesian through flow
ITCZ: Inter Tropical Convergence Zone
JRA55-do: Japanese 55-year atmospheric reanalysis (JRA-55)
based surface dataset for driving ocean–sea-ice models
(JRA55-do) (Tsujino et al., 2018)
KIEL: Contribution from the Helmholtz Center for Ocean
Research, Kiel, Germany
KPP: K-Profile Parameterization (Large et al., 1994)
LHF: Latent heat flux
MLD: Mixed layer depth
MOC: Meridional overturning circulation
NMC: Northeast Monsoon Current
NHF: Net Heat Flux
NOAA: National Oceanic and Atmospheric Administration
NOCS: National Oceanography Centre Southampton
OSCAR: Ocean Surface Current Analysis
Qa: specific humidity
RAMA: Research Moored Array for African–Asian–Australian
Monsoon Analysis & Prediction
RMSD: Root-mean-square deviation
SC: Somali current

SD: Standard deviation
SE: Socotra Eddy
SEAS: South Eastern Arabian Sea
SEC: South Equatorial Current
SG: Southern Gyre
SIO: Southern Indian Ocean
SICC: South Indian Ocean Counter Current
SMC: Southwest Monsoon Current
SSS: Sea surface salinity
SST: Sea surface temperature
SSTC: Southern Subtropical Cell
STC: Subtropical Cell
SWIO: Southwest Indian Ocean
Ta: Air temperature
TIO: Tropical Indian Ocean
TR: Thermocline Ridge
WICC: West India Coastal current
WJ: Wyrtki Jet
WOA: World Ocean Atlas
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